ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04.08. Volcanology  (20)
  • 05.03. Educational, History of Science, Public Issues  (3)
  • Elsevier  (17)
  • Springer  (5)
  • American Chemical Society
  • American Chemical Society (ACS)
  • American Society of Hematology
  • Blackwell Publishing Ltd
  • Springer Nature
  • 2020-2022  (23)
  • 1960-1964
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2021-02-03
    Description: Ocean acidification is one of the most dramatic effects of the massive atmospheric release of anthropogenic carbon dioxide (CO2) that has occurred since the Industrial Revolution, although its effects on marine ecosystems are not well understood. Submarine volcanic hydrothermal fields have geochemical conditions that provide opportunities to characterise the effects of elevated levels of seawater CO2 on marine life in the field. Here, we review the geochemical aspects of shallow marine CO2-rich seeps worldwide, focusing on both gas composition and water chemistry. We then describe the geochemical effects of volcanic CO2 seepage on the overlying seawater column. We also present new geochemical data and the first synthesis of marine biological community changes from one of the best-studied marine CO2 seep sites in the world (off Vulcano Island, Sicily). In areas of intense bubbling, extremely high levels of pCO2 ([10,000 latm) result in low seawater pH (\6) and undersaturation of aragonite and calcite in an area devoid of calcified organisms such as shelled molluscs and hard corals. Around 100–400 m away from the Vulcano seeps the geochemistry of the seawater becomes analogous to future ocean acidification conditions with dissolved carbon dioxide levels falling from 900 to 420 latm as seawater pH rises from 7.6 to 8.0. Calcified species such as coralline algae and sea urchins fare increasingly well as sessile communities shift from domination by a few resilient species (such as uncalcified algae and polychaetes) to a diverse and complex community (including abundant calcified algae and sea urchins) as the seawater returns to ambient levels of CO2. Laboratory advances in our understanding of species sensitivity to high CO2 and low pH seawater, reveal how marine organisms react to simulated ocean acidification conditions (e.g., using energetic tradeoffs for calcification, reproduction, growth and survival). Research at volcanic marine seeps, such as those off Vulcano, highlight consistent ecosystem responses to rising levels of seawater CO2, with the simplification of food webs, losses in functional diversity and reduced provisioning of goods and services for humans.
    Description: Published
    Description: 93–115
    Description: 2IT. Laboratori analitici e sperimentali
    Description: JCR Journal
    Keywords: Calcifying species , Ecosystem effects, Natural analogues, Submarine hydrothermalism ; 03. Hydrosphere ; 03.04. Chemical and biological ; 03.02. Hydrology ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-22
    Description: Radon monitoring represents an important investigation tool for environmental changes assessment and geochemical hazard surveillance. Despite anomalous radon emissions are commonly observed prior to earthquakes or volcanic eruptions, radon monitoring alone is not yet successful in correctly predicting these catastrophic events because contrasting radon signals are unexpectedly measured by lithologically distinct areas. This contribution aims to summarize and integrate natural and laboratory studies pertaining to the transport behavior of radon in different rock types experiencing variable stress and thermal regimes at subvolcanic conditions. The final purpose is to ignite novel and pioneer experimental researches exploring the causes and consequences of radon anomalous emissions, in order to elucidate in full the relationship between the physicochemical changes in substrate rocks and the radon signal.
    Description: Published
    Description: 309-328
    Description: 4V. Processi pre-eruttivi
    Keywords: deformation experiments ; radon monitoring ; radon signal and rock physicochemical changes ; radon transport and geochemical anomalies ; thermal experiments ; volcanic surveillance ; 04.08. Volcanology ; 04.04. Geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-01-19
    Description: Multiparametric observations integrate signals from different techniques into a unified time and space frame, and are key in understanding and monitoring the evolution of volcanic systems and eruptive activity. Mafic explosive eruptions, with a relatively high frequency of occurrence and low intensity, allow for detailed multiparametric observations at a relatively close distance. Typically, pyroclast ejection in these eruptions is not steady, but is characterized by the occurrence of ejection pulses, linked to pressure release events and featuring a characteristic nonlinear decay of pyroclasts exit velocity. Pulse frequency, duration, and exit velocity define the dominant eruptive style, function of the volume and pressure of the released gas, conduit size, and magma rheological-mechanical properties. No important differences in pressure and velocity divide eruptions with different magnitude and style. Ejection pulses influence the geophysical signature, plume development, and the emplacement of ballistic volcanic projectiles at eruptions from Strombolian to Vulcanian styles.
    Description: Published
    Description: 379-411
    Description: 4V. Processi pre-eruttivi
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Keywords: Mafic eruption, Multiparametric monitoring, Eruption imaging, Volcano acoustic, Strombolian, Plume, Vent, Ballistic ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-05-12
    Description: CCS communication has proven a tough challenge, particularly for the difficulty in raising interest for the technology, which is still unknown to the majority of the population, and for the complexity of conveying information about its potential for reducing emissions. In this paper, we present a research based effort for bringing CCS nearer to people, through visual material developed taking into account emotional needs related to the technology. The production of a short introductory film on CCS is illustrated and its testing with a sample of 700 high school students.
