ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Ocean circulation  (12)
  • Cell & Developmental Biology
  • General Chemistry
  • Limnology
  • Woods Hole Oceanographic Institution  (13)
  • 2015-2019  (13)
  • 1985-1989
  • 1975-1979
  • 1945-1949
  • 1925-1929
  • 2018  (13)
Collection
Years
  • 2015-2019  (13)
  • 1985-1989
  • 1975-1979
  • 1945-1949
  • 1925-1929
Year
  • 1
    facet.materialart.
    Unknown
    Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Also published as: Journal of Geophysical Research 85 (1980): 6661-6666
    Description: Imposed horizontal density differences in a nonrotating fluid generate vertical circulation which has vanishing vertically integrated transports. When the system is rotating, geostrophic velocities can balance the density differences and the vertically integrated transports need not vanish locally. In a two-layer fluid, fin ite amplitude disturbances lead to barotropic flows that have the same direction as the velocity in the layer that thickens as a result of the disturbance. Specific calculations are carried out for the geostrophic adjustment model in situations that approximate those in which 18° water is formed south of the Gulf Stream. The upper layer transport that results from sudden cooling (as simulated by density differences that are initially unbalanced geostrophically) is in the same direction as the Gulf Stream transport and comparable to it in magnitude. A lower level transport of the same magnitude flows in the opposite direction with a maximum value about an internal radius of deformation to the right of that of the upper layer. The barotropic transport is about 1/ 5 as large and flows downstream in the Gulf Stream and upstream to the right of the Gulf Stream.
    Description: Prepared for the Office of Naval Research under Contract N00014-79-C-0671 and for the National Science Foundation under Grants OCE 77-19451 and OCE 78-18460.
    Keywords: Cooling ; Ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Also published as: Journal of Physical Oceanography 11 (1981): 30-47
    Description: Available potential energy (APE) is defined as the difference between total potential plus internal energy of a fluid in a gravity field and a corresponding reference field in which the fluid is redistributed (leveled) adiabatically to have constant stably-stratified densities along geopotential surfaces. Potential energy changes result from local shifts of flu id mass relative to geopotential surfaces that are accompanied by local changes of enthalpy and internal energy and global shifts of mass (because volumes of fluid elements are not conserved) that do not change enthalpy or internal energy. The potential energy changes are examined separately by computing available gravitational potential energy (GPE) per unit mass and total GPE (TGPE) per unit area. A technique for estimating GPE in the ocean is developed by introducirtg a reference density field (or an equivalent specific volume anomaly field) that is a function of pressure only and is connected to the observed field by adiabatic vertical displacements. The full empirical equation of state for seawater is used in the computational algorithm. The accuracy of the estimate is limited by the data and sampling and not by the algorithm itself, which can be made as precise as desired. The reference density field defined locally for an ocean region allows redefinition of dynamic height ΔD (potential energy per unit mass) relative to the reference field. TGPE per unit area becomes simply the horizontal average of dynamic height integrated over depth in the region considered. The reference density surfaces provide a precise approximation to material surfaces for tracing conservative variables such as salinity and potential temperature and for estimating vortex stretching between surfaces. The procedure is applied to the MODE density data collected in 1973. For each group of stations within five 2-week time windows (designated Groups A-E) the estimated GPE is compared with the net APE based on the Boussinesq approximation and to the low-frequency kinetic energy measured from moored buoys. Changes of potential energy of the reference field from one time window to the next are large compared with the GPE within each window, indicating the presence of scales larger than the station grid. An analysis of errors has been made to show the sensitivity of the estimates to data accuracy and sampling frequency.
    Description: Prepared for the Office of Naval Research under Contract N00014-76-C-0197.
    Keywords: Eddies ; Ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Also published as: Journal of Physical Oceanography 11 (1981): 999-1010
    Description: During 1975-78, 35 free-drifting buoys measured surface currents in the Gulf Stream region. The buoy trajectories trace numerous paths of the Stream and show that the Stream is strongly influenced by the New England Seamounts. This influence is manifested as 1) a quasi-permanent, 100 km, southeastward deflection of the Stream and the frequent occurrence of a ring meander over the seamounts; 2) large-amplitude meanders beginning at the seamounts and extending eastward; and 3) small, 20 km diameter eddies which appear to be generated locally by individual seamounts. A chart of the mean temperature field at a depth of 450 m agrees with several of the patterns seen in the buoy trajectories. West of the seamounts, the mean path of the Gulf Stream is eastward; over the seamounts, the path turns sharply northeastward and the isotherms in the Stream abruptly diverge.
