ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (142)
  • Springer  (73)
  • Copernicus Publications (EGU)  (63)
  • American Institute of Physics (AIP)
  • International Union of Crystallography (IUCr)
  • MDPI
  • Taylor & Francis
  • 2015-2019  (142)
  • 1985-1989
  • 1960-1964
  • 1950-1954
  • 2017  (142)
Collection
Publisher
Years
  • 2015-2019  (142)
  • 1985-1989
  • 1960-1964
  • 1950-1954
Year
  • 1
    Publication Date: 2020-02-06
    Description: New high-precision minor element analysis of the most magnesian olivine cores (Fo85–88) in fifteen high-MgO (Mg#66–74) alkali basalts or trachybasalts from the Quaternary backarc volcanic province, Payenia, of the Andean Southern Volcanic Zone in Argentina displays a clear north-to-south decrease in Mn/Feol. This is interpreted as the transition from mainly peridotite-derived melts in the north to mainly pyroxenite-derived melts in the south. The peridotite–pyroxenite source variation correlates with a transition of rock compositions from arc-type to OIB-type trace element signatures, where samples from the central part of the province are intermediate. The southernmost rocks have, e.g., relatively low La/Nb, Th/Nb and Th/La ratios as well as high Nb/U, Ce/Pb, Ba/Th and Eu/Eu* = 1.08. The northern samples are characterized by the opposite and have Eu/Eu* down to 0.86. Several incompatible trace element ratios in the rocks correlate with Mn/Feol and also reflect mixing of two geochemically distinct mantle sources. The peridotite melt end-member carries an arc signature that cannot solely be explained by fluid enrichment since these melts have relatively low Eu/Eu*, Ba/Th and high Th/La ratios, which suggest a component of upper continental crust (UCC) in the metasomatizing agent of the northern mantle. However, the addition to the mantle source of crustal materials or varying oxidation state cannot explain the variation in Mn and Mn/Fe of the melts and olivines along Payenia. Instead, the correlation between Mn/Feol and whole-rock (wr) trace element compositions is evidence of two-component mixing of melts derived from peridotite mantle source enriched by slab fluids and UCC melts and a pyroxenite mantle source with an EM1-type trace element signature. Very low Ca/Fe ratios (~1.1) in the olivines of the peridotite melt component and lower calculated partition coefficients for Ca in olivine for these samples are suggested to be caused by higher H2O contents in the magmas derived from subduction zone enriched mantle. Well-correlated Mn/Fe ratios in the wr and primitive olivines demonstrate that the Mn/Fewr of these basalts that only fractionated olivine and chromite reflects the Mn/Fe of the primitive melts and can be used as a proxy for the amount of pyroxenite melt in the magmas. Using Mn/Fewr for a large dataset of primitive Payenia rocks, we show that decreasing Mn/Fewr is correlated with decreasing Mn and increasing Zn/Mn as expected for pyroxenite melts.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-06
    Description: Using outdoor mesocosms we investigated the relative importance of the direct and indirect (here: altered grazing) effects of seawater warming on benthic microalgae in a Baltic Sea Fucus vesiculosus (Phaeophyceae) system during the spring season. Seawater warming had a positive main effect on microalgal total biomass accrual and growth rate and on total mesograzer abundance and biomass. Moreover, under the existing resource-replete conditions in spring the direct positive effect of warming on microalgae was stronger than its indirect negative effect through enhanced grazing. The outcome of this study contrasts previous observations from the summer and winter season, where indirect effects of warming mediated by altered grazing were identified as an important driver of primary biomass in the Fucus system. In this context, the results from the spring season add mechanistic information to the overall understanding of the seasonal variability of climate change effects. They suggest that the relative importance of the underlying direct and indirect effective pathways of warming and the overall effect on the balance between production and consumption are influenced by the trophic state of the system, which in temperate regions is related to season.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Springer
    In:  Current Climate Change Reports, 3 (2). pp. 150-162.
    Publication Date: 2020-02-06
    Description: The expanding interest in decadal climate variability, predictability, and prediction highlights the importance of understanding the sources and mechanisms of decadal and interdecadal climate fluctuations. The purpose of this paper is to provide a critical review of our current understanding of externally forced decadal climate variability. In particular, proposed mechanisms determining decadal climate responses to variations in solar activity, stratospheric volcanic aerosols, and natural as well as anthropogenic tropospheric aerosols are discussed, both separately and in a unified framework. The review suggests that the excitation of internal modes of interdecadal climate variability, particularly centered in the Pacific and North Atlantic sectors, remains a paradigm to characterize externally forced decadal climate variability and to interpret the associated dynamics. Significant recent advancements are the improved understanding of the critical dependency of volcanically forced decadal climate variability on the relative phase of ongoing internal variability and on additional external perturbations, and the recognition that associated uncertainty may represent a serious obstacle to identifying the climatic consequences even of very strong eruptions. Particularly relevant is also the recent development of hypotheses about potential mechanisms (reemergence and synchronization) underlying solar forced decadal climate variability. Finally, outstanding issues and, hence, major opportunities for progress regarding externally forced decadal climate variability are discussed. Uncertain characterization of forcing and climate histories, imperfect implementation of complex forcings in climate models, limited understanding of the internal component of interdecadal climate variability, and poor quality of its simulation are some of the enduring critical obstacles on which to progress. It is suggested that much further understanding can be gained through identification and investigation of relevant periods of forced decadal climate variability during the preindustrial past millennium. Another upcoming opportunity for progress is the analysis of focused experiments with coupled ocean–atmosphere general circulation models within the umbrella of the next phase of the coupled model intercomparison project.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-06
    Description: This study applies three classification methods exploiting the angular dependence of acoustic seafloor backscatter along with high resolution sub-bottom profiling for seafloor sediment characterization in the Eckernförde Bay, Baltic Sea Germany. This area is well suited for acoustic backscatter studies due to its shallowness, its smooth bathymetry and the presence of a wide range of sediment types. Backscatter data were acquired using a Seabeam1180 (180 kHz) multibeam echosounder and sub-bottom profiler data were recorded using a SES-2000 parametric sonar transmitting 6 and 12 kHz. The high density of seafloor soundings allowed extracting backscatter layers for five beam angles over a large part of the surveyed area. A Bayesian probability method was employed for sediment classification based on the backscatter variability at a single incidence angle, whereas Maximum Likelihood Classification (MLC) and Principal Components Analysis (PCA) were applied to the multi-angle layers. The Bayesian approach was used for identifying the optimum number of acoustic classes because cluster validation is carried out prior to class assignment and class outputs are ordinal categorical values. The method is based on the principle that backscatter values from a single incidence angle express a normal distribution for a particular sediment type. The resulting Bayesian classes were well correlated to median grain sizes and the percentage of coarse material. The MLC method uses angular response information from five layers of training areas extracted from the Bayesian classification map. The subsequent PCA analysis is based on the transformation of these five layers into two principal components that comprise most of the data variability. These principal components were clustered in five classes after running an external cluster validation test. In general both methods MLC and PCA, separated the various sediment types effectively, showing good agreement (kappa 〉0.7) with the Bayesian approach which also correlates well with ground truth data (r2 〉 0.7). In addition, sub-bottom data were used in conjunction with the Bayesian classification results to characterize acoustic classes with respect to their geological and stratigraphic interpretation. The joined interpretation of seafloor and sub-seafloor data sets proved to be an efficient approach for a better understanding of seafloor backscatter patchiness and to discriminate acoustically similar classes in different geological/bathymetric settings.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-06
    Description: We present bathymetry and hydrological observations collected in the summer of 2014 from two fjord systems in southeastern Greenland with a multibeam sonar system. Our results provide a detailed bathymetric map of the fjord complex around the island of Skjoldungen in Skjoldungen Fjord and the outer part of Timmiarmiut Fjord and show far greater depths compared to the International Bathymetric Chart of the Arctic Ocean. The hydrography collected shows different properties in the fjords with the bottom water masses below 240 m in Timmiarmiut Fjord being 1–2 °C warmer than in the two fjords around Skjoldungen, but data also illustrate the influence of sills on the exchange of deeper water masses within fjords. Moreover, evidence of subglacial discharge in Timmiarmiut Fjord, which is consistent with satellite observations of ice mélange set into motion, adds to our increasing understanding of the distribution of subglacial meltwater.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-06
    Description: Linear diterpenes that are commonly found in brown algae are of high chemotaxonomic and ecological importance. This study reports bifurcatriol (1), a new linear diterpene featuring two stereogenic centers isolated from the Irish brown alga Bifurcariabifurcata. The gross structure of this new natural product was elucidated based on its spectroscopic data (IR, 1D and 2D-NMR, HRMS). Its absolute configuration was identified by experimental and computational vibrational circular dichroism (VCD) spectroscopy, combined with the calculation of 13C-NMR chemical shielding constants. Bifurcatriol (1) was tested for in vitro antiprotozoal activity towards a small panel of parasites (Plasmodium falciparum, Trypanosoma brucei rhodesiense, T. cruzi, and Leishmania donovani) and cytotoxicity against mammalian primary cells. The highest activity was exerted against the malaria parasite P. falciparum (IC50 value 0.65 μg/mL) with low cytotoxicity (IC50 value 56.6 μg/mL). To our knowledge, this is the first successful application of VCD and DP4 probability analysis of the calculated 13C-NMR chemical shifts for the simultaneous assignment of the absolute configuration of multiple stereogenic centers in a long-chain acyclic natural product.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-02-06
    Description: Ocean acidification resulting from the uptake of anthropogenic carbon dioxide (CO2) by the ocean is considered a major threat to marine ecosystems. Here we examined the effects of ocean acidification on microbial community dynamics in the eastern Baltic Sea during the summer of 2012 when inorganic nitrogen and phosphorus were strongly depleted. Large-volume in situ mesocosms were employed to mimic present, future and far future CO2 scenarios. All six groups of phytoplankton enumerated by flow cytometry ( 〈  20 µm cell diameter) showed distinct trends in net growth and abundance with CO2 enrichment. The picoeukaryotic phytoplankton groups Pico-I and Pico-II displayed enhanced abundances, whilst Pico-III, Synechococcus and the nanoeukaryotic phytoplankton groups were negatively affected by elevated fugacity of CO2 (fCO2). Specifically, the numerically dominant eukaryote, Pico-I, demonstrated increases in gross growth rate with increasing fCO2 sufficient to double its abundance. The dynamics of the prokaryote community closely followed trends in total algal biomass despite differential effects of fCO2 on algal groups. Similarly, viral abundances corresponded to prokaryotic host population dynamics. Viral lysis and grazing were both important in controlling microbial abundances. Overall our results point to a shift, with increasing fCO2, towards a more regenerative system with production dominated by small picoeukaryotic phytoplankton.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Atmospheric Chemistry and Physics, 17 (18). pp. 11313-11329.
    Publication Date: 2020-02-06
    Description: Very short-lived substances (VSLS) contribute as source gases significantly to the tropospheric and stratospheric bromine loading. At present, an estimated 25% of stratospheric bromine is of oceanic origin. In this study, we investigate how climate change may impact the ocean- atmosphere flux of brominated VSLS, their atmospheric transport, and chemical transformations and evaluate how these changes will affect stratospheric ozone over the 21st century. Under the assumption of fixed ocean water concentrations and RCP6.0 scenario, we find an increase of the ocean- atmosphere flux of brominated VSLS of about 8-10% by the end of the 21st century compared to present day. A decrease in the tropospheric mixing ratios of VSLS and an increase in the lower stratosphere are attributed to changes in atmospheric chemistry and transport. Our model simulations reveal that this increase is counteracted by a corresponding reduction of inorganic bromine. Therefore the total amount of bromine from VSLS in the stratosphere will not be changed by an increase in upwelling. Part of the increase of VSLS in the tropical lower stratosphere results from an increase in the corresponding tropopause height. As the depletion of stratospheric ozone due to bromine depends also on the availability of chlorine, we find the impact of bromine on stratospheric ozone at the end of the 21st century reduced compared to present day. Thus, these studies highlight the different factors influencing the role of brominated VSLS in a future climate
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Springer
    In:  International Journal of Earth Sciences, 106 (8). pp. 2999-3003.