    Description: Published
    Description: 7367 – 7378
    Description: 2TM. Divulgazione Scientifica
    Description: JCR Journal
    Keywords: CCS communication ; public perception ; 05.03. Educational, History of Science, Public Issues
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-06-22
    Description: Major, minor and rare earth elements were analyzed in the acid sulphate - chloride thermal springs associated to Puracé volcano – hydrothermal system. The waters of Puracé were classified in 2 different groups as a function of the physico-chemical parameters and element distributions. Group 1 is characterized by the highest pH (⁓ 3.5), an outlet temperature of ⁓ 81 °C and a strong depletion of Fe, Al, Si and Ba with respect to the isochemical dissolution of the average volcanic local rock. Group 2 waters have lower pH values ⁓ 1.9 and temperature (⁓ 48 °C) compared with Group 1. Moreover, Group 2 is not characterized by a typical pathway representing the congruent dissolution of the rock and shows a distribution of major and minor elements that is more close to the near-congruent dissolution of the average volcanic local rock with respect to Group 1. These geochemical features of major and minor elements allow to propose that the chemical composition of the waters of Group 1 is strongly affected by the precipitation of secondary minerals such as alunite, jarosite, kaolinite, barite and polymorphs of SiO2. The grouping of waters is also supported by the distribution of dissolved REE normalized to the average volcanic local rock. Group 1 shows REE patterns strongly depleted in light rare earth elements (LREE), typical of water that formed alunitic and/or kaolinitic rocks. On the contrary, Group 2 is characterized by flat patterns, in according to the near-congruent dissolution of the rocks. REE dissolved in waters of Puracé were compared with REE in the acidic waters of Nevado del Ruiz and Azufral Colombian volcanoes and with REE in minerals recognized in advanced argillic alteration (alunite, gypsum and kaolinite). Precipitation of secondary minerals is proposed as a common process depleting LREE in acidic sulphate – chlorine waters in volcano – hydrothermal systems. Furthermore, the chemical fractionation of the major and minor elements was interpreted together with the corresponding distributions of REE in order to trace the water – rock interaction processes. Saturation indexes of most common secondary minerals identified in advanced argillic alterations were calculated using PHREEQC software in a range of temperature from 25 to 250 °C. This geochemical approach allows to identify the possible mineral precipitation or dissolution of secondary minerals as well as the temperature at which the water reached equilibrium with a given set of minerals. In Group 1, the precipitation of secondary minerals LREE enriched (alunite minerals and kaolinite) was traced at temperature of precipitation higher than ⁓ 101 °C.
    Description: Published
    Description: 107106
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: Puracé volcano Acidic waters Rare Earth elements fractionation Advanced argillic alteration Alunite Kaolinite ; 04.08. Volcanology ; 05. General ; Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-01-22
    Description: Numerical models of pyroclastic currents are widely used for fundamental research and for hazard and risk modeling that supports decision-making and crisis management. Because of their potential high impact, the credibility and adequacy of models and simulations needs to be assessed by means of an established, consensual validation process. To define a general validation framework for pyroclastic current models, we propose to follow a similar terminology and the same methodology that was put forward by Oberkampf and Trucano (Prog Aerosp Sci, 38, 2002) for the validation of computational fluid dynamics (CFD) codes designed to simulate complex engineering systems. In this framework, the term validation is distinguished from verification (i.e., the assessment of numerical solution quality), and it is used to indicate a continuous process, in which the credibility of a model with respect to its intended use(s) is progressively improved by comparisons with a suite of ad hoc experiments. The method- ology is based on a hierarchical process of comparing computational solutions with experimental datasets at different levels of complexity, from unit problems (well-known, simple CFD problems), through benchmark cases (complex setups having well constrained initial and boundary conditions) and subsystems (decoupled processes at the full scale), up to the fully coupled natural system. Among validation tests, we also further distinguish between confirmation (comparison of model results with a single, well-constrained dataset) and benchmarking (inter-comparison among different models of complex experimental cases). The latter is of particular interest in volcanology, where different modeling approaches and approximations can be adopted to deal with the large epistemic uncertainty of the natural system.
    Description: Published
    Description: 51
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: pyroclastic currents, benchmark, validation ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-01-26
    Description: Hydrothermally-altered rocks collected at Solfatara volcano, Campi Flegrei caldera complex, Italy, are comparable to zones of steam-heated alterations found at low sulfidation epithermal deposits, and volcanic gases collected at Solfatara have temperatures and C-O-H isotopic compositions akin to those forming low sulfidation epithermal deposits. By contrast, hydrothermal alterations collected at La Fossa volcano, Vulcano island, Italy, are comparable to zones of residual vuggy silica formed in high sulfidation epithermal deposits, and volcanic gases collected at La Fossa have temperatures and C-O-H isotopic compositions comparable to those forming high sulfidation epithermal deposits. At Solfatara, amorphous and hydrous opal-A is responsible for shifts in δ7Li values, from +2.2‰ in fresher rocks, to −3.6‰ in most altered rocks, with increases in Au and Cu concentrations (up to 3 ppb and 96 ppm). The increase in Au and Cu concentrations in progressively-altered rocks resulted from the transport of Cu-Au in magmatic-hydrothermal fluids and their partitioning into pyrite, Fe oxides, phyllosilicates, sulfates, and/or opal-A. It is proposed that the combination of opal-A, decreases in δ7Li values, and increases in Cu and Au concentrations represent an exploration vector for low sulfidation epithermal veins. At La Fossa, α-cristobalite is responsible for shifts in δ7Li values, ranging from −0.9‰ in least-altered rocks, to +4.7‰ in most altered rocks, with decreases in Au-Cu concentrations. The decrease in Au and Cu concentrations in progressively-altered rocks may have resulted from the metasomatism of pyrite and Fe oxides, the dissolution of clinopyroxene and opal, and the invasion of the samples by α-cristobalite. The combination of α-cristobalite, increases in δ7Li values, and decreases in Cu and Au concentrations are proposed as proxies for potential high sulfidation epithermal disseminations. Alternating phases of high eruptive activity and quiescent degassing at volcanoes generally, and at Solfatara and La Fossa specifically, suggest that the physicochemical conditions of individual subvolcanic hydrothermal systems should also be alternating, between conditions that are characteristic of low- and high sulfidation epithermal ore-forming environments, and that the related zones of silicification should be alternating between low δ7Li and high Cu-Au values dominated by opal-A, and higher δ7Li and lower Cu-Au values dominated by α-cristobalite.