    Description: Prepared for the Office of Naval Research under Contract N000 14-74-C- 0262; NR 083-004 and for the National Science Foundation under Grant OCE 78-18017.
    Keywords: Eddies ; Ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: General information about mooring locations, durations and data gathered by the Moored Array Project (also known as Buoy Group) between late 1963 and 1978 is listed. Also included is a comprehensive list of scientific and technical publications written by the Buoy Group staff.
    Description: Prepared for the Office of Naval Research under Contract N00014-76-C-0197; NR 083-400 and for the National Science Foundation under Grant OCE 77-19403 .
    Keywords: Oceanographic buoys ; Ocean currents ; Ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: Also published as: Journal of Geophysical Research 83 (1978): 6136-6144
    Description: During 1975 several shipboard expendable bathythermograph surveys plus satellite infrared imagery provided a nearly synoptic view of the distribution and number of Gulf Stream rings in the western North Atlantic. Twelve rings were identified; nine were cyclonic (cold core) rings and three were anticyclonic (warm core) rings. This is the largest number of rings ever observed during a short period of time (4 months). Evidence suggests that the mean movement of these rings was southwestward.
    Description: Prepared for the Office of Naval Research under Contract N00014-74-C-0262; NR 083-004 and for the National Science Foundation under Grant OCE 75-08765.
    Keywords: Ocean circulation ; Gulf Stream
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: Also published as: Journal of Marine Research 36 (1978): 725-734
    Description: Relatively energetic low frequency fluctuations in horizontal currents are found to exist below the thermocline in the northern trough of the Charlie-Gibbs Fracture Zone. For example, deep eddy kinetic energy levels there are about twice as large as those observed at similar relative depths in the MODE-I region. Eddy kinetic energies are about 2-10 times larger than mean kinetic energies. The vertical distribution of eddy kinetic energy is frequency dependent, increasing toward the thermocline for the longer time scales and intensifying toward the bottom at higher frequencies. In addition to the expected mean westward motion of Norwegian Sea Overflow Water through the northern trough of the fracture, rather consistent mean southward flow is observed at a depth immediately above the overflow.
    Description: Prepared f or the Office of Naval Research under Contract N00014-76-C-0197; NR 083- 400.
    Keywords: Ocean circulation ; Ocean currents ; Charles Gibbs Fracture Zone
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Also published as: Journal of Marine Research, Volume 35, 1977, pp. 21-28
    Description: Very large (5-10 cm s-1) long-term averaged zonal flows have been observed near 4000 m depth in the vicinity of a recently hypothesized (Worthington, in press) horizontally restricted subtropical gyre in the deep western North Atlantic. The Reynolds stresses associated with low frequency fluctuations may play a significant role in the dynamics of this deep mean flow, possibly inducing a significant downstream increase in transport of the Gulf Stream, perhaps driving the deep gyre.
    Description: Prepared for the Office of Naval Research under Contracts N00014-66-C-0241; NR 083- 004 and N00014-74-C-0262; NR 083-004 and for the International Decade of Ocean Exploration of the National Science Foundation under Grant OCE75-03962.
    Keywords: Ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: This is a report describing activities associated with the Matamek program in 1977. Research was conducted on biological, chemical and physical factors related to salmonid production in Matamek River and Matamek Lake. Canadian universities, the Quebec government and Woods Hole Oceanographic Institution cooperated in the program.
    Description: Supported by Woods Hole Oceanographic Institution and the Department of Tourism, Fish and Game of the Province of Quebec.
    Keywords: Ecology ; Limnology
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Also published as: Journal of Geophysical Research 84 (1979): 7742- 7748
    Description: The development and decay of the large eddy in the northern Somali Basin and its smaller associated eddies each southwest monsoon in the northwestern Indian Ocean has been monitored for four consecutive years by a time series of temperature sections obtained along the tanker sea lane across the Somali Basin. The evidence suggests that the large eddy first forms between 4°N to 12°N during late May and tends to remain approximately in this location throughout the entire southwest monsoon.
    Description: Prepared for the Office of Naval Research under Contract N00014-74-C-0262; NR 083- 004.