    Publication Date: 2020-02-06
    Description: Karl Andrée began studying questions of sedimentology and oceanography in 1908 when working as an assistant at the University of Marburg and he remained faithful to these subjects until his death in 1959. The vast majority of his scientific contributions, however, were published during his time at the University of Königsberg (1915–1945). There he published his fundamental papers on marine geology, all of which adhered strictly to the principles of uniformitarianism, and helped improve our understanding of sedimentary processes and the stratigraphic record. His scientific work has enormous breadth. In the course of 55 years, he published 124 individual papers and books, some of which became classic textbooks. His versatility is particularly evident in his book “Geology of the Seafloor”, which contains many pertinent observations and descriptions still relevant today, even if it has fallen out of fashion. This scientist and university teacher was the first to successfully present the huge field of marine geology in all its facet and to consider the deposition of marine sediments as a function of their geographical distribution.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-02-06
    Description: Reanalysis data sets are widely used to understand atmospheric processes and past variability, and are often used to stand in as "observations" for comparisons with climate model output. Because of the central role of water vapor (WV) and ozone (O3) in climate change, it is important to understand how accurately and consistently these species are represented in existing global reanalyses. In this paper, we present the results of WV and O3 intercomparisons that have been performed as part of the SPARC (Stratosphere–troposphere Processes and their Role in Climate) Reanalysis Intercomparison Project (S-RIP). The comparisons cover a range of timescales and evaluate both inter-reanalysis and observation-reanalysis differences. We also provide a systematic documentation of the treatment of WV and O3 in current reanalyses to aid future research and guide the interpretation of differences amongst reanalysis fields. The assimilation of total column ozone (TCO) observations in newer reanalyses results in realistic representations of TCO in reanalyses except when data coverage is lacking, such as during polar night. The vertical distribution of ozone is also relatively well represented in the stratosphere in reanalyses, particularly given the relatively weak constraints on ozone vertical structure provided by most assimilated observations and the simplistic representations of ozone photochemical processes in most of the reanalysis forecast models. However, significant biases in the vertical distribution of ozone are found in the upper troposphere and lower stratosphere in all reanalyses. In contrast to O3, reanalysis estimates of stratospheric WV are not directly constrained by assimilated data. Observations of atmospheric humidity are typically used only in the troposphere, below a specified vertical level at or near the tropopause. The fidelity of reanalysis stratospheric WV products is therefore mainly dependent on the reanalyses' representation of the physical drivers that influence stratospheric WV, such as temperatures in the tropical tropopause layer, methane oxidation, and the stratospheric overturning circulation. The lack of assimilated observations and known deficiencies in the representation of stratospheric transport in reanalyses result in much poorer agreement amongst observational and reanalysis estimates of stratospheric WV. Hence, stratospheric WV products from the current generation of reanalyses should generally not be used in scientific studies.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2020-02-06
    Description: High-Mg, low-Ti volcanic rocks from the Manihiki Plateau in the Western Pacific share many geochemical characteristics with subduction-related boninites such as high-Ca boninites from the Troodos ophiolite on Cyprus, which are believed to originate by hydrous re-melting of previously depleted mantle. In this paper we compare the Manihiki rocks and Troodos boninites using a new dataset on the major and trace element composition of whole rocks and glasses from these locations, and new high-precision, electron microprobe analyses of olivine and Cr-spinel in these rocks. Our results show that both low-Ti Manihiki rocks and Troodos boninites could originate by re-melting of a previously depleted lherzolite mantle source (20–25% of total melting with 8–10% melting during the first stage), as indicated by strong depletion of magmas in more to less incompatible elements (Sm/Yb 〈 0.8, Zr/Y 〈 2, Ti/V 〈 12) and high-Cr-spinel compositions (Cr# 〉 0.5). In comparison with Troodos boninites, the low-Ti Manihiki magmas had distinctively lower H2O contents (〈 0.2 vs. 〉 2 wt% in boninites), ~ 100 °C higher liquidus temperatures at a given olivine Fo-number, lower fO2 (ΔQFM 〈 + 0.2 vs. ΔQFM 〉 + 0.2) and originated from deeper and hotter mantle (1.4–1.7 GPa, ~ 1440 °C vs. 0.8–1.0 GPa, ~ 1300 °C for Troodos boninites). The data provide new evidence that re-melting of residual upper mantle is not only restricted to subduction zones, where it occurs under hydrous conditions, but can also take place due to interaction of previously depleted upper mantle with mantle plumes from the deep and hotter Earth interior.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    Springer
    In:  In: Submarine Geomorphology. , ed. by Micallef, A. 〈https://orcid.org/0000-0002-9330-0648〉 Springer, Cham, pp. 43-62.
    Publication Date: 2021-05-11
    Description: Seismic reflection and refraction methods are routinely used to illuminate sub-seafloor geological relationships, thereby providing a means to investigate a wide range of Earth processes that influence submarine geomorphology. Since the birth of seismic methods for exploration of ore bodies and petroleum in the early part of the 20th century, progressive technological advancements have ensured that the seismic method remains a fundamental geophysical tool in both the oil and gas industry and scientific research. For both marine seismic reflection and refraction methods, the primary principles are based around the notion of sending artificially-generated sound waves downward into the Earth and recording the energy that returns to recording instruments (receivers). In the case of seismic reflection, the down-going wavefield reflects off geological boundaries characterized by density and velocity contrasts before being recorded by an array of receivers. In seismic refraction experiments, the notion is to record energy that has been refracted at multiple geological boundaries before, ultimately, being refracted at a critical angle and then returning to receivers on the seafloor. Survey designs for both methods are many and varied, ranging from relatively simple two-dimensional surveys, to multi-azimuth three-dimensional surveys that illuminate the subsurface from different directions. Although the state of the art in seismic methods is continually evolving, this chapter gives some examples of modern and developing trends that are relevant to investigations into submarine geomorphology. Examples include high-resolution 3D seismic imaging, high-frequency sub-bottom profiling, waveform inversion and deep-towed seismic acquisition. The strength of the seismic reflection method lies in its ability to gain insight into structural and stratigraphic relationships beneath the seafloor, as well as in investigating fluid flow processes. The refraction method, on the other hand, is often used as the tool of choice for crustal-scale investigations into deeply-rooted geological processes that shape the seafloor, such as plate tectonics and volcanism. As with all scientific methods, seismic methods are most powerful when combined with complementary geophysical, geological or geochemical methods to address a common Earth science question.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    Springer
    In:  Acta Geotechnica, 12 (4). pp. 883-895.
    Publication Date: 2020-04-23
    Description: Depressurization gives rise to complex sediment– well interactions that may cause the failure of wells. The situation is aggravated when high depressurization is imposed on sediments subjected to an initially low effective stress, such as in gas production from hydrate accumulations in marine sediments. Sediment–well interaction is examined using a nonlinear finite element simulator. The hydro-mechanically coupled model represents the sediment as a Cam-Clay material, uses a continuous function to capture compressibility from low to high effective stress, and recognizes the dependency of hydraulic conductivity on void ratio. Results highlight the critical effect of hydromechanical coupling as compared to constant permeability models: A compact sediment shell develops against the screen, the depressurization zone is significantly smaller than the volume anticipated assuming constant permeability, settlement decreases, and the axial load on the well decreases; in the case of hydrates, gas production will be a small fraction of the mass estimated using a constant permeability model. High compressive axial forces develop in the casing within the production horizon, and the peak force can exceed the yield capacity of the casing and cause its collapse. Also tensile axial forces may develop in the casing above the production horizon as the sediment compacts in the depressurized zone and pulls down from the well. Well engineering should consider: slip joints to accommodate extensional displacement above the production zone, soft telescopic/sliding screen design to minimize the buildup of compressive axial force within the production horizon, and enlarged gravel pack to extend the size of the depressurized zone.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2020-02-06
    Description: The pre-industrial millennium is among the periods selected by the Paleoclimate Model Intercomparison Project (PMIP) for experiments contributing to the sixth phase of the Coupled Model Intercomparison Project (CMIP6) and the fourth phase of the PMIP (PMIP4). The past1000 transient simulations serve to investigate the response to (mainly) natural forcing under background conditions not too different from today, and to discriminate between forced and internally generated variability on interannual to centennial timescales. This paper describes the motivation and the experimental set-ups for the PMIP4-CMIP6 past1000 simulations, and discusses the forcing agents orbital, solar, volcanic, and land use/land cover changes, and variations in greenhouse gas concentrations. The past1000 simulations covering the pre-industrial millennium from 850 Common Era (CE) to 1849 CE have to be complemented by historical simulations (1850 to 2014 CE) following the CMIP6 protocol. The external forcings for the past1000 experiments have been adapted to provide a seamless transition across these time periods. Protocols for the past1000 simulations have been divided into three tiers. A default forcing data set has been defined for the Tier 1 (the CMIP6 past1000) experiment. However, the PMIP community has maintained the flexibility to conduct coordinated sensitivity experiments to explore uncertainty in forcing reconstructions as well as parameter uncertainty in dedicated Tier 2 simulations. Additional experiments (Tier 3) are defined to foster collaborative model experiments focusing on the early instrumental period and to extend the temporal range and the scope of the simulations. This paper outlines current and future research foci and common analyses for collaborative work between the PMIP and the observational communities (reconstructions, instrumental data).