    Description: Published
    Description: 103934
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: JCR Journal
    Keywords: Active ore-forming processes ; Opalization and cristobalization ; Lithium isotopes ; High and low sulfidation epithermal Au-Cu ore deposits ; La Fossa, Vulcano, Italy ; Solfatara, Campi Flegrei, Italy ; 04.08. Volcanology ; 05.04. Instrumentation and techniques of general interest ; Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-05-18
    Description: Anthropogenic emissions of greenhouse gases (GHGs) co-occur with emissions of these gases from volcanic and urban environments. Therefore, it remains a challenge for the scientific community to identify the contamination sources and quantify the specific contributions. Stable isotopes have many applications in different fields under geosciences, including volcanology, environmental surveying, and climatology. Isotopic surveys allow identification of photosynthetic fractionation in tree forests and gas sources in urban zones, and tracking of volcanic degassing. Thus, the stable isotopic composition of the local GHGs allows the evaluation of the environmental impacts and assists in mitigating the emissions. The present study aimed to distinguish the tropospheric sources of CO2 in the different ecosystems based on the stable isotopic composition of CO2. The study relies on field experiments performed in both volcanic and urban zones of the Mediterranean region. Experiments to identify the CO2 origins in the field were designed and conducted in the laboratory. The CO2 in the air in Palermo, the soil CO2 released at Vulcano (Aeolian Islands, Italy), and the CO2 emitted at Cava dei Selci (Rome, Italy) were selected for conducting case studies. Isotope surveying of the CO2-containing air in Palermo revealed that the CO2 content was correlated to human activity. Mobile-based measurements of carbon isotope were conducted to distinguish the different sources of CO2 at the district scale. In particular, the isotopic surveying process distinguished landfill-related CO2 emissions from the fossil fuel burning ones. The underlying geological reservoir was identified as the main source of air CO2 at Cava dei Selci. Finally, partitioning of soil CO2 enabled estimation of the geological CO2 estimation in the Vulcano Porto settled zones. The results of the present study revealed that detailed investigations on stable isotopes assist in tracking the CO2 sources and the fate of gas emissions. The fine-tuned experimental solutions assisted in broadening the research perspectives. In addition, deeper insights into the carbon cycle were obtained.
    Description: Published
    Description: 118446
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: Stable isotopes ; Carbon dioxide ; Greenhouse gas emissions ; Volcanic gases ; Mediterranean region ; 01.01. Atmosphere ; 04.08. Volcanology ; 05.08. Risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-06-24
    Description: The possibility of constraining the composition and evolution of specific portions of the Sub-Continental Lithospheric Mantle (SCLM) by means of an integrated study of petrography, mineral chemistry, and concentrations of volatiles in fluid inclusions (FI) is a novel approach that can provide clues on the recycling of volatiles within the lithosphere. This approach is even more important in active or dormant volcanic areas, where the signature of the gaseous emissions at the surface can be that of the underlying lithospheric mantle domains. In this respect, the ultramafic xenoliths brought to the surface in West Eifel (~0.5–0.01 Ma) and Siebengebirge (~30–6 Ma) volcanic fields (Germany) are ideal targets, as they provide direct information on one of the most intriguing portions of SCLM beneath the Central European Volcanic Province (CEVP). Five distinct populations from these localities were investigated using petrographic observations, mineral phase analyses and determination of He, Ne, Ar and CO2 contents in olivine-, orthopyroxene-, and clinopyroxene-hosted FI. The most refractory Siebengebirge rocks have highly forsteritic olivine, high-Mg#, low-Al pyroxene, and spinel with high Cr#, reflecting high extents (up to 30%) of melt extraction. In contrast, xenoliths from West Eifel are modally and compositionally heterogeneous, as indicated by the large forsterite range of olivine (Fo83–92), the Cr# range of spinel (0.1–0.6), and the variable Al and Ti contents of pyroxene. Equilibration temperatures vary from 870 ◦C to 1070 ◦C in Siebengebirge, and from ⁓900 ◦C to ⁓1190 ◦C in West Eifel xenoliths, at oxygen fugacity values generally between 􀀀 0.5 and + 1.3 ΔlogƒO2 [FMQ]. In both areas, the FI composition was dominated by CO2, with clinopyroxene, and most of the orthopyroxene had the highest concentrations of volatiles, while olivine was gas-poor. The noble gas and CO2 distributions suggest that olivine is representative of a residual mantle that experienced one or more melt extraction episodes. The 3He/4He ratio corrected for air contamination (Rc/Ra values) varied from 6.8 Ra in harzburgitic lithotypes to 5.5 Ra in lherzolites and cumulate rocks, indicating that the original MORB-like mantle signature was progressively modified by interaction with crustal-related components and melts having 3He/4He and 4He/40Ar* values consistent with those published for magmatic gaseous emissions. The Ne and Ar isotope systematics indicated that most of the data were consistent with mixing between a recycled atmospheric component and a MORB-like mantle, which does not necessarily require the involvement of a lower mantle plume beneath this portion of the CEVP. The major element distribution in mineral phases from West Eifel and Siebengebirge, together with the systematic variations in FI composition, the positive correlation between Al enrichment in pyroxene and equilibration temperatures, and the concomitant Rc/Ra decrease with increasing temperature, suggest that the SCLM beneath Siebengebirge represented the Variscan lithosphere in CEVP prior to the massive infiltration of melts/fluids belonging to the Quaternary Eifel volcanism. In contrast, West Eifel xenoliths reflect multiple heterogeneous metasomatism/refertilisation events that took place in the regional SCLM between ~6 and ~ 0.5 Ma.