    Keywords: Eddies ; Ocean circulation ; Monsoons
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Also published as: Journal of Marine Research 38 (1980): 111-133
    Description: Time-averaged horizontal currents obtained from long-term moored instruments deployed in the western North Atlantic over the Sohm Abyssal Plain along 55W exhibit two segments of weakly depth-dependent flow: one, near 36N, predominantly westward and narrow or jet-like (~ 200 km wide or less); the second primarily eastward, located near 37.5N, about 200-300 km south of the mean position of the axis of the Gulf Stream (its width cannot be estimated quantitatively with the data available because only one mooring with adequate vertical coverage is clearly located in this flow regime, but an upper bound of roughly 200 km seems plausible). In both cases, long-term mean zonal currents between 600 and 4000 m depths (nominal) vary in amplitude from only 6 to 10 cm s-1 (approximately). The vertical structure of the westward recirculation varies with horizontal position, being both surface and bottom intensified. The possibility exists that the identification of these weakly depth-dependent flow regimes may point to one way of increasing the transport of the Gulf Stream. That is, flow with weak vertical shear is added offshore of the more baroclinic segment of the Stream, and possibly recirculated accordingly. This notion is generally consistent with all previous investigations which find the weakest vertical shears at the offshore edge of the Stream, wherever and however examined, and in particular with the addition of transport to the Florida Current over the Blake Plateau, after emerging from the Straits of Florida (Richardson, Schmitz, and Niiler, 1969). The horizontal patterns of the two weakly depth-dependent flow regimes found at 55W may be quite complex, containing variability on comparatively short and intermediate scales, associated to some extent with bottom topography. A specific example of the effect of bottom topography on the 55W data has been presented by Owens and Hogg (1980). It is hypothesized that the observations described here may indicate the presence of a previously unknown, weakly depth-dependent smaller scale gyre recirculating within the subtropical gyre, with the former confined between the New England Seamounts and the Grand Banks of Newfoundland. It should be emphasized that other horizontal and vertical structures may be characteristic of different locations in the recirculation of the North Atlantic. Eddy kinetic energy (Schmitz, 1978) and the off-diagonal component of Reynolds' stress are also to some extent weakly depth-dependent in each of the weakly depth-dependent mean flow regimes noted above, relative to more mid-ocean locations. At one site in particular, the off-diagonal component of the Reynolds' stress is found to be essentially depth-independent. The observation of weak depth-dependence in association with relatively strong abyssal currents for the recirculation regime could in principle help rationalize (Schmitz, 1977; Stommel, Niiler and Anati, 1978; Wunsch, 1978) some of the difficulties in geostrophica\ly balancing (at the leading order of approximation!), according to Worthington (1976), the North Atlantic Circulation in this type of region. Estimates of contributions to momentum balances (based on the available moored instrument data) involving horizontal gradients of the Reynolds' stresses, or of the momentum transport by the time-averaged flow, are typically at least an order of magnitude less than the Coriolis force associated with the zonal (or downstream) mean flow component, and possibly also the meridional (or cross-stream) flow component at most locations, thereby precluding violation of geostrophy at leading order by these effects. Geostrophic terms associated with estimates of the curvature of the Reynolds' stresses and/or mean momentum flux could be significant at the next order of approximation in the immediate vicinity of the Gulf Stream or near topographic features. Niiler (1979) has developed a model of an eddy-driven mean flow, where the eddy-terms in the vorticity equation are locally significant only in the Gulf Stream, but with a basin-wide mid-ocean flow driven in response to the noncompensated eddy-induced pressure gradient at the offshore edge of the region where eddy effects are locally significant dynamically. Two recent hydrographic sections across the Gulf Stream and recirculation along SSW were found to be in mass balance geostrophically, relative to the bottom (McCartney, Worthington and Raymer, 1980).
    Description: Prepared for the Office of Naval Research under Contract N00014-78-C-0197; NR 083-400 and for the Office of the International Decade of Ocean Exploration of the National Science Foundation under Grant OCE 75-03982.