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2020-02-06
    Description: Multi-proxy analyses of new piston core M13-08 together with seismic data from the Gulf of Gemlik provide a detailed record of paleoceanographic and paleoclimatic changes with special emphasis on the timing of the connections between the Sea of Marmara (SoM) and the Gulf of Gemlik during the late Pleistocene to Holocene. The deposition of a subaqueous delta sourced from the Armutlu River to the north is attributed to the lowstand lake level at −60 m in the gulf prior to 13.5 cal ka BP. On the basis of the seismic data, it is argued that the higher lake level (−60 m) in the gulf compared to the SoM level (−85 m) attests to its disconnection from the SoM during the late glacial period. Ponto-Caspian assemblages in the lacustrine sedimentary unit covering the time period between 13.5 and 12 cal ka BP represent a relict that was introduced into the gulf by a Black Sea outflow during the marine isotope stage 3 interstadial. Contrary to the findings of previous studies, the data suggest that such an outflow into the Gulf of Gemlik during the late glacial period could have occurred only if the SoM lake level (−85 m) was shallower than the sill depth (−55 m) of the gulf in the west. A robust age model of the core indicates the connection of the gulf with the marine SoM at 12 cal ka BP, consistent with the sill depth (−55 m) of the gulf on the global sea level curve. Strong evidence of a marine incursion into the gulf is well documented by the μ-XRF Sr/Ca data. The available profiles of elemental ratios in core M13-08, together with the age-depth model, imply that a warm and wet climate prevailed in the gulf during the early Holocene (12–10.1 cal ka BP), whereas the longest drought occurred during the middle Holocene (8.2–5.4 cal ka BP). The base of the main Holocene sapropel in the gulf is dated at 10.1 cal ka BP, i.e., 500 years younger than its equivalent in the SoM. The late Holocene is earmarked by warm and wet climate periods (5.0–4.2 and 4.2–2.7 cal ka BP) with some brief cold/dry periods (4.2 and 2.7–0.9 cal ka BP).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2020-02-06
    Description: Oxygen optode measurements on floats and gliders suffer from a slow time response and various sources of drift in the calibration coefficients. Based on two dual-O2 Argo floats, we show how to post-correct for the effect of the optode's time response and give an update on optode in situ drift stability and in-air calibration. Both floats are equipped with an unpumped Aanderaa 4330 optode and a pumped Sea-Bird SBE63 optode. Response times for the pumped SBE63 were derived following Bittig et al. (2014) and the same methods were used to correct the time response bias. Using both optodes on each float, the time response regime of the unpumped Aanderaa optode was characterized more accurately than previously possible. Response times for the pumped SBE63 on profiling floats are in the range of 25–40 s, while they are between 60 and 95 s for the unpumped 4330 optode. Our parameterization can be employed to post-correct the slow optode time response on floats and gliders. After correction, both sensors agree to within 2–3 µmol kg−1 (median difference) in the strongest gradients (120 µmol kg−1 change over 8 min or 20 dbar) and better elsewhere. However, time response correction is only possible if measurement times are known, i.e., provided by the platform as well as transmitted and stored with the data. The O2 in-air measurements show a significant in situ optode drift of −0.40 and −0.27 % yr−1 over the available 2 and 3 years of deployment, respectively. Optode in-air measurements are systematically biased high during midday surfacings compared to dusk, dawn, and nighttime. While preference can be given to nighttime surfacings to avoid this in-air calibration bias, we suggest a parameterization of the daytime effect as a function of the Sun's elevation to be able to use all data and to better constrain the result. Taking all effects into account, calibration factors have an uncertainty of 0.1 %. In addition, in-air calibration factors vary by 0.1–0.2 % when using different reanalysis models as a reference. The overall accuracy that can be achieved following the proposed correction routines is better than 1 µmol kg−1.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2020-02-06
    Description: Orbital forcing influences climate phenomena by changing incoming solar radiation in season and latitude. Here, changes in the El Niño-Southern Oscillation (ENSO)’s impact on the East Asian winter monsoon (EAWM) due to orbital forcing, especially for three selected time periods in each of two interglacial periods, the Eemian (126, 122, 115 ka) and Holocene (9, 6, 0 ka), are investigated. There was a high negative correlation between ENSO and EAWM when the obliquity was low, the processional angle was large, and especially when accompanied by large eccentricity, which corresponds to a weaker monsoon period. The correlation was also high when ENSO variability was high, which interestingly corresponded to lower obliquity and higher-degree precession periods. Therefore, as both lower obliquity and higher-degree precession, such as during 115 ka and 0 ka, cause the EAWM to be weakened through higher winter insolation over Northern hemisphere, and the ENSO to be enhanced through an intensified zonal contrast of the equatorial sea surface temperature, the relationship between the ENSO and EAWM becomes tighter. The opposite case (i.e., during 126 and 9 ka) is also true dynamically. Furthermore, the sensitivity of boreal winter precipitation against sea surface temperature (SST) anomaly over the tropical Pacific, which depends on mean SST, was positively correlated to the strength of the ENSO-EAWM correlation, implying that the warmer mean ocean surface causes the strong response of atmosphere to change in the SST anomaly, thereby enhancing the impact of ENSO on EAWM. Warmer wintertime tropical SST is attributed to higher insolation over the tropics, especially during 115 and 0 ka, while cooler SSTs occurred during 126 and 9 ka.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    Springer
    In:  Marine Biodiversity, 47 (3). pp. 685-697.
    Publication Date: 2020-02-06
    Description: Here, we report on a comprehensive collection of mainly early life cephalopods that were sampled during a research cruise to the Sargasso Sea with the RV Maria S. Merian in April 2015. A total of 2466 cephalopods were caught which belonged to at least 27 species (17 families). The most abundant family was represented by the hooked squids (Onychoteuthidae) with a share of 19.18% of the total cephalopod catch. The subtropical convergence zone (STCZ) was found approximately around 27 °N. The STCZ was characterised by a sharp near-surface temperature gradient and divided the Sargasso Sea into a northern and a southern area. This division was also reflected in the cephalopod community composition. For example, the cranchiid Leachia lemur prevailed in the northern part, and the incirrate octopod, Japetella diaphana, was mainly distributed in the southern part of the study area. Principal component analysis (PCA) and redundancy analysis (RDA) analyses detected a significant correlation between species occurrence and sea surface temperature (SST) as well as a longitudinal gradient with distinct clusters along the five transects from west to east. Ordination analysis (MDS) showed significant differences in the cephalopod assemblages between day and night with midwater forms (Enoploteuthidae, Pyroteuthidae) dominating the night catches, probably due to their upward migration into the top 200 m during the night.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Geoscientific Model Development, 10 . pp. 2425-2445.
    Publication Date: 2020-02-06
    Description: Conventional integration of Earth system and ocean models can accrue considerable computational expenses, particularly for marine biogeochemical applications. "Offline" numerical schemes in which only the biogeochemical tracers are time stepped and transported using a pre-computed circulation field can substantially reduce the burden and are thus an attractive alternative. One such scheme is the "transport matrix method" (TMM), which represents tracer transport as a sequence of sparse matrix–vector products that can be performed efficiently on distributed-memory computers. While the TMM has been used for a variety of geochemical and biogeochemical studies, to date the resulting solutions have not been comprehensively assessed against their "online" counterparts. Here, we present a detailed comparison of the two. It is based on simulations of the state-of-the-art biogeochemical sub-model embedded within the widely used coarse-resolution University of Victoria Earth System Climate Model (UVic ESCM). The default, non-linear advection scheme was first replaced with a linear, third-order upwind-biased advection scheme to satisfy the linearity requirement of the TMM. Transport matrices were extracted from an equilibrium run of the physical model and subsequently used to integrate the biogeochemical model offline to equilibrium. The identical biogeochemical model was also run online. Our simulations show that offline integration introduces some bias to biogeochemical quantities through the omission of the polar filtering used in UVic ESCM and in the offline application of time-dependent forcing fields, with high latitudes showing the largest differences with respect to the online model. Differences in other regions and in the seasonality of nutrients and phytoplankton distributions are found to be relatively minor, giving confidence that the TMM is a reliable tool for offline integration of complex biogeochemical models. Moreover, while UVic ESCM is a serial code, the TMM can be run on a parallel machine with no change to the underlying biogeochemical code, thus providing orders of magnitude speed-up over the online model.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 14 . pp. 4965-4984.
    Publication Date: 2020-02-06
    Description: The assessment of the ocean biota's role in climate climate change is often carried out with global biogeochemical ocean models that contain many components, and involve a high level of parametric uncertainty. Examination the models' fit to climatologies of inorganic tracers, after the models have been spun up to steady state, is a common, but computationally expensive procedure to assess model performance and reliability. Using new tools that have become available for global model assessment and calibration in steady state, this paper examines two different model types – a complex seven-component model (MOPS), and a very simple two-component model (RetroMOPS) – for their fit to dissolved quantities. Before comparing the models, a subset of their biogeochemical parameters has been optimised against annual mean nutrients and oxygen. Both model types fit the observations almost equally well. The simple model, which contains only nutrients and dissolved organic phosphorus (DOP), is sensitive to the parameterisation of DOP production and decay. The spatio-temporal decoupling of nitrogen and oxygen, and processes involved in their uptake and release, renders oxygen and nitrate valuable tracers for model calibration. In addition, the non-conservative nature of these tracers (with respect to their upper boundary condition) introduces the global bias as a useful additional constraint on model parameters. Dissolved organic phosphorous at the surface behaves antagonistically to phosphate, and suggests that observations of this tracer – although difficult to measure – may be an important asset for model calibration
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2020-02-06
    Description: The balance in microbial net consumption of nitrogen and phosphorus was investigated in samples collected in two mesotrophic coastal environments: the Baltic Sea (Tvärminne field station) and the North Sea (Espegrend field station). For this, we have refined a bioassay based on the response in alkaline phosphatase activity (APA) over a matrix of combinations in nitrogen and phosphorus additions. This assay not only provides information on which element (N or P) is the primary limiting nutrient, but also gives a quantitative estimate for the excess of the secondary limiting element (P+ or N+, respectively), as well as the ratio of balanced net consumption of added N and P over short timescales (days). As expected for a Baltic Sea late spring–early summer situation, the Tvärminne assays (n =  5) indicated N limitation with an average P+ =  0.30 ± 0.10 µM-P, when incubated for 4 days. For short incubations (1–2 days), the Espegrend assays indicated P limitation, but the shape of the response surface changed with incubation time, resulting in a drift in parameter estimates toward N limitation. Extrapolating back to zero incubation time gave P limitation with N+ ≈  0.9 µM-N. The N : P ratio (molar) of nutrient net consumption varied considerably between investigated locations: from 2.3 ± 0.4 in the Tvärminne samples to 13 ± 5 and 32 ± 3 in two samples from Espegrend. Our assays included samples from mesocosm acidification experiments, but statistically significant effects of ocean acidification were not found by this method.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2020-02-06
    Description: Climate change impacts prevail on marine pelagic systems and food webs, including zooplankton, the key link between primary producers and fish. Several metabolic, physiological, and ecological responses of zooplankton species and communities to global stressors have recently been tested, with an emerging field in assessing effects of combined climate-related factors. Yet, integrative studies are needed to understand how ocean acidification interacts with global warming, mediating zooplankton body chemistry and ecology. Here, we tested the combined effects of global warming and ocean acidification, predicted for the year 2100, on a community of calanoid copepods, a ubiquitously important mesozooplankton compartment. Warming combined with tested pCO2 increase affected metabolism, altered stable isotope composition and fatty acid contents, and reduced zooplankton fitness, leading to lower copepodite abundances and decreased body sizes, and ultimately reduced survival. These interactive effects of temperature and acidification indicate that metabolism-driven chemical responses may be the underlying correlates of ecological effects observed in zooplankton communities, and highlight the importance of testing combined stressors with a regression approach when identifying possible effects on higher trophic levels.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2020-02-06
    Description: Increased maintenance costs at cellular, and consequently organism level, are thought to be involved in shaping the sensitivity of marine calcifiers to ocean acidification (OA). Yet, knowledge of the capacity of marine calcifiers to undergo metabolic adaptation is sparse. In Kiel Fjord, blue mussels thrive despite periodically high seawater PCO2, making this population interesting for studying metabolic adaptation under OA. Consequently, we conducted a multi-generation experiment and compared physiological responses of F1 mussels from ‘tolerant’ and ‘sensitive’ families exposed to OA for 1 year. Family classifications were based on larval survival; tolerant families settled at all PCO2 levels (700, 1120, 2400 µatm) while sensitive families did not settle at the highest PCO2 (≥99.8% mortality). We found similar filtration rates between family types at the control and intermediate PCO2 level. However, at 2400 µatm, filtration and metabolic scope of gill tissue decreased in tolerant families, indicating functional limitations at the tissue level. Routine metabolic rates (RMR) and summed tissue respiration (gill and outer mantle tissue) of tolerant families were increased at intermediate PCO2, indicating elevated cellular homeostatic costs in various tissues. By contrast, OA did not affect tissue and routine metabolism of sensitive families. However, tolerant mussels were characterised by lower RMR at control PCO2 than sensitive families, which had variable RMR. This might provide the energetic scope to cover increased energetic demands under OA, highlighting the importance of analysing intra-population variability. The mechanisms shaping such difference in RMR and scope, and thus species’ adaptation potential, remain to be identified.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2020-02-06
    Description: The Ocean Model Intercomparison Project (OMIP) focuses on the physics and biogeochemistry of the ocean component of Earth system models participating in the sixth phase of the Coupled Model Intercomparison Project (CMIP6). OMIP aims to provide standard protocols and diagnostics for ocean models, while offering a forum to promote their common assessment and improvement. It also offers to compare solutions of the same ocean models when forced with reanalysis data (OMIP simulations) vs. when integrated within fully coupled Earth system models (CMIP6). Here we detail simulation protocols and diagnostics for OMIP's biogeochemical and inert chemical tracers. These passive-tracer simulations will be coupled to ocean circulation models, initialized with observational data or output from a model spin-up, and forced by repeating the 1948–2009 surface fluxes of heat, fresh water, and momentum. These so-called OMIP-BGC simulations include three inert chemical tracers (CFC-11, CFC-12, SF6) and biogeochemical tracers (e.g., dissolved inorganic carbon, carbon isotopes, alkalinity, nutrients, and oxygen). Modelers will use their preferred prognostic BGC model but should follow common guidelines for gas exchange and carbonate chemistry. Simulations include both natural and total carbon tracers. The required forced simulation (omip1) will be initialized with gridded observational climatologies. An optional forced simulation (omip1-spunup) will be initialized instead with BGC fields from a long model spin-up, preferably for 2000 years or more, and forced by repeating the same 62-year meteorological forcing. That optional run will also include abiotic tracers of total dissolved inorganic carbon and radiocarbon, CTabio and 14CTabio, to assess deep-ocean ventilation and distinguish the role of physics vs. biology. These simulations will be forced by observed atmospheric histories of the three inert gases and CO2 as well as carbon isotope ratios of CO2. OMIP-BGC simulation protocols are founded on those from previous phases of the Ocean Carbon-Cycle Model Intercomparison Project. They have been merged and updated to reflect improvements concerning gas exchange, carbonate chemistry, and new data for initial conditions and atmospheric gas histories. Code is provided to facilitate their implementation.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Earth System Science Data, 9 . pp. 809-831.