    Description: Published
    Description: 120400
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: Eifel ; Siebengebirge ; Noble gas and CO2 measurements ; Fluid inclusions ; Mantle xenoliths ; European SCLM ; Partial melting ; Metasomatism ; Refertilisation ; 04.01. Earth Interior ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-01-22
    Description: We have used a three-dimensional, non-equilibrium multiphase flow numerical model to simulate subplinian eruption scenarios at La Soufrière de Guadeloupe (Lesser Antilles, France). Initial and boundary conditions for computer simulations were set on the basis of independent estimates of eruption source parameters (i.e. mass eruption rate, volatile content, temperature, grain size distribution) from a field reconstruction of the 1530 CE subplinian eruption. This event is here taken as a reference scenario for hazard assessment at La Soufrière de Guadeloupe. A parametric study on eruption source parameters allowed us to quantify their influence on the simulated dynamics and, in particular, the increase of the percentage of column collapse and pyroclastic density current (PDC) intensity, at constant mass eruption rate, with variable vent diameter. Numerical results enabled us to quantify the effects of the proximal morphology on distributing the collapsing mass around the volcano and into deep and long valleys and to estimate the areas invaded by PDCs, their associated temperature and dynamic pressure. Significant impact (temperature 〉 300 °C and dynamic pressure 〉 1 kPa) in the inhabited region around the volcano is expected for fully collapsing conditions and mass eruption rates 〉 2 × 107 kg/s. We thus combine this spatial distribution of temperature and dynamic pressure with an objective consideration of model-related uncertainty to produce preliminary PDC hazard maps for the reference scenario. In such a representation, we identify three areas of varying degree of susceptibility to invasion by PDCs-very likely to be invaded (and highly impacted), susceptible to invasion (and moderately impacted), and unlikely to be invaded (or marginally impacted). The study also raises some key questions about the use of deterministic scenario simulations for hazard assessment, where probability distributions and uncertainties are difficult to estimate. Use of high-performance computing techniques will in part allow us to overcome such difficulties, but the problem remains open in a scientific context where validation of numerical models is still, necessarily, an incomplete and ongoing process. Nevertheless, our findings provide an important contribution to the quantitative assessment of volcanic hazard and risk at La Soufrière de Guadeloupe particularly in the context of the current unrest of the volcano and the need to prepare for a possible future reawakening of the volcano that could culminate in a magmatic explosive eruption.
    Description: Published
    Description: 76
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Hazard assessment; La Soufrière de Guadeloupe; Numerical simulation; Pyroclastic density currents; Subplinian eruption ; 04.08. Volcanology ; 05.01. Computational geophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2020-09-01
    Description: Establishing sustainable and responsible speleotourism development is a major challenge and involves complex activities. Adequate theoretical starting point is the application of geoethical values related to the conservation and protection of the caves to be used for touristic purposes. Positive and negative cases of human behaviors towards speleological geoheritage are discussed, in order to highlight what should be done in cave management to avoid malpractices and on what elements could be founded adequate strategies aimed at promoting sustainable speleotourism. This is important to tourism management organizations involved in the promotion of caves and in creating economic opportunities for local populations, while respecting cave ecosystems. Modern cave management must be focused on the protection of the cave ecosystems, finding ways to achieve at the same time an economic development of local communities. But this approach needs the adoption of a geoethical framework of values to be shared by all stakeholders involved so that successful cooperation can be achieved despite differences in interests and expectations. The aim of this paper is to raise the awareness about the need to apply the values of geoethics to speleotourism, stimulating new fields of discussion within the scientific and technical communities involved in studies and activities related to geotourism and geoheritage. The possibilities of developing new ways to manage caves, in order to promote a sustainable socio-economic development of local communities, have to be balanced with the protection of natural environments as much as possible. The proposed theoretical frameworks have the goal to increase the discussion on the best ways of connecting speleotourism to sustainable and responsible cave management, presenting two case studies, and pointing out potential solutions.