    Keywords: Ocean circulation ; Ocean currents
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-05-26
    Description: Also published as: Journal of Marine Research 38 (1980): 147-172
    Description: A hydrographic section made in July 1977 from the research vessel KNORR revealed a large-scale meridional distortion of the normal water mass distributions at 55W in the North Atlantic. Cells of pure Labrador Sea Water were found within both the Gulf Stream and the westward recirculation of the gyre. A large cell of Mediterranean Water was found in the Slope Water, in contact with a cell of Subarctic Intermediate Water. Water at 11°C to 13°C within both the Gulf Stream and the Slope Water was anomalously saline. Throughout the Slope Water, Gulf Stream, and northern Sargasso Sea there was very little standard Western North Atlantic Water in the temperature ranges 3.4° to 9.0°C and 11° to 13°C. It is suggested that these meridional distortions are due in part to an increase in the amount of rotation of the horizontal velocity vector with depth during 1977 that was observed with current meters in the northern Sargasso Sea. An increase in the westward return flow strength may also have contributed. The ultimate cause of the anomalous property distributions and currents may be changes in the production rate and strength of the source waters for North Atlantic Deep Water and western North Atlantic Water such as Labrador Sea Water, Mediterranean Water, and Eighteen Degree Water. The first and the last are known to have undergone convective formation events, in March 1976, and March 1977, respectively, in the period preceding the 1977 survey. The July 1977 section shows evidence of the recirculation of the new convectively formed Eighteen Degree Water.
    Description: Prepared for the Office of Naval Research under Contract N00014-74-C-0262; NR 083-004, N00014-76-C-0197; NR 083-400 and for the International Decade of Ocean Exploration Office of the National Science Foundation under Grant OCE 75-03962.
    Keywords: Ocean circulation ; Knorr (Ship : 1970-) Cruise KN60 ; Knorr (Ship : 1970-) Cruise KN66
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-05-26
    Description: From 1975 to 1978, thirty-one satellite-tracked free-drifting surface buoys were launched in the Gulf Stream system. Most of these buoys were launched in cyclonic rings, as part of an interdisciplinary Gulf Stream ring experiment, Other buoys were launched in anticyclonic rings and the Gulf Stream itself; one buoy was launched in a cyclonic Kuroshio ring. The basic data set consists of buoy trajectories and sea surface temperature and velocity measurements along trajectories. The main results consist of a series of 19 buoy trajectories in rings from which the movement of rings is inferred and a series of 20 buoy trajectories in the Gulf Stream. Rings frequently coalesced with the Gulf Stream, and some reformed as modified rings. The trajectories of buoys in the Stream reveal that at times surface currents are strongly influenced by topographic features such as seamounts and ridges. Most buoys in the Stream continued to move eastward until they reached the vicinity of the Grand Banks (50°W) where they rapidly fanned out, some moving northward, others eastward across the mid-Atlantic Ridge, still others southward and westward .
    Description: Prepared for the Office of Naval Research under Contract N00014-74-C-0262; NR 083-004 and for the National Science Foundation under Grants OCE 75-008765 and OCE 77-08045.
    Keywords: Oceanographic buoys ; Ocean circulation ; Gulf Stream
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-05-26
    Description: Also published as: Journal of Geophysical Research, 83(C2), 1978, 901–914
    Description: Expendable bathythermograph observations have revealed large cold core cyclonic current rings to the east of 60°W in a region that mechanical bathythermograph observations (Parker, 1971) indicated to be devoid of rings. As a class these rings are larger than typical Gulf Stream rings that form and drift west of 60°W. The typical diameter (15°C at 500 m) there is around 100 km, while the eastern Sargasso rings are 200 km and more in diameter. Several of these eastern rings were observed on each of four cruises in the northern Sargasso Sea in 1974 and 1975. The overall picture of the region east of 60°W obtained was a very noisy one, dominated by large‐diameter, large‐amplitude eddies. One of the eastern rings was seen in all four cruises and was observed to drift westward for over 730 km at an average speed of 4.4 km/d, starting at 56°30′W and 34°40′N and passing north of Bermuda. The character of the dissolved oxygen anomalies in the cores of the eastern rings suggests a possible formation region at the eastern end of the Sargasso Sea gyre, around 40°W. Hence the eastern rings may have already been a year old when first observed in November 1974. A single deep hydrographic section showed the center of the deep circulation to lie considerably further southwest than the near‐surface circulation center, although this could be a distortion due to a large seamount. Moored current meter data suggest a level of no motion within eastern rings at about 2000 m, giving a weak anticyclonic circulation of 4 × 106 m3/s below that level, compared with the 45 × 106 m3/s cyclonic circulation above 2000 m. On several occasions, smaller‐scale upward displacements of the thermal structure were seen at the sides of eastern rings. It is not known whether these represented interactions with smaller rings or some breakdown of the circular symmetry.
    Description: Th is work was supported by the Office of Naval Research under contract N000!4-74-C0262, NR083-004, and by the International Decade of Ocean Exploration, Office of the National Science Foundation, under grant OCE 75-03962.
    Keywords: Ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...