    Publication Date: 2020-02-06
    Description: The injection of sulphur into the stratosphere by explosive volcanic eruptions is the cause of significant climate variability. Based on sulphate records from a suite of ice cores from Greenland and Antarctica, the eVolv2k database includes estimates of the magnitudes and approximate source latitudes of major volcanic stratospheric sulphur injection (VSSI) events from 500 BCE to 1900 CE, constituting an update of prior reconstructions and an extension of the record by 1000 years. The VSSI estimates incorporate improvements to the ice core records in terms of synchronization and dating, refinements to the methods used to estimate VSSI from ice core records, and includes first estimates of the random uncertainties in VSSI values. VSSI estimates for many of the largest eruptions, including Samalas (1257), Tambora (1815) and Laki (1783) are within 10% of prior estimates. A number of strong events are included in eVolv2k which are largely underestimated or not included in earlier VSSI reconstructions, including events in 540, 574, 682 and 1108 CE. The long term annual mean VSSI from major volcanic eruptions is estimated to be ∼ 0.5 Tg [S] yr−1, ∼ 50 % greater than a prior reconstruction, due to the identification of more events and an increase in the magnitude of many intermediate events. A long-term, latitudinally and monthly resolved stratospheric aerosol optical depth (SAOD) time series is reconstructed from the eVolv2k VSSI estimates, and the resulting global mean SAOD is found to be similar (within 33%) to a prior reconstruction for most of the largest eruptions. The long-term (500 BCE–900 CE) average global mean SAOD estimated from the eVolv2k VSSI estimates and including a constant "background" injection of stratospheric sulphur is ∼ 0.014, 30 % greater than a prior reconstruction. These new long-term reconstructions of past VSSI and SAOD variability give context to recent volcanic forcing, suggesting that the 20th century was a period of somewhat weaker than average volcanic forcing, with current best estimates of 20th century mean VSSI and SAOD values being 25 and 14 % less, respectively, than the mean of the 500 BCE to 1900 CE period. The reconstructed VSSI and SAOD data are available at https://doi.org/10.1594/WDCC/eVolv2k_v2〉.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2020-02-06
    Description: The Cretaceous ocean witnessed intervals of profound perturbations such as volcanic input of large amounts of CO2, anoxia, eutrophication and introduction of biologically relevant metals. Some of these extreme events were characterized by size reduction and/or morphological changes of a few calcareous nannofossil species. The correspondence between intervals of high trace metal concentrations and coccolith dwarfism suggests a negative effect of these elements on nannoplankton biocalcification processes in past oceans. In order to test this hypothesis, we explored the potential effect of a mixture of trace metals on growth and morphology of four living coccolithophore species, namely Emiliania huxleyi, Gephyrocapsa oceanica, Pleurochrysis carterae and Coccolithus pelagicus. The phylogenetic history of coccolithophores shows that the selected living species are linked to Mesozoic species showing dwarfism under excess metal concentrations. The trace metals tested were chosen to simulate the environmental stress identified in the geological record and upon known trace metal interactions with living coccolithophore algae. Our laboratory experiments demonstrated that elevated trace metal concentrations, similarly to the fossil record, affect coccolithophore algae size and/or weight. Smaller coccoliths were detected in E. huxleyi and C. pelagicus, while coccoliths of G. oceanica showed a decrease in size only at the highest trace metal concentrations. P. carterae coccolith size was unresponsive to changing trace metal concentrations. These differences among species allow discriminating the most- (P. carterae), intermediate- (E. huxleyi and G. oceanica) and least-tolerant (C. pelagicus) taxa. The fossil record and the experimental results converge on a selective response of coccolithophores to metal availability. These species-specific differences must be considered before morphological features of coccoliths are used to reconstruct paleo-chemical conditions.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2020-02-06
    Description: The Baltic Sea is a seasonally ice-covered marginal sea in northern Europe with intense wintertime ship traffic and a sensitive ecosystem. Understanding and modeling the evolution of the sea-ice pack is important for climate effect studies and forecasting purposes. Here we present and evaluate the sea-ice component of a new NEMO–LIM3.6-based ocean–sea-ice setup for the North Sea and Baltic Sea region (NEMO-Nordic). The setup includes a new depth-based fast-ice parametrization for the Baltic Sea. The evaluation focuses on long-term statistics, from a 45-year long hindcast, although short-term daily performance is also briefly evaluated. We show that NEMO-Nordic is well suited for simulating the mean sea-ice extent, concentration, and thickness as compared to the best available observational data set. The variability of the annual maximum Baltic Sea ice extent is well in line with the observations, but the 1961–2006 trend is underestimated. Capturing the correct ice thickness distribution is more challenging. Based on the simulated ice thickness distribution we estimate the undeformed and deformed ice thickness and concentration in the Baltic Sea, which compares reasonably well with observations.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2020-02-06
    Description: We developed a new method for the determination of dissolved nitric oxide (NO) in discrete seawater samples based on the combination of a purge-and-trap setup and a fluorometric detection of NO. 2,3-diaminonaphthalene (DAN) reacts with NO in seawater to form the highly fluorescent 2,3-naphthotriazole (NAT). The fluorescence intensity was linear for NO concentrations in the range from 0.14 to 19 nmol L−1. We determined a detection limit of 0.068 nmol L−1, an average recovery coefficient of 83.8 % (80.2–90.0 %), and a relative standard deviation of ±7.2 %. With our method we determined for the first time the temporal and spatial distributions of NO surface concentrations in coastal waters of the Yellow Sea off Qingdao and in Jiaozhou Bay during a cruise in November 2009. The concentrations of NO varied from below the detection limit to 0.50 nmol L−1 with an average of 0.26 ± 0.14 nmol L−1. NO surface concentrations were generally enhanced significantly during daytime, implying that NO formation processes such as NO2− photolysis are much higher during daytime than chemical NO consumption, which, in turn, lead to a significant decrease in NO concentrations during nighttime. In general, NO surface concentrations and measured NO production rates were higher compared to previously reported measurements. This might be caused by the high NO2− surface concentrations encountered during the cruise. Moreover, additional measurements of NO production rates implied that the occurrence of particles and a temperature increase can enhance NO production rates. With the method introduced here, we have a reliable and comparably easy to use method at hand to measure oceanic NO surface concentrations, which can be used to decipher both its temporal and spatial distributions as well as its biogeochemical pathways in the oceans.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    Springer
    In:  Journal of Applied Phycology, 29 (2). pp. 1027-1036.
    Publication Date: 2020-02-06
    Description: Fucoxanthin is a xanthophyll pigment which occurs in marine brown algae (Phaeophyceae). The anti-diabetic, anti-obesity, anti-cancer, and antioxidant properties of fucoxanthin have been widely reported. Macroalgae, particularly brown seaweeds, grow prolifically around Irish coasts, representing a valuable resource of nutraceuticals such as fucoxanthin for functional food applications. The aim of this study was to maximise the solvent extraction yield from three anatomically discrete regions of the seaweed thallus: blade, stipe, and holdfast. Response surface methodology was applied to determine optimum parameters for extraction of fucoxanthin from the seaweed, Fucus vesiculosus, as a model species. A central composite design was applied with four extraction variables: time (30–70 min), temperature (30–70 °C), solvent pH (5.0–9.0), and percentage acetone (30–70 %). Fucoxanthin content of extracts was quantified by high-performance liquid chromatography. Percentage acetone was found to have the most significant (P = 0.0002) effect on fucoxanthin yield, followed by pH (P = 0.028) and temperature (P = 0.049). Multiple response optimisation determined that fucoxanthin yield from F. vesiculosus may be maximised by incubating at 30.0 °C for 36.5 min, pH 5.7, with 62.2 % acetone. Optimised responses were applied to a further nine brown seaweeds; Alaria esculenta, Ascophyllum nodosum, Fucus serratus, Himanthalia elongata, Laminaria digitata, Laminaria hyperborea, Pelvetia canaliculata, Saccharina latissima, and Saccorhiza polyschides. In all species, the blades contained significantly more fucoxanthin than stipes, while holdfasts contained the least. Alaria esculenta blade had the greatest yield (0.870 mg g−1 dry mass), followed by F. vesiculosus blade (0.699 mg g−1) and L. digitata blade (0.650 mg g−1).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2020-02-06
    Description: Past warm periods provide an opportunity to evaluate climate models under extreme forcing scenarios, in particular high ( 〉  800 ppmv) atmospheric CO2 concentrations. Although a post hoc intercomparison of Eocene ( ∼  50  Ma) climate model simulations and geological data has been carried out previously, models of past high-CO2 periods have never been evaluated in a consistent framework. Here, we present an experimental design for climate model simulations of three warm periods within the early Eocene and the latest Paleocene (the EECO, PETM, and pre-PETM). Together with the CMIP6 pre-industrial control and abrupt 4 ×  CO2 simulations, and additional sensitivity studies, these form the first phase of DeepMIP – the Deep-time Model Intercomparison Project, itself a group within the wider Paleoclimate Modelling Intercomparison Project (PMIP). The experimental design specifies and provides guidance on boundary conditions associated with palaeogeography, greenhouse gases, astronomical configuration, solar constant, land surface processes, and aerosols. Initial conditions, simulation length, and output variables are also specified. Finally, we explain how the geological data sets, which will be used to evaluate the simulations, will be developed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2020-02-06
    Description: The knowledge of the phase behavior of carbon dioxide (CO2)-rich mixtures is a key factor to understand the chemistry and migration of natural volcanic CO2 seeps in the marine environment, as well as to develop engineering processes for CO2 sequestration coupled to methane (CH4) production from gas hydrate deposits. In both cases, it is important to gain insights into the interactions of the CO2-rich phase—liquid or gas—with the aqueous medium (H2O) in the pore space below the seafloor or in the ocean. Thus, the CH4-CO2 binary and CH4-CO2-H2O ternary mixtures were investigated at relevant pressure and temperature conditions. The solubility of CH4 in liquid CO2 (vapor-liquid equilibrium) was determined in laboratory experiments and then modelled with the Soave–Redlich–Kwong equation of state (EoS) consisting of an optimized binary interaction parameter kij(CH4-CO2) = 1.32 × 10−3 × T − 0.251 describing the non-ideality of the mixture. The hydrate-liquid-liquid equilibrium (HLLE) was measured in addition to the composition of the CO2-rich fluid phase in the presence of H2O. In contrast to the behavior in the presence of vapor, gas hydrates become more stable when increasing the CH4 content, and the relative proportion of CH4 to CO2 decreases in the CO2-rich phase after gas hydrate formation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2016-12-19
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2020-02-06
    Description: Low prediction skill in the tropical Pacific is a common problem in decadal prediction systems, especially for lead years 2–5 which, in many systems, is lower than in uninitialized experiments. On the other hand, the tropical Pacific is of almost worldwide climate relevance through its teleconnections with other tropical and extratropical regions and also of importance for global mean temperature. Understanding the causes of the reduced prediction skill is thus of major interest for decadal climate predictions. We look into the problem of reduced prediction skill by analyzing the Max Planck Institute Earth System Model (MPI-ESM) decadal hindcasts for the fifth phase of the Climate Model Intercomparison Project and performing a sensitivity experiment in which hindcasts are initialized from a model run forced only by surface wind stress. In both systems, sea surface temperature variability in the tropical Pacific is successfully initialized, but most skill is lost at lead years 2–5. Utilizing the sensitivity experiment enables us to pin down the reason for the reduced prediction skill in MPI-ESM to errors in wind stress used for the initialization. A spurious trend in the wind stress forcing displaces the equatorial thermocline in MPI-ESM unrealistically. When the climate model is then switched into its forecast mode, the recovery process triggers artificial El Niño and La Niña events at the surface. Our results demonstrate the importance of realistic wind stress products for the initialization of decadal predictions
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    Springer