    Description: Open access funding provided by Istituto Nazionale di Geofisica e Vulcanologia within the CRUI-CARE Agreement
    Description: Published
    Description: id 73
    Description: 7SR AMBIENTE – Servizi e ricerca per la società
    Description: 1TM. Formazione
    Description: 2TM. Divulgazione Scientifica
    Description: JCR Journal
    Keywords: Geoethics ; Responsibility ; Sustainability ; Caves ; Speleotourism ; 05.03. Educational, History of Science, Public Issues ; 05.09. Miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2020-10-22
    Description: The earthquake occured in Tohoku (Japan) in 2011 showed that no matter how outstanding is the model of the mitigation of natural hazard, an earthquake can always surprise any studied attempt to contain a tsunami. I report this extreme example to draw the reader attention on how strong should be the commitment of the society in producing the optimal conditions to face natural hazard. Every country has a peculiar social context. If in the past we considered this as a secondary aspect, now we are obliged to recognize that the social context is of main importance when promoting mitigation of natural hazard. In this occasion I would like to refer to my experience as an educator in my country. Italy is a country where it is difficult to promote a dialogue between the Institutions and the citizens. The dialogue is difficult also among the communities of engineers, geologists and politicians. There is still a great confusion on the attribution of tasks and a lot of problems of difficult solution are related to corruption. In this context, education can play a crucial role and should be intensively addressed to promote geo-awareness in the citizens. People should learn about the geological site where their houses are built and get all the info necessary to understand if it has been done according to the law. Only in this way citizens become an active agent in promoting those changes without which an efficacious mitigation of natural hazard is impossible.
    Description: Published
    Description: 85-88
    Description: 3TM. Comunicazione
    Keywords: Risk communication, Earth Education, Public Awareness ; 05.03. Educational, History of Science, Public Issues
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2020-12-14
    Description: In the last few decades, advanced monitoring networks have been extended to the main active volcanoes, providing warnings for variations in volcano dynamics. However, one of the main tasks of modern volcanology is the correct interpretation of surface-monitored signals in terms of magma transfer through the Earth's crust. In this frame, it is crucial to investigate decompression-induced magma degassing as it controls magma ascent towards the surface and, in case of eruption, the eruptive style and the atmospheric dispersal of tephra and gases. Understanding the degassing behaviour is particularly intriguing in the case of poorly explored evolved alkaline magmas. In fact, these melts frequently feed hazardous, highly explosive volcanoes (e.g., Campi Flegrei, Somma-Vesuvius, Colli Albani, Tambora, Azores and Canary Islands), despite their low viscosity that usually promotes effusive and/or weakly explosive eruptions. Decompression experiments, together with numerical models, are powerful tools to examine magma degassing behaviour and constrain field observations from natural eruptive products and monitoring signals. These approaches have been recently applied to evolved alkaline melts, yet numerous open questions remain. To cast new light on the degassing dynamics of evolved alkaline magmas, in this study we present new results from decompression experiments, as well as a critical review of previous experimental works. We achieved a comprehensive dataset of key petrological parameters (i.e., 3D textural data for bubbles and microlites using X-ray computed microtomography, glass volatile contents and nanolite occurrence) from experimental samples obtained through high temperature-high pressure isothermal decompression experiments on trachytic alkaline melts at super-liquidus temperature. We explored systematically a range of final pressures (from 200 to 25 MPa), decompression rates (from 0.01 to 1 MPa s−1), and volatile (H2O and CO2) contents. On these grounds, we integrated coherently literature data from decompression experiments on evolved alkaline (trachytic and phonolitic) melts under various conditions, with the aim to fully constrain the degassing mechanisms and timescales in these magmas. Finally, we simulated numerically the experimental conditions to evaluate strengths and weaknesses in decrypting degassing behaviour from field observations. Our results highlight that bubble formation in evolved alkaline melts is primarily controlled by the initial volatile (H2O and CO2) content during magma storage. In these melts, bubble nucleation needs low supersaturation pressures (≤ 50–112 MPa for homogeneous nucleation, ≤ 13–25 MPa for heterogeneous nucleation), resulting in high bubble number density (~ 1012–1016 m−3), efficient volatile exsolution and thus in severe rheological changes. Moreover, the bubble number density is amplified in CO2-rich melts (mole fraction XCO2 ≥ 0.5), in which continuous bubble nucleation predominates on growth. These conditions typically lead to highly explosive eruptions. However, moving towards slower decompression rates (≤ 10−1 MPa s−1) and H2O-rich melts, permeable outgassing and inertial fragmentation occur, promoting weakly explosive eruptions. Finally, our findings suggest that the exhaustion of CO2 at deep levels, and the consequent transition to a H2O-dominated degassing, can crucially enhance magma vesiculation and ascent. In a hazard perspective, these constraints allow to postulate that time-depth variations of unrest signals could be significantly weaker/shorter (e.g., minor gas emissions and short-term seismicity) during major eruptions than in small-scale events.
