ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Coastal flows  (3)
  • American Meteorological Society  (3)
  • Copernicus
  • Nature Publishing Group
  • 2015-2019  (3)
  • 1945-1949
  • 2017  (3)
Collection
Publisher
  • American Meteorological Society  (3)
  • Copernicus
  • Nature Publishing Group
Years
  • 2015-2019  (3)
  • 1945-1949
Year
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Weather and Forecasting 32 (2017): 1659-1666, doi:10.1175/WAF-D-17-0076.1.
    Description: Although rip currents are a major hazard for beachgoers, the relationship between the danger to swimmers and the physical properties of rip current circulation is not well understood. Here, the relationship between statistical model estimates of hazardous rip current likelihood and in situ velocity observations is assessed. The statistical model is part of a forecasting system that is being made operational by the National Weather Service to predict rip current hazard likelihood as a function of wave conditions and water level. The temporal variability of rip current speeds (offshore-directed currents) observed on an energetic sandy beach is correlated with the hindcasted hazard likelihood for a wide range of conditions. High likelihoods and rip current speeds occurred for low water levels, nearly shore-normal wave angles, and moderate or larger wave heights. The relationship between modeled hazard likelihood and the frequency with which rip current speeds exceeded a threshold was assessed for a range of threshold speeds. The frequency of occurrence of high (threshold exceeding) rip current speeds is consistent with the modeled probability of hazard, with a maximum Brier skill score of 0.65 for a threshold speed of 0.23 m s−1, and skill scores greater than 0.60 for threshold speeds between 0.15 and 0.30 m s−1. The results suggest that rip current speed may be an effective proxy for hazard level and that speeds greater than ~0.2 m s−1 may be hazardous to swimmers.
    Description: Funding was provided by the National Science Foundation (1232910, 1332705, and 1536365), and by National Security Science and Engineering and Vannevar Bush Faculty Fellowships funded by the assistant secretary of Defense for Research and Engineering.
    Description: 2018-02-28
    Keywords: Coastlines ; Coastal flows ; Waves, oceanic ; Forecast verification/skill ; Probability forecasts/models/distribution ; Statistical forecasting
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 1921-1939, doi:10.1175/JPO-D-16-0146.1.
    Description: The role of surface gravity waves in structuring the air–sea momentum flux is examined in the middle reaches of Chesapeake Bay. Observed wave spectra showed that wave direction in Chesapeake Bay is strongly correlated with basin geometry. Waves preferentially developed in the direction of maximum fetch, suggesting that dominant wave frequencies may be commonly and persistently misaligned with local wind forcing. Direct observations from an ultrasonic anemometer and vertical array of ADVs show that the magnitude and direction of stress changed across the air–sea interface, suggesting that a stress divergence occurred at or near the water surface. Using a numerical wave model in combination with direct flux measurements, the air–sea momentum flux was partitioned between the surface wave field and the mean flow. Results indicate that the surface wave field can store or release a significant fraction of the total momentum flux depending on the direction of the wind. When wind blew across dominant fetch axes, the generation of short gravity waves stored as much as 40% of the total wind stress. Accounting for the storage of momentum in the surface wave field closed the air–sea momentum budget. Agreement between the direction of Lagrangian shear and the direction of the stress vector in the mixed surface layer suggests that the observed directional difference was due to the combined effect of breaking waves producing downward sweeps of momentum in the direction of wave propagation and the straining of that vorticity field in a manner similar to Langmuir turbulence.
    Description: This work was supported by National Science Foundation Grants OCE-1061609 and OCE-1339032.
    Description: 2018-01-13
    Keywords: Atmosphere-ocean interaction ; Coastal flows ; Mixing ; Momentum ; Wind stress ; Wind waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 29 (2016): 8317-8331, doi:10.1175/JCLI-D-16-0109.1.
    Description: A simple analytic model is developed to represent the offshore decay of cold sea surface temperature (SST) signals that originate from wind-driven upwelling at a coastal boundary. The model couples an oceanic mixed layer to an atmospheric boundary layer through wind stress and air–sea heat exchange. The primary mechanism that controls SST is a balance between Ekman advection and air–sea exchange. The offshore penetration of the cold SST signal decays exponentially with a length scale that is the product of the ocean Ekman velocity and a time scale derived from the air–sea heat flux and the radiative balance in the atmospheric boundary layer. This cold SST signal imprints on the atmosphere in terms of both the boundary layer temperature and surface wind. Nonlinearities due to the feedback between SST and atmospheric wind, baroclinic instability, and thermal wind in the atmospheric boundary layer all slightly modify this linear theory. The decay scales diagnosed from two-dimensional and three-dimensional eddy-resolving numerical ocean models are in close agreement with the theory, demonstrating that the basic physics represented by the theory remain dominant even in these more complete systems. Analysis of climatological SST off the west coast of the United States also shows a decay of the cold SST anomaly with scale roughly in agreement with the theory.
    Description: MASwas supported by the Andrew W. Mellon Foundation Endowed Fund for Innovative Research and the National Science Foundation under Grant OCE-1433170 and PLR-1415489. NS was supported by the National Aeronautics and Space Administration under Grant NNX14AL83G, the Department of Energy, Office of Science Grant DE-SC0006766, and the Japan Agency for Marine-Earth Science and Technology as part of the JAMSTEC-IPRC Joint Investigations.
    Description: 2017-05-03
    Keywords: Coastal flows ; Ekman pumping/transport ; Ocean dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...