    In:  In: Faszination Meeresforschung : ein ökologisches Lesebuch. , ed. by Hempel, G., Bischof, K. and Hagen, W. Springer, Heidelberg, Germany, pp. 357-364. 2. Aufl. ISBN 978-3-662-49713-5
    Publication Date: 2017-05-22
    Type: Book chapter , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    Springer
    In:  In: Faszination Meeresforschung : ein ökologisches Lesebuch. , ed. by Hempel, G., Bischof, K. and Hagen, W. Springer, Heidelberg, Germany, pp. 415-426. 2. Aufl. ISBN 978-3-662-49713-5
    Publication Date: 2017-02-22
    Type: Book chapter , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2020-02-06
    Description: The climate research community uses atmospheric reanalysis data sets to understand a wide range of processes and variability in the atmosphere, yet different reanalyses may give very different results for the same diagnostics. The Stratosphere–troposphere Processes And their Role in Climate (SPARC) Reanalysis Intercomparison Project (S-RIP) is a coordinated activity to compare reanalysis data sets using a variety of key diagnostics. The objectives of this project are to identify differences among reanalyses and understand their underlying causes, to provide guidance on appropriate usage of various reanalysis products in scientific studies, particularly those of relevance to SPARC, and to contribute to future improvements in the reanalysis products by establishing collaborative links between reanalysis centres and data users. The project focuses predominantly on differences among reanalyses, although studies that include operational analyses and studies comparing reanalyses with observations are also included when appropriate. The emphasis is on diagnostics of the upper troposphere, stratosphere, and lower mesosphere. This paper summarizes the motivation and goals of the S-RIP activity and extensively reviews key technical aspects of the reanalysis data sets that are the focus of this activity. The special issue "The SPARC Reanalysis Intercomparison Project (S-RIP)" in this journal serves to collect research with relevance to the S-RIP in preparation for the publication of the planned two (interim and full) S-RIP reports.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2021-04-21
    Description: A high-resolution dynamical model (Nucleus for European Modelling of the Ocean, Mediterranean configuration – NEMO-MED12) was used to give the first simulation of the distribution of radiocarbon (14C) across the whole Mediterranean Sea. The simulation provides a descriptive overview of both the natural pre-bomb 14C and the entire anthropogenic radiocarbon transient generated by the atmospheric bomb tests performed in the 1950s and early 1960s. The simulation was run until 2011 to give the post-bomb distribution. The results are compared to available in situ measurements and proxy-based reconstructions. The radiocarbon simulation allows an additional and independent test of the dynamical model, NEMO-MED12, and its performance to produce the thermohaline circulation and deep-water ventilation. The model produces a generally realistic distribution of radiocarbon when compared with available in situ data. The results demonstrate the major influence of the flux of Atlantic water through the Strait of Gibraltar on the inter-basin natural radiocarbon distribution and characterize the ventilation of intermediate and deep water especially through the propagation of the anthropogenic radiocarbon signal. We explored the impact of the interannual variability on the radiocarbon distribution during the Eastern Mediterranean Transient (EMT) event. It reveals a significant increase in 14C concentration (by more than 60 ‰) in the Aegean deep water and at an intermediate level (value up to 10 ‰) in the western basin. The model shows that the EMT makes a major contribution to the accumulation of radiocarbon in the eastern Mediterranean deep waters.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    Springer
    In:  Pure and Applied Geophysics, 174 (5). pp. 2143-2160.
    Publication Date: 2020-02-06
    Description: We present an accurate interpolating method for calculating electric and magnetic fields at the seafloor with a resistivity contrast. This method is applied to the three-dimensional (3D) frequency-domain marine controlled-source electromagnetic (CSEM) modeling with the towed transmitters and receivers located at the seafloor. We simulate the 3D marine CSEM responses by the staggered finite-difference method with a direct solver. The secondary-field approach is used for avoiding the source singularities and the primary fields excited by the electric dipole source could be calculated quasi-analytically for the one-dimensional layered background. Therefore, in this study, we focus on interpolating of electric and magnetic fields to the receiver locations at the seafloor interface between the conductive seawater and resistive seafloor formation. Considering the discontinuity of the normal electric fields, we use the normal current electric density for interpolation. The secondary electric and magnetic fields are also used for interpolation instead of the total fields for high numerical accuracy. The proposed interpolation only utilizes the nodes below/above the seafloor interface and is approved to be much more accurate than other tested interpolating methods, i.e., the conventional linear interpolation and the rigorous interpolation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2020-02-06
    Description: This study focuses on Jurassic shallow intrusions and subvolcanic bodies from around Trudolyubovka village in the southwestern Crimea. All the rocks are similar in mineral composition and have similar geochemical features and occur in close spatial and geological association. This allows us to assign the intrusions to a single magmatic series and interpret them as differentiation products of a single parental melt. The investigation of melt inclusions in olivine from the most magnesian sample showed that the composition of igneous melts ranged from basalt to basaltic andesite of a moderately potassic subalkaline affinity. Compared with N-MORB, they are enriched in LILE, but have similar HFSE and REE contents. The early magmatic melts crystallized at temperatures ranging from 1240 to 1125°C, pressures of 6–8 kbar, and an oxygen fugacity of ΔQFM = +0.6; and later melts crystallized at 1090–940°C, ~1.5 kbar, and oxygen fugacity increasing from ΔQFM + 0.9 to ΔQFM + 2.3. The minimum pressure of groundmass crystallization was estimated as 40–60 bar. The primitive melts were formed in a mature island arc or an active continental margin setting by ~13% melting of a DMM-like source. The melting occurred at spinel-facies depths under the influence of a slab-derived fluid at a temperature 25°C below the dry peridotite solidus.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2021-04-21
    Description: Extensive biogeochemical transformation of organic matter takes place in the shallow continental shelf seas of Siberia. This, in combination with brine production from sea-ice formation, results in cold bottom waters with relatively high salinity and nutrient concentrations, as well as low oxygen and pH levels. Data from the SWERUS-C3 expedition with icebreaker Oden, from July to September 2014, show the distribution of such nutrient-rich, cold bottom waters along the continental margin from about 140 to 180° E. The water with maximum nutrient concentration, classically named the upper halocline, is absent over the Lomonosov Ridge at 140° E, while it appears in the Makarov Basin at 150° E and intensifies further eastwards. At the intercept between the Mendeleev Ridge and the East Siberian continental shelf slope, the nutrient maximum is still intense, but distributed across a larger depth interval. The nutrient-rich water is found here at salinities of up to ∼ 34.5, i.e. in the water classically named lower halocline. East of 170° E transient tracers show significantly less ventilated waters below about 150 m water depth. This likely results from a local isolation of waters over the Chukchi Abyssal Plain as the boundary current from the west is steered away from this area by the bathymetry of the Mendeleev Ridge. The water with salinities of ∼ 34.5 has high nutrients and low oxygen concentrations as well as low pH, typically indicating decay of organic matter. A deficit in nitrate relative to phosphate suggests that this process partly occurs under hypoxia. We conclude that the high nutrient water with salinity ∼ 34.5 are formed on the shelf slope in the Mendeleev Ridge region from interior basin water that is trapped for enough time to attain its signature through interaction with the sediment.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    Springer
    In:  Marine Biology, 164 (6). Art.Nr. 121.
    Publication Date: 2020-02-06
    Description: The Topical Collection on Invasive Species includes 50 articles addressing many tenets of marine invasion ecology. The collection covers important topics relating to propagule pressure associated with transport vectors, species characteristics, attributes of recipient ecosystems, invasion genetics, biotic interactions, testing of invasion hypotheses, invasion dynamics and spread, and impacts of nonindigenous species. This article summarizes some of the collection’s highlights.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2020-02-06
    Description: We present data on volatile (S, F and Cl) and major element contents in olivine-hosted melt inclusions (MIs) from alkaline basaltic tephras along the Quaternary Payenia backarc volcanic province (~34°S–38°S) of the Andean Southern Volcanic Zone (SVZ). The composition of Cr-spinel inclusions and host olivines in Payenia are also included to constrain any variations in oxygen fugacity. The variation of potassium, fluorine and chlorine in MIs in Payenia can be modelled by partial melting (1–10%) of a variously metasomatised mantle. The high chlorine contents in MIs (up to 3200 ppm) from Northern Payenia require addition of subduction-related fluids to a mantle wedge, whereas volatile signatures in the southern Payenia are consistent with derivation from an enriched OIB source. Cl and Cl/K ratios define positive correlations with host olivine fosterite content (Fo80-90) that cannot be explained by olivine fractionation, degassing and/or degree of mantle melting. Neither can the correlation between SiO2 and TiO2 in the MIs and host olivine Fo-content be explained by magmatic differentiation processes. Instead these correlations essentially require a south to north mantle source transition from a low Mg# pyroxenite (from recycled eclogite) to a high Mg# fluid metasomatised peridotite. The Cl/K and S/K ratios in Payenia MIs extend from enriched OIB-like signatures (south) to Andean SVZ arc like signatures (north). We show that the northward increase in S, Cl and S/K is coupled to a northward increase in melt oxidation states and thus in Fe3+/Fetot ratios in the magmas. The increase in oxidation state also correlates with an increase of Mn/Fe (olivine) ratios. We calculate that 25% of the apparent north–south pyroxenite–peridotite source variation in Payenia (based on olivine Mn/Fe ratios) can be explained by the south to north variation in melt oxidation states.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: other
    Format: other
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Ocean Science, 13 (6). pp. 1017-1033.
    Publication Date: 2020-02-06
    Description: As a major source for atmospheric CO2, the Peruvian upwelling region exhibits strong variability in surface fCO2 on short spatial and temporal scales. Understanding the physical processes driving the strong variability is of fundamental importance for constraining the effect of marine emissions from upwelling regions on the global CO2 budget. In this study, a frontal decay on length scales of 𝒪(10 km) was observed off the Peruvian coast following a pronounced decrease in down-frontal (equatorward) wind speed with a time lag of 9 h. Simultaneously, the sea-to-air flux of CO2 on the inshore (cold) side of the front dropped from up to 80 to 10 mmol m−2 day−1, while the offshore (warm) side of the front was constantly outgassing at a rate of 10–20 mmol m−2 day−1. Based on repeated ship transects the decay of the front was observed to occur in two phases. The first phase was characterized by a development of coherent surface temperature anomalies which gained in amplitude over 6–9 h. The second phase was characterized by a disappearance of the surface temperature front within 6 h. Submesoscale mixed-layer instabilities were present but seem too slow to completely remove the temperature gradient in this short time period. Dynamics such as a pressure-driven gravity current appear to be a likely mechanism behind the evolution of the front.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2020-02-06
    Description: In the frame of studies on secondary metabolites produced by fungi from deep-sea environments we have investigated inhibitors of enzymes playing key roles in signaling cascades of biochemical pathways relevant for the treatment of diseases. Here we report on a new inhibitor of the human protein tyrosine phosphatase 1B (PTP1B), a target in the signaling pathway of insulin. A new asperentin analog is produced by an Aspergillus sydowii strain isolated from the sediment of the deep Mediterranean Sea. Asperentin B (1) contains an additional phenolic hydroxy function at C-6 and exhibits an IC50 value against PTP1B of 2 μM in vitro, which is six times stronger than the positive control, suramin. Interestingly, asperentin (2) did not show any inhibition of this enzymatic activity. Asperentin B (1) is discussed as possible therapeutic agents for type 2 diabetes and sleeping sickness.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    Springer
    In:  International Journal of Environmental Science and Technology, 14 (6). pp. 1355-1370.