    Description: Published
    Description: 103402
    Description: 1V. Storia eruttiva
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: 4V. Processi pre-eruttivi
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2021-03-30
    Description: The dichotomy between explosive volcanic eruptions, which produce pyroclasts, and effusive eruptions, which produce lava, is defined by the presence or absence of fragmentation during magma ascent. For lava fountains the distinction is unclear, since the liquid phase in the rising magma may remain continuous to the vent, fragment in the fountain, then re-weld on deposition to feed rheomorphic lava flows. Here we use a numerical model to constrain the controls on basaltic eruption style, using Kilauea and Etna as case studies. Based on our results, we propose that lava fountaining is a distinct style, separate from effusive and explosive eruption styles, that is produced when magma ascends rapidly and fragments above the vent, rather than within the conduit. Sensitivity analyses of Kilauea and Etna case studies show that high lava fountains (〉50 m high) occur when the Reynolds number of the bubbly magma is greater than ∼0.1, the bulk viscosity is less than 10^6, and the gas is well-coupled to the melt. Explosive eruptions (Plinian and sub-Plinian) are predicted over a wide region of parameter space for higher viscosity basalts, typical of Etna, but over a much narrower region of parameter space for lower viscosity basalts, typical of Kilauea. Numerical results show also that the magma that feeds high lava fountains ascends more rapidly than the magma that feeds explosive eruptions, owing to its lower viscosity. For the Kilauea case study, waning ascent velocity is predicted to produce a progressive evolution from high to weak fountaining, to ultimate effusion; whereas for the Etna case study, small changes in parameter values lead to transitions to and from explosive activity, suggesting that eruption transitions may occur with little warning.
    Description: RCUK NERC DisEqm project
    Description: Published
    Description: 116658
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2021-06-22
    Description: Rare Earth Elements (REE; lanthanides and yttrium) are elements with high economic interest because they are critical elements for modern technologies. This study mainly focuses on the geochemical behavior of REE in hyperacid sulphate brines in volcanic-hydrothermal systems, where the precipitation of sulphate minerals occurs. Kawah Ijen lake, a hyperacid brine hosted in the Ijen caldera (Indonesia), was used as natural laboratory. ∑REE concentration in the lake water is high, ranging from 5.86 to 6.52 mg kg-1. The REE pattern of lake waters normalized to the average local volcanic rock is flat, suggesting isochemical dissolution. Minerals spontaneously precipitated in laboratory at 25 °C from water samples of Kawah Ijen were identified by XRD as gypsum. Microprobe analyses and the chemical composition of major constituents allow to identify possible other minerals precipitated: jarosite, Al-sulphate and Sr, Ba-sulphate. ∑REE concentration in minerals precipitated (mainly gypsum) range from 59.53 to 78.64 mg kg-1. The REE patterns of minerals precipitated normalized to the average local magmatic rock show enrichment in LREE. The REE distribution coefficient (KD), obtained from a ratio of its concentration in the minerals precipitated (mainly gypsum) and the lake water, shows higher values for LREE than HREE. KD-LREE/KD-HREE increases in the studied samples when the concentrations of BaO, MgO, Fe2O3, Al2O3, Na2O and the sum of total oxides (except SO3 and CaO) decrease in the solid phase. The presence of secondary minerals different than gypsum can be the cause of the distribution coefficient variations. High concentrations of REE in Kawah Ijen volcanic lake have to enhance the interest on these environments as possible REE reservoir, stimulating future investigations. The comparison of the KD calculated for REE after mineral precipitation (mainly gypsum) from Kawah Ijen and Poás hyperacid volcanic lakes allow to generalize that the gypsum precipitation removes the LREE from water.
    Description: Published
    Description: 140133
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: 2IT. Laboratori analitici e sperimentali
    Description: JCR Journal
    Keywords: Gypsum precipitation ; Rare Earth Elements ; Hyperacid crater lake ; Kawah Ijen volcano ; Poás volcano ; REE fractionation ; Geochemistry ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2020-10-06
    Description: The partitioning of carbon dioxide (CO〈sub〉2〈/sub〉) released by soils at Vulcano Island (Aeolian Islands, Italy) was performed by combining the CO〈sub〉2〈/sub〉 flux and the carbon isotope measurements. Based on this method, the amount of CO〈sub〉2〈/sub〉 of volcanic origin was quantified six times during the period 2015–2018. The data analysis allowed us to establish the correlation between CO〈sub〉2〈/sub〉 soil degassing and changes in the contribution of volcanic fluids. Carbon isotope determinations were performed in situ to enhance the coverage of data collection in space and time. These data were combined with both the CO〈sub〉2〈/sub〉 contents in the ground gases and the soil CO〈sub〉2〈/sub〉 flux. The amount of volcanic CO〈sub〉2〈/sub〉 was distinguished from that of biogenic origin by implementing a three-component mixing model. The results of this study indicate that the increase in CO〈sub〉2〈/sub〉 output in September 2018 reflects the increase in volcanic gas emissions. The measurement method and analysis presented in this work are sufficiently general to be applicable to the monitoring programs of active volcanoes.
    Description: Published
    Description: 106972
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: Carbon dioxide ; CO2 flux ; CO2 isotope composition ; Volcano monitoring ; Volcanic unrest ; Volcanic degassing ; 04. Solid Earth ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2020-11-23
    Description: In the world, volcanic systems exhibit a wide range of eruption styles threatening the lives of millions of people. Relatively slow effusive eruptions generate lava flows (low viscosity magma) and lava domes (high viscosity magma) and tend to evolve over days to decades. Alternatively, explosive eruptions can inject very large volumes of fragmented magma and volcanic gas high into the atmosphere over shorter periods (minutes to weeks to months). Mitigation of the associated risk to populations, the built environment, and the cultural heritage relies upon our ability to accurately assess volcanic hazards, and this, in turn, depends on our understanding of the processes that control the style and scale of volcanic eruptions. To this end, technological developments over the last couple of decades have greatly improved our ability to characterize magmatic systems and detect precursors at high spatial and temporal resolution through the use of analytical and observational volcanology, including monitoring-derived data, and volcano geophysics. Numerical modeling of magma ascent can serve to link all of these data and processes to build effective near-real-time strategies. The complexity of the volcanic system, derived from the multiphase, multicomponent character of the magmatic mixtures and from their interaction dynamics with the surrounding host rocks, is however manifested in the complexity of its mathematical representation, and numerical models able to describe several interdependent processes, eventually at disequilibrium conditions, are required to capture the nature of volcanic systems with fidelity. In this chapter, we present the main equations governing magma ascent, highlighting the multiphase and disequilibrium nature of volcanic flows, and the presence of complex feedback mechanisms between gas exsolution, outgassing, and crystallization that are able to influence the most important characteristics of the resulting volcanic events. Then, a suite of numerical simulations is described to show the effect of some parameters and processes in controlling eruption style and scale, and thus the potential eruption hazard.