    Publication Date: 2017-08-11
    Description: Long-lived and short-lived halocarbons have long been known for their adverse effects on atmospheric chemistry, especially ozone depletion that may be directly or indirectly influenced by global climate change. Marine organisms including phytoplankton contribute shorter-lived halocarbon compounds to the atmosphere. Oceans cover more than 70% of the Earth’s surface making the marine phytoplankton a significant presence. Changes in the environment will inevitably affect this widely distributed group of organisms. Various predictions have been made about how phytoplankton will respond to climate change, but as yet little is known about the interactions between phytoplankton, climate change and halocarbon emissions. We provide a summary of studies on halocarbon emissions by marine phytoplankton isolated from different climatic zones that includes data from our recent studies on tropical marine phytoplankton. It is important to determine and characterize the contribution of the phytoplankton to the halocarbon load in the atmosphere to allow their interaction with the changing global climate to be understood. Using these data, we compare the range of halocarbons emitted by phytoplankton with halocarbon emission data for seaweeds, a well-known biogenic contributor of short-lived halocarbons. Sørensen’s coefficient of similarity of 0.50 was calculated, which suggests that half of the detected halocarbon species present in seaweeds are also present in phytoplankton.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    Springer
    In:  Marine Biology, 164 (8). p. 167.
    Publication Date: 2017-08-16
    Type: Article , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2020-02-06
    Description: Trade-wind cumuli constitute the cloud type with the highest frequency of occurrence on Earth, and it has been shown that their sensitivity to changing environmental conditions will critically influence the magnitude and pace of future global warming. Research over the last decade has pointed out the importance of the interplay between clouds, convection and circulation in controling this sensitivity. Numerical models represent this interplay in diverse ways, which translates into different responses of trade-cumuli to climate perturbations. Climate models predict that the area covered by shallow cumuli at cloud base is very sensitive to changes in environmental conditions, while process models suggest the opposite. To understand and resolve this contradiction, we propose to organize a field campaign aimed at quantifying the physical properties of trade-cumuli (e.g., cloud fraction and water content) as a function of the large-scale environment. Beyond a better understanding of clouds-circulation coupling processes, the campaign will provide a reference data set that may be used as a benchmark for advancing the modelling and the satellite remote sensing of clouds and circulation. It will also be an opportunity for complementary investigations such as evaluating model convective parameterizations or studying the role of ocean mesoscale eddies in air–sea interactions and convective organization
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    Springer
    In:  In: Submarine Geomorphology. , ed. by Micallef, A. 〈https://orcid.org/0000-0002-9330-0648〉 Springer, Cham, pp. 409-424.
    Publication Date: 2021-05-11
    Description: Although only recognized in the middle of the last century, oceanic trenches are among the most spectacular structural and morphological features in the deep oceans. Caused by the collision and subduction of tectonic plates and shaped by the interplay of tectonic and sedimentary processes, the morphology of oceanic trenches can be manifold. In this chapter we discriminate between sediment starved trenches, partly sediment filled trenches, and sediment flooded trenches. In sediments starved trenches the tectonic signature is usually well preserved everywhere in the trench, including at the outer slope, the depression, and the inner slope. In contrast, in sediment flooded trenches the outer slope and the trench depression usually correspond to a flat seafloor that results from the deposition of thick sedimentary sequences that overprint all fault scarps. Here, a tectonic signature is only found at the trench inner slope where accretion of trench sediments results in thrust faulting. The remarkable differences in trench morphologies underline that for a comprehensive understanding of the structural evolution of a convergent margin, detailed knowledge on the sedimentary and tectonic history of the adjacent oceanic trench is necessary.
    Type: Book chapter , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    Springer
    In:  In: Submarine Geomorphology. , ed. by Micallef, A., Krastel, S. and Savini, A. Springer, Cham, pp. 13-24. ISBN 978-3-319-57851-4
    Publication Date: 2017-12-13
    Description: Sidescan sonar allows obtaining an acoustic image of the seafloor at high resolution, wide swath and relatively low cost. For that purpose the backscattered signal of an acoustic pulse sent out sideways from an instrument carrier is registered. At low incident angles small-scale relief is well imaged and the length of shadows allows calculation of the height of seafloor features but sidescan sonar is particularly useful in mapping compositional differences of the seafloor. Sidescan sonar images are, however, mostly uncalibrated and need some form of ground-truthing for meaningful geological interpretation. Interferometric sidescan sonar systems now also provide bathymetric information together with backscatter strength.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    Springer
    In:  In: Diversity in Coastal Marine Sciences. , ed. by Finkl, C. W. and Makowski, C. Coastal Research Library, 23 . Springer, Cham, pp. 181-200. ISBN 978-3-319-57577-3
    Publication Date: 2017-12-13
    Description: We performed a comparative test study applying conventional Conductivity-Temperature-Depth (CTD) casts and a self designed mini lander system, which was deployed on the Pagès Escarpment on the Cantabrian Margin at 762 mbsl water depth for continuous bottom water measurements. Our lander data demonstrate that the mechanical movement of CTD gear disturbs the internal structure of the bottom water mass and extreme values are most likely to be missed. This questions the reliability of repeated CTD casts at the same site (yoyo-CTD) with respect to the detailed bottom water mass characteristics bathing the benthic communities. Although, repeated CTD casts may provide information about the amplitude in temperature and salinity variability, our data clearly exhibit that temperature and salinity maxima and minima respectively do not coincide only with the most obvious semi diurnal tidal dynamics but exhibit other tidal frequencies, mainly M4, which are not captured by yoyo-CTD analysis. High resolution CTD measurements in combination with ADCP data reveal a comprehensive picture of bottom water mass dynamics.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2017-12-21
    Description: The aim of this study was to compare the effects of sulfated fucopolysaccharides isolated from Fucus vesiculosus on HeLa G-63, Hep G2, and Chang liver cells. Native fucoidan F3 and two fractions (F3-0.5 and F3-1) obtained by anion-exchange chromatography were analyzed using chemical methods and IR spectroscopy. It was demonstrated that F3 and F3-1 are characterized by a higher content of sulfates, location of sulfo groups mostly at the C4 atom of fucose residue, and low content of uronic acids inhibited cell proliferation. Human liver carcinoma Hep G2 appeared to be the most sensitive to fucoidan, whereas nonmalignant human Chang liver cells were the least sensitive.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2017-12-21
    Description: Invasions of non-native species are modifying global biodiversity but the ecological mechanisms underlying invasion processes are still not well understood. A degree of niche separation of non-native and sympatric native species can possibly explain the success of novel species in their new environment. In this study, we quantified experimentally and in situ the environmental niche space of caridean shrimps (native Crangon crangon and Palaemon adspersus, non-native Palaemon elegans) inhabiting the northern Baltic Sea. Field studies showed that the non-native P. elegans had wider geographical range compared to native species although the level of habitat specialization was similar in both Palaemon species. There were clear differences in shrimp habitat occupancy with P. elegans inhabiting lower salinity areas and more eutrophicated habitats compared to the native species. Consequently, the non-native shrimp has occupied large areas of the northern Baltic Sea that were previously devoid of the native shrimps. Experiments demonstrated that the non-native shrimp had higher affinity to vegetated substrates compared to native species. The study suggests that the abilities of the non-native shrimp to thrive in more stressful habitats (lower salinity, higher eutrophication), that are sub-optimal for native shrimps, plausibly explain the invasion success of P. elegans.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2020-02-06
    Description: We investigated the feeding of the dominant small pelagic fish—herring Clupea harengus membras and three-spined stickleback Gasterosteus aculeatus—in the Gulf of Riga (Baltic Sea) in the summers of 1999–2014. The share of empty stomachs, stomach fullness and taxonomic composition of fish diet was analysed. On average, large herring had the highest (19%) and small herring the lowest (6%) share of empty stomachs. Small (〈1 mm) cladoceran Bosmina spp. was the most important prey for three-spined stickleback; preying on small (〈1.5 mm) copepod Eurytemora affinis was the most efficient for small herring, while Bosmina spp. and E. affinis were equally important for the large herring, followed by the large (mean body length 〈2.0 mm) non-indigenous cladoceran Cercopagis pengoi. The number of prey taxa per stomach exhibited significant differences between the fish groups studied; the highest mean value was recorded for small herring and the lowest for three-spined stickleback (2.1 and 1.4 taxa, respectively). Although present, the fish group-specific spatial dynamics in feeding parameters (share of empty stomachs and feeding intensity) were weak compared to the observed interannual variation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2020-02-06
    Description: A new cyclic dipeptide, petrocidin A (1), along with three known compounds—2,3dihydroxybenzoic acid (2), 2,3-dihydroxybenzamide (3), and maltol (4)—were isolated from the solid culture of Streptomyces sp. SBT348. The strain Streptomyces sp. SBT348 had been prioritized in a strain collection of 64 sponge-associated actinomycetes based on its distinct metabolomic profile using liquid chromatography/high-resolution mass spectrometry (LC-HRMS) and nuclear magnetic resonance (NMR). The absolute configuration of all α-amino acids was determined by HPLC analysis after derivatization with Marfey’s reagent and comparison with commercially available reference amino acids. Structure elucidation was pursued in the presented study by mass spectrometry and NMR spectral data. Petrocidin A (1) and 2,3-dihydroxybenzamide (3) exhibited significant cytotoxicity towards the human promyelocytic HL-60 and the human colon adenocarcinoma HT-29 cell lines. These results demonstrated the potential of sponge-associated actinomycetes for the discovery of novel and pharmacologically active natural products.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2020-02-06
    Description: The response of the marine carbon cycle to changes in atmospheric CO2 concentrations will be determined, in part, by the relative response of calcifying and non-calcifying organisms to global change. Planktonic foraminifera are responsible for a quarter or more of global carbonate production, therefore understanding the sensitivity of calcification in these organisms to environmental change is critical. Despite this, there remains little consensus as to whether, or to what extent, chemical and physical factors affect foraminiferal calcification. To address this, we directly test the effect of multiple controls on calcification in culture experiments and core-top measurements of Globigerinoides ruber. We find that two factors, body size and the carbonate system, strongly influence calcification intensity in life, but that exposure to corrosive bottom waters can overprint this signal post mortem. Using a simple model for the addition of calcite through ontogeny, we show that variable body size between and within datasets could complicate studies that examine environmental controls on foraminiferal shell weight. In addition, we suggest that size could ultimately play a role in determining whether calcification will increase or decrease with acidification. Our models highlight that knowledge of the specific morphological and physiological mechanisms driving ontogenetic change in calcification in different species will be critical in predicting the response of foraminiferal calcification to future change in atmospheric pCO2.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 14 (7). pp. 1825-1838.
    Publication Date: 2020-02-06
    Description: In the ocean, sinking of particulate organic matter (POM) drives carbon export from the euphotic zone and supplies nutrition to mesopelagic communities, the feeding and degradation activities of which in turn lead to export flux attenuation. Oxygen minimum zones (OMZs) with suboxic water layers (〈 5 μmol O2 kg−1) show a lower carbon flux attenuation compared to well oxygenated waters (〉 100 μmol O2 kg−1), supposedly due to reduced heterotrophic activity. This study focuses on sinking particle fluxes through hypoxic mesopelagic waters (〈 60 % μmol O2 kg−1); these represent ~ 100-times more ocean volume globally compared to suboxic waters, but have less been studied. Particle export fluxes and attenuation coefficients were determined in the Eastern Tropical North Atlantic (ETNA) using two surface tethered drifting sediment trap arrays with 7 trapping depths located between 100 and 600 m. Data on particulate matter fluxes were fitted to the normalized power function Fz = F100 (z/100)−b, with F100 being the flux at a depth (z) of 100 m and b being the attenuation coefficient. Higher b-values suggest stronger flux attenuation and are influenced by factors such as faster degradation at higher temperatures. In this study, b-values of organic carbon fluxes varied between 0.74 and 0.80 and were in the intermediate range of previous reports, but lower than expected from seawater temperatures within the upper 500 m. During this study, highest b-values were determined for fluxes of particulate hydrolysable amino acids (PHAA), followed by particulate organic phosphorus (POP), nitrogen (PN), carbon (POC), chlorophyll a, and transparent exopolymer particles (TEP), pointing to a sequential degradation of organic matter components during sinking. Our study suggests that in addition to oxygen concentration, organic matter composition co-determines transfer efficiency through the mesopelagial. The magnitude of future carbon export fluxes may therefore also depend on how organic matter quality in the surface ocean changes under influence of warming, acidification, and enhanced stratification.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Ocean Science, 13 (4). pp. 531-549.
    Publication Date: 2020-11-09
    Description: The meridional Ekman volume, heat, and salt transport across two trans-Atlantic sections near 14.5° N and 11° S were estimated using in situ observations, wind products, and model data. A meridional ageostrophic velocity was obtained as the difference between the directly measured total velocity and the geostrophic velocity derived from observations. Interpreting the section mean ageostrophy to be the result of an Ekman balance, the meridional Ekman transport of 6. 2 ± 2. 3 Sv northward at 14.5° N and 11. 7 ± 2. 1 Sv southward at 11° S is estimated. The integration uses the top of the pycnocline as an approximation for the Ekman depth, which is on average about 20 m deeper than the mixed layer depth. The Ekman transport estimated based on the velocity observations agrees well with the predictions from in situ wind stress data of 6. 7 ± 3. 5 Sv at 14.5° N and 13. 6 ± 3. 3 Sv at 11° S. The meridional Ekman heat and salt fluxes calculated from sea surface temperature and salinity data or from high-resolution temperature and salinity profile data differ only marginally. The errors in the Ekman heat and salt flux calculation were dominated by the uncertainty of the Ekman volume transport estimates.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2021-07-08
    Description: Halogenated very short-lived substances (VSLSs) are naturally produced in the ocean and emitted to the atmosphere. When transported to the stratosphere, these compounds can have a significant influence on the ozone layer and climate. During a research cruise on RV Sonne in the subtropical and tropical west Indian Ocean in July and August 2014, we measured the VSLSs, methyl iodide (CH3I) and for the first time bromoform (CHBr3) and dibromomethane (CH2Br2), in surface seawater and the marine atmosphere to derive their emission strengths. Using the Lagrangian particle dispersion model FLEXPART with ERA-Interim meteorological fields, we calculated the direct contribution of observed VSLS emissions to the stratospheric halogen burden during the Asian summer monsoon. Furthermore, we compare the in situ calculations with the interannual variability of transport from a larger area of the west Indian Ocean surface to the stratosphere for July 2000–2015. We found that the west Indian Ocean is a strong source for CHBr3 (910 pmol m−2 h−1), very strong source for CH2Br2 (930 pmol m−2 h−1), and an average source for CH3I (460 pmol m−2 h−1). The atmospheric transport from the tropical west Indian Ocean surface to the stratosphere experiences two main pathways. On very short timescales, especially relevant for the shortest-lived compound CH3I (3.5 days lifetime), convection above the Indian Ocean lifts oceanic air masses and VSLSs towards the tropopause. On a longer timescale, the Asian summer monsoon circulation transports oceanic VSLSs towards India and the Bay of Bengal, where they are lifted with the monsoon convection and reach stratospheric levels in the southeastern part of the Asian monsoon anticyclone. This transport pathway is more important for the longer-lived brominated compounds (17 and 150 days lifetime for CHBr3 and CH2Br2). The entrainment of CHBr3 and CH3I from the west Indian Ocean to the stratosphere during the Asian summer monsoon is lower than from previous cruises in the tropical west Pacific Ocean during boreal autumn and early winter but higher than from the tropical Atlantic during boreal summer. In contrast, the projected CH2Br2 entrainment was very high because of the high emissions during the west Indian Ocean cruise. The 16-year July time series shows highest interannual variability for the shortest-lived CH3I and lowest for the longest-lived CH2Br2. During this time period, a small increase in VSLS entrainment from the west Indian Ocean through the Asian monsoon to the stratosphere is found. Overall, this study confirms that the subtropical and tropical west Indian Ocean is an important source region of halogenated VSLSs, especially CH2Br2, to the troposphere and stratosphere during the Asian summer monsoon.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2020-02-06
    Description: The kelp Laminaria digitata (Hudson) J.V. Lamouroux (Laminariales, Phaeophyceae) is currently cultivated on a small-scale in several north Atlantic countries, with much potential for expansion. The initial stages of kelp cultivation follow one of two methods: either maximising (gametophyte method) or minimising (direct method) the vegetative growth phase prior to gametogenesis. The gametophyte method is of increasing interest because of its utility in strain selection programmes. In spite of this, there are no studies of L. digitata gametophyte growth and reproductive capacity under commercially relevant conditions. Vegetative growth measured by length and biomass, and rate of gametogenesis, was examined in a series of experiments. A two-way fixed-effects model was used to examine the effects of both photoperiod (8:12; 12:12; 16:8, 24:0 L:D) and commonly used/commercially available growth media (f/2; Algoflash; Provasoli Enriched Seawater) on the aforementioned parameters. All media resulted in good performance of gametophytes under conditions favouring vegetative growth, while f/2 clearly resulted in better gametophyte performance and a faster rate of gametogenesis under conditions stimulating transition to fertility. Particularly, the extent of sporophyte production (% of gametophytes that produced sporophytes) at the end of the experiment showed clear differences between treatments in favour of f/2: f/2 = 30%; Algoflash = 9%; Provasoli Enriched Seawater = 2%. The effect of photoperiod was ambiguous, with evidence to suggest that the benefit of continuous illumination is less than expected. Confirmation of photoperiodic effect is necessary, using biomass as a measure of productivity and taking greater account of effects of genotypic variability.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    Springer
    In:  In: Faszination Meeresforschung : ein ökologisches Lesebuch. , ed. by Hempel, G., Bischof, K. and Hagen, W. Springer, Heidelberg, Germany, pp. 143-146. 2. Aufl. ISBN 978-3-662-49713-5
    Publication Date: 2017-02-22
    Type: Book chapter , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    Springer
    In:  In: Faszination Meeresforschung : ein ökologisches Lesebuch. , ed. by Hempel, G., Bischof, K. and Hagen, W. Springer, Heidelberg, Germany, pp. 179-210. 2. Aufl. ISBN 978-3-662-49713-5
    Publication Date: 2020-04-03
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 14 . pp. 4767-4780.
    Publication Date: 2020-02-06
    Description: Treatment of the underwater light field in ocean biogeochemical models has been attracting increasing interest, with some models moving towards more complex parameterisations. We conduct a simple sensitivity study of a typical, highly simplified parameterisation. In our study, we vary the phytoplankton light attenuation parameter over a range constrained by data during both pre-industrial equilibrated and future climate scenario RCP8.5. In equilibrium, lower light attenuation parameters (weaker self-shading) shift net primary production (NPP) towards the high latitudes, while higher values of light attenuation (stronger shelf-shading) shift NPP towards the low latitudes. Climate forcing magnifies this relationship through changes in the distribution of nutrients both within and between ocean regions. Where and how NPP responds to climate forcing can determine the magnitude and sign of global NPP trends in this high CO2 future scenario. Ocean oxygen is particularly sensitive to parameter choice. Under higher CO2 concentrations, two simulations establish a strong biogeochemical feedback between the Southern Ocean and low-latitude Pacific that highlights the potential for regional teleconnection. Our simulations serve as a reminder that shifts in fundamental properties (e.g. light attenuation by phytoplankton) over deep time have the potential to alter global biogeochemistry.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2020-02-06
    Description: Occupying about 14 % of the world's surface, the Southern Ocean plays a fundamental role in ocean and atmosphere circulation, carbon cycling and Antarctic ice-sheet dynamics. Unfortunately, high interannual variability and a dearth of instrumental observations before the 1950s limits our understanding of how marine–atmosphere–ice domains interact on multi-decadal timescales and the impact of anthropogenic forcing. Here we integrate climate-sensitive tree growth with ocean and atmospheric observations on southwest Pacific subantarctic islands that lie at the boundary of polar and subtropical climates (52–54° S). Our annually resolved temperature reconstruction captures regional change since the 1870s and demonstrates a significant increase in variability from the 1940s, a phenomenon predating the observational record. Climate reanalysis and modelling show a parallel change in tropical Pacific sea surface temperatures that generate an atmospheric Rossby wave train which propagates across a large part of the Southern Hemisphere during the austral spring and summer. Our results suggest that modern observed high interannual variability was established across the mid-twentieth century, and that the influence of contemporary equatorial Pacific temperatures may now be a permanent feature across the mid- to high latitudes.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2020-02-06
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2020-02-06
    Description: The present study examines the influence that environmental variables exerted on changes in condition index (CI), shell height (SH—dorsal-ventral axis) and soft tissue mass increments (STM) of the winged oyster Pteria colymbus in suspended culture during periods of upwelling (December to April) and non-upwelling (August to November) in the Cariaco Gulf, northeastern Venezuela. Environmental variables recorded between April 2012 and May 2013 included seston, water transparency, temperature, dissolved oxygen, chlorophyll a (Chl a) and the upwelling index (UI). Individuals were cultivated in lantern nets with an overall density of 56 individuals/0.123 m2. From three randomly chosen baskets, five individuals were sampled each month and changes in CI, STM and SH were related to the environmental variables using Spearman correlation and PCA. Results show that during upwelling, both Chl a and UI presented a positive and significant relationship with the oyster condition and growth parameters. During non-upwelling (low UI), this relationship was inverse, demonstrating the important influence of upwelling and non-upwelling periods on the ecophysiology of the species. Furthermore, it was shown that the non-upwelling, characterized by high temperatures and low food availability, is a critical period for P. colymbus, judging by a decrease in growth and survival rate. Nonetheless, this species reached 50 mm in 5 months, a size considered as commercially viable, suggesting that the study area is favourable to the cultivation of the winged oyster despite a dramatic decrease in upwelling intensity in the last decade.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2020-02-06
    Description: The formation conditions of the parental magmas of Gorely volcano, which is located behind a volcanic front in Southern Kamchatka, have been evaluated using the modern methods of micro-element thermobarometry. These magmas contained 1.7 ± 0.8 (2σ) wt % of H2O, the majority (82%) of which has been lost from inclusions. They crystallized at 1121 ± 17°C and an oxygen fugacity of ΔQFM 1.2 ± 0.2, and could have been produced by about 11% melting of an enriched MORB source (E–DMM) at a temperature of about 1270°C, and a pressure of about 1.5 GPa. A distinctive feature of Gorely volcano, compared with frontal volcanoes of Kamchatka, is the unusually high temperature (925 ± 20°C) of formation of the subduction component corresponding to the region of existence of water-bearing melts.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    Springer
    In:  Contributions to Mineralogy and Petrology, 172 (5). Art.No. 33.