    Description: Published
    Description: 239-284
    Description: 5V. Processi eruttivi e post-eruttivi
    Keywords: 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2020-11-25
    Description: Active lava lakes – as the exposed upper part of magmatic columns – are prime locations to investigate the conduit flow processes operating at active, degassing volcanoes. Persistent lava lakes require a constant influx of heat to sustain a molten state at the Earth's surface. Several mechanisms have been proposed to explain how such heat transfer can operate efficiently. These models make contrasting predictions with respect to the flow dynamics in volcanic conduits and should result in dissimilar volatile emissions at the surface. Here we look at high-frequency SO2 fluxes, plume composition, thermal emissions and aerial video footage from the Villarrica lava lake in order to determine the mechanism sustaining its activity. We found that while fluctuations are apparent in all datasets, none shows a stable periodic behaviour. These observations suggest a continuous influx of volatiles and magma to the Villarrica lava lake. We suggest that ascending volatile-rich and descending degassed magmas are efficiently mixed within the volcanic conduit, resulting in no clear periodic oscillations in the plume composition and flux. We compare our findings to those of other lava lakes where equivalent gas emission time-series have been acquired, and suggest that gas flux, magma viscosity and conduit geometry are key parameters determining which flow mechanism operates in a given volcanic conduit. The range of conduit flow regimes inferred from the few studied lava lakes gives a glimpse of the potentially wide spectrum of conduit flow dynamics operating at active volcanoes.
    Description: This research was conducted as part of the “Trail By Fire” expedition (PI: Y. Moussallam). The project was supported by the Royal Geographical Society (with the Institute of British Geographers) with the Land Rover Bursary; the Deep Carbon Observatory DECADE Initiative; Ocean Optics; Crowcon; Air Liquide; Thermo Fisher Scientific; Santander; Cactus Outdoor; Turbo Ace and Team Black Sheep. We thank Sebastien Carretier and Rose-Marie Ojeda together with IRD South-America personnel for all their logistical help. We further thank the CONAF and DGAC for their help. YM acknowledges support from the Scripps Institution of Oceanography Postdoctoral Fellowship program. CIS acknowledges a research startup grant from Victoria University of Wellington
    Description: Published
    Description: 237-247
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: volcanic degassing ; Multi-GAS ; UAV ; Trail By Fire ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2020-10-16
    Description: Individual volcanoes can produce both effusive and explosive eruptions. A transition between these two eruption styles dramatically changes the hazards and can occur either between distinct eruption events or within one eruption episode. The causes of these transitions are difficult to determine due to the number of system parameters that can influence whether or not magma fragments in a runaway process. We apply a numerical model of magma ascent in a volcanic conduit to isolate and test the effects of key parameters related to magma rheology and system geometry. We find that for a given volcanic system, parameters that control magma viscosity, such as initial water mass fraction, initial crystal volume fraction, and temperature, have the greatest influence on whether or not magma fragments during ascent and erupts explosively. We also define a ‘critical condition’ for the full set of initial parameters under which a transition in eruption style, from effusive to explosive or the reverse, is more likely to occur. Under these conditions, small heterogeneities in the water or crystal content of the magma, or small perturbations to the conduit pressure gradient due to magma chamber overpressure or dome growth or collapse, can disrupt the magmatic conditions and cause a transition in eruption style. The 2010 VEI 4 eruption of Merapi Volcano included both effusive and explosive phases and was larger by an order of magnitude than its eruptions during the previous century. We constrain our model for the Merapi system using published literature values and show that between the previous eruption in 2006 and the 2010 eruption, the shallow magmatic system at Merapi reached critical conditions due to the ascent from depth of a large, hotter, more volatile-rich magma. Under these critical conditions and according to our model results, small changes in the volatile content of the magma, small dome collapses, subtle changes in degassing rate, or the addition of CO2 to the magma through decarbonation of the bedrock, are all feasible mechanisms for triggering rapid transitions between effusive and explosive activity during the 2010 eruption period.
    Description: Published
    Description: 106767
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Merapi ; Explosive-effusive transitions ; Eruption rate ; Fragmentation ; Lava domes ; Explosive eruptions ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2020-11-12
    Description: Slope dynamics in volcanic environments comprise a wide spectrum of phenomena, from large lateral collapse to shallow debris remobilization, which may represent a major threat for human communities and infrastructures. Many volcanos built up from the ocean floor and large portions of the volcano edifice are submerged. In these settings, only the edifice’s summit can be investigated by terrestrial remote sensing and in-situ approaches. Growth and destruction, including tectonics and gravitational phenomena, affect entire volcano flanks and are not limited to the physical boundary of the sea level but could comprise their subaqueous parts.
    Description: Published
    Description: 2615–2618
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: volcanoes ; flanks ; volcano-tectonics ; structure ; collapse ; stability ; 04.08. Volcanology ; 05.08. Risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2020-12-18
    Description: Hekla is a frequently active volcano with an infamously short pre-eruptive warning period. Our project contributes to the ongoing work on improving Hekla’s monitoring and early warning systems. In 2012 we began monitoring gas release at Hekla. The dataset comprises semi-permanent near-real time measurements with a MultiGAS system, quantification of diffuse gas flux, and direct samples analysed for composition and isotopes (δ13C, δD and δ18O). In addition, we used reaction path modelling to derive information on the origin and reaction pathways of the gas emissions. Hekla’s quiescent gas composition was CO2-dominated (0.8 mol fraction) and the δ13C signature was consistent with published values for Icelandic magmas. The gas is poor in H2O and S compared to hydrothermal manifestations and syn-eruptive emissions from other active volcanic systems in Iceland. The total CO2 flux from Hekla central volcano (diffuse soil emissions) is at least 44 T d−1, thereof 14 T d−1 are sourced from a small area at the volcano’s summit. There was no detectable gas flux at other craters, even though some of them had higher ground temperatures and had erupted more recently. Our measurements are consistent with a magma reservoir at depth coupled with a shallow dike beneath the summit. In the current quiescent state, the composition of the exsolved gas is substantially modified along its pathway to the surface through cooling and interaction with wall-rock and groundwater. The modification involves both significant H2O condensation and scrubbing of S-bearing species, leading to a CO2-dominated gas emitted at the summit. We conclude that a compositional shift towards more S- and H2O-rich gas compositions if measured in the future by the permanent MultiGAS station should be viewed as sign of imminent volcanic unrest on Hekla.
    Description: The research leading to these results has received funding from the Icelandic Centre for Research (RANNIS, grant number 110002-0031); the European Community’s Seventh Framework Programme under Grant Agreement No. 308377 (Project FUTUREVOLC); and the International Civil Aviation Organization.
    Description: Published
    Description: 80-99
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: Hekla ; Multi-GAS ; degassing ; volcanic unrest ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2020-03-02
    Description: Volcanic activity atMt. Etna in the last decade hasmostly beenmanifested by sequences of short paroxysmal episodes characterised by powerful lava fountains and high eruption columns. On the 23 February 2013, an exceptionally intense episode occurred at the New South-East Crater, producing a fountain N800 m high (among the highest ever recorded at Etna) and a ~9 km eruption column that dispersed ash N400 kmfromthe vent. Textural and petrographic analyses of lapilli revealed that magma erupted during the high-intensity phase is characterised by lowmicrolite contents (b7 area%), high vesicularity (76–83%), and high vesicle number densities (6–8.2 × 106 cm−3). The short-lived initial Strombolian explosions removed viscous magma from the conduit, enabling the rapid ascent of gas-rich, microlite-poor magma and the eruption of an 800 mhigh fountain and 9 kmhigh eruption column. For the 23 February eruption, the high vesicularity and lowmicrolite content of the pyroclasts support the hypothesis that volatile-rich magma was the driver of the high intensity lava fountain. This eruptive event, along with three other recent events at Etna over the last 15 years, can be defined as subplinian based on eruption rate and column height, but also generated incandescent 800–1000 m fountains. For these reasons, we propose to term this event, and others at Etna characterised by similar eruption features and parameters, as subplinian fountaining events.
    Description: Published
    Description: 241-250
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Eruption dynamics - 23 February 2013 - lava fountain - subplinian ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2020-06-30
    Description: Quantification of the CO2 released by the volcanoes to the atmosphere is relevant for the evaluation of the balance between deep-derived, biogenic and anthropogenic contributions. The current study estimates the CO2 released from Furnas do Enxofre degassing area (Terceira Island, Azores archipelago) by applying an approach that integrates the flux of CO2 fromthe soilwith the δ13C-CO2 values. A deep-derived CO2 output of 2.54 t d−1 is estimated for an area of ~23,715 m2. High biogenic-derived CO2 flux values (~45 g m−2 d−1) associated with light carbon isotopic content (δ13C=−28‰±1.1‰) are detected and explained by the type of vegetation that characterizes the study site. Carbon isotopic compositions of the CO2 (−6.4‰±1.2‰) measured in olivine-hosted fluid inclusions of the Terceira basalts are presented for the first time and contribute to defining the mantle-CO2 signature. Differences between these values and heavier carbon isotope values from gas in fumaroles at Furnas do Enxofre (−4.66‰to−4.27‰) are explained by the carbon isotopic fractionation occurring when CO2 reacts to form calcite in the geothermal reservoir at temperatures N180 °C. A clear correlation between the soil temperature and deep CO2 fluxes is observed and the integration of the diffuse degassing information with the composition of the fumarolic emissions allows estimating a thermal energy flux of 1.1 MW.
    Description: Published
    Description: 106968
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: Soil diffuse degassing ; CO2 fluxes ; Carbon isotopic composition ; Hydrothermal systems ; 04.08. Volcanology ; 04.01. Earth Interior
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...