    Publication Date: 2020-02-06
    Description: Andesites with Mg# 〉45 erupted at subduction zones form either by partial melting of metasomatized mantle or by mixing and assimilation processes during melt ascent. Primitive whole rock basaltic andesites from the Pukeonake vent in the Tongariro Volcanic Centre in New Zealand’s Taupo Volcanic Zone contain olivine, clino- and orthopyroxene, and plagioclase xeno- and antecrysts in a partly glassy matrix. Glass pools interstitial between minerals and glass inclusions in clinopyroxene, orthopyroxene and plagioclase as well as matrix glasses are rhyolitic to dacitic indicating that the melts were more evolved than their andesitic bulk host rock analyses indicate. Olivine xenocrysts have high Fo contents up to 94%, δ18O(SMOW) of +5.1‰, and contain Cr-spinel inclusions, all of which imply an origin in equilibrium with primitive mantle-derived melts. Mineral zoning in olivine, clinopyroxene and plagioclase suggest that fractional crystallization occurred. Elevated O isotope ratios in clinopyroxene and glass indicate that the lavas assimilated sedimentary rocks during stagnation in the crust. Thus, the Pukeonake andesites formed by a combination of fractional crystallization, assimilation of crustal rocks, and mixing of dacite liquid with mantle-derived minerals in a complex crustal magma system. The disequilibrium textures and O isotope compositions of the minerals indicate mixing processes on timescales of less than a year prior to eruption. Similar processes may occur in other subduction zones and require careful study of the lavas to determine the origin of andesite magmas in arc volcanoes situated on continental crust.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: other
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2020-02-06
    Description: As part of an international research project, the marine fungal strain collection of the Helmholtz Centre for Ocean Research (GEOMAR) research centre was analysed for secondary metabolite profiles associated with anticancer activity. Strain MF458 was identified as Tolypocladium geodes, by internal transcribed spacer region (ITS) sequence similarity and its natural product production profile. By using five different media in two conditions and two time points, we were able to identify eight natural products produced by MF458. As well as cyclosporin A (1), efrapeptin D (2), pyridoxatin (3), terricolin A (4), malettinins B and E (5 and 6), and tolypocladenols A1/A2 (8), we identified a new secondary metabolite which we termed tolypocladenol C (7). All compounds were analysed for their anticancer potential using a selection of the NCI60 cancer cell line panel, with malettinins B and E (5 and 6) being the most promising candidates. In order to obtain sufficient quantities of these compounds to start preclinical development, their production was transferred from a static flask culture to a stirred tank reactor, and fermentation medium development resulted in a nearly eight-fold increase in compound production. The strain MF458 is therefore a producer of a number of interesting and new secondary metabolites and their production levels can be readily improved to achieve higher yields
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2020-02-06
    Description: Ocean acidification can impair an animal’s physiological performance and energetically demanding activities such as swimming. Behavioural abnormalities and changed activity in response to ocean acidification are reported in fish and crustacean species. We studied swimming activity in the calanoid copepod Pseudocalanus acuspes in response to near-future ocean acidification. Water and copepods were sampled from ten mesocosms deployed on the Swedish west coast. The experiments were conducted on animals reared in the mesocosms for 2 months during spring. Copepods were filmed after long-term (chronic) high-CO2, and after 20 h acute exposure to CO2. There was no significant effect of CO2 on copepods in chronic high-CO2, nor significant effect after the 20 h acute exposure. In addition, we measured prosome length from a large number of adult copepods, but no effect of acidification on body size was found. In this study, P. acuspes did not show sensitivity to near-future pCO2 levels. Even if a number of papers suggest that copepods seem robust to future ocean acidification, interaction between multiple stress factors, such as elevated temperature, hypoxia and salinity changes may impair a copepod’s ability to resist lowered pH.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    Springer
    In:  Geochemistry International, 55 (5). pp. 418-427.
    Publication Date: 2017-07-25
    Description: Published and original data on the contents of 50 elements in carbonaceous sediments from seas (Black, Baltic, and Caspian) and fertile oceanic shelves (shelves of Namibia, Peru, Chile, and California) are generalized. The comparison of these results with the average composition of ancient carbonaceous shales reveals both similarities and differences in the distribution of indicator trace elements (Re, Hg, Se, Ag, Cd, Tl, U, Mo, As, Ni, and Zn). Correlation coefficients were analyzed to determine the characteristic element associations. It is established that oceanic carbonaceous sediments are closer in composition to carbonaceous shales than their marine analogues, which is related to the differences in sedimentation conditions, including hydrological, hydrochemical, and biogeochemical factors. The role of anoxic environment in the accumulation of chalcophile elements in sediments is estimated. The comparison of the contents of some mobile trace elements in oceanic water and carbonaceous sediments of modern oceans demonstrates that the water composition affects the composition of carbonaceous sediments and can be used for deciphering the composition of ancient ocean water.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2020-02-06
    Description: Melt inclusions and hosting them highly magnesian olivine from rocks of Kamchatka and the Western Aleutian island arc were analyzed for copper content by LA-ICP-MS to determine the copper partition coefficient in primitive island-arc magmas. Based on measurements of 45 olivine–melt pairs, this coefficient was determined to be 0.028 ± 0.009 (2σ), which is the lowest value among previously published data. Mass-balance calculations of copper in a typical mantle peridotite using obtained partition coefficient indicate that its content in peridotite and primary mantle magmas is mainly determined by mantle sulfide. The Cu partition coefficient was also used to calculate the copper content in parental magmas of volcanoes of the Central Kamchatka Depression. Estimates obtained using copper content in phenocrysts of primitive olivine (Fo 〉 88 mol %) from these rocks are, on average, 139 ± 58 ppm (2σ), which exceed copper contents in primitive basalts (MgO 〉 8.5 wt %) of mid-ocean ridges (MORB 93 ± 31 ppm). This suggests the primary enrichment of Central Kamchatka magmas in copper and correlates with their more oxidizing conditions of formation as compared to MORB.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2020-02-06
    Description: The extreme depletion of the Earth’s mantle in sulfur is commonly seen as a signature of metal segregation from Earth’s mantle to Earth’s core. However, in addition to S, the mantle contains other elements as volatile as S that are hardly depleted relative to the lithophile volatility trend although they are potentially as siderophile as sulfur. We report experiments in metal-sulfide–silicate systems to show that the CI normalized abundances of S, Pb, and Sn in Earth’s mantle cannot be reproduced by element partitioning in Fe ± S–silicate systems, neither at low nor at high pressure. Much of the volatile inventory of the Earth’s mantle must have been added late in the accretion history, when metal melt segregation to the core had become largely inactive. The great depletion in S is attributed to the selective segregation of a late sulfide matte from an oxidized and largely crystalline mantle. Apparently, the volatile abundances of Earth’s mantle are not in redox equilibrium with Earth’s core.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    Springer
    In:  Current Climate Change Reports, 3 (3). pp. 163-173.
    Publication Date: 2020-02-06
    Description: The Southern Ocean featured some remarkable changes during the recent decades. For example, large parts of the Southern Ocean, despite rapidly rising atmospheric greenhouse gas concentrations, depicted a surface cooling since the 1970s, whereas most of the planet has warmed considerably. In contrast, climate models generally simulate Southern Ocean surface warming when driven with observed historical radiative forcing. The mechanisms behind the surface cooling and other prominent changes in the Southern Ocean sector climate during the recent decades, such as expanding sea ice extent, abyssal warming, and CO2 uptake, are still under debate. Observational coverage is sparse, and records are short but rapidly growing, making the Southern Ocean climate system one of the least explored. It is thus difficult to separate current trends from underlying decadal to centennial scale variability. Here, we present the state of the discussion about some of the most perplexing decadal climate trends in the Southern Ocean during the recent decades along with possible mechanisms and contrast these with an internal mode of Southern Ocean variability present in state-of-the art climate models.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2020-02-06
    Description: The susceptibility of native and non-native populations of the red alga Gracilaria vermiculophylla to fouling was compared in common garden experiments. Native and non-native algae were enclosed into dialysis membrane tubes, and the tubes were exposed to natural fouling. Fouling on the outside of the tubes was mediated by chemical compounds excreted by G. vermiculophylla that diffused through the membranes. Fouling pressure was significantly higher in the Kiel Fjord (non-native range) than in Akkeshi Bay (native range), but, at both sites, tubes containing non-native G. vermiculophylla were less fouled than those with native conspecifics. This is the first in situ evidence that susceptibility to fouling differs between native and non-native populations of an aquatic organism. The technique of enclosing organisms into dialysis tubes represents a simple, efficient and accurate way to test chemical antifouling defenses and could possibly be applied to other organisms.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2020-02-06
    Description: This study explores non-metric multidimensional scaling (nMDS) as a tool for investigating parasites as indicators of the elasmobranch biology. An attractive feature of nMDS is its ability to allow assemblage-level parasite data to be simultaneously applied to questions of host biology. This method was examined using the tapeworm order Trypanorhyncha Diesing, 1863, which is known to be transmitted among their hosts through the marine food web (via predation), can unambiguously be identified in the intermediate and final hosts, and has the potential as an indicator of the host feeding biology. Our analyses focused on trypanorhynch assemblages in elasmobranchs as definitive hosts. The relationships between trypanorhynch assemblages and the depth, feeding ecology, habitat, and phylogeny for all sharks were complex, but we found that depth distribution, diet composition and habitat type were the major influencing factors. Several species of sharks showed different characters than known from their descriptions that could be attributed to the change of shark behavior or the trypanorhynch host path. The relationship between the trypanorhynch assemblage and factors for carcharhiniform species alone was more robust than for all sharks. In the carcharhiniform analysis, the relationship between habitat type and trypanorhynch assemblage was most remarkable. Overlapping host ecology was evident even in phylogenetically-distant related hosts.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2020-02-06
    Description: Ocean circulation models do not generally exhibit equatorial deep jets (EDJs), even though EDJs are a recognised feature of the observed ocean circulation along the equator and they are thought to be important for tracer transport along the equator and even equatorial climate. EDJs are nevertheless found in nonlinear primitive equation models with idealised box geometry. Here we analyse several such model runs. We note that the variability of the zonal velocity in the model is dominated by the gravest linear equatorial basin mode for a wide range of baroclinic vertical normal modes and that the EDJs in the model are dominated by energy contained in vertical modes between 10 and 20. The emergence of the EDJs is shown to involve the linear superposition of several such neighbouring basin modes. Furthermore, the phase of these basin modes is set at the start of the model run and, in the case of the reference experiment, the same basin modes can be found in a companion experiment in which the amplitude of the forcing has been reduced by a factor of 1000. We also argue that following the spin-up, energy must be transferred between different vertical modes. This is because the model simulations are dominated by downward phase propagation following the spin-up whereas our reconstructions imply episodes of upward and downward propagation. The transfer of energy between the vertical modes is associated with a decadal modulation of the EDJs.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2020-02-06
    Description: Hydrothermal circulation at slow-spreading ridges is important for cooling the newly formed lithosphere, but the depth to which it occurs is uncertain. Magmas which stagnate and partially crystallize during their rise from the mantle provide a means to constrain the depth of circulation because assimilation of hydrothermal fluids or hydrothermally altered country rock will raise their chlorine (Cl) contents. Here we present Cl concentrations in combination with chemical thermobarometry data on glassy basaltic rocks and melt inclusions from the Southern Mid-Atlantic Ridge (SMAR; ~ 3 cm year−1 full spreading rate) and the Gakkel Ridge (max. 1.5 cm year−1 full spreading rate) in order to define the depth and extent of chlorine contamination. Basaltic glasses show Cl-contents ranging from ca. 50–430 ppm and ca. 40–700 ppm for the SMAR and Gakkel Ridge, respectively, whereas SMAR melt inclusions contain between 20 and 460 ppm Cl. Compared to elements of similar mantle incompatibility (e.g. K, Nb), Cl-excess (Cl/Nb or Cl/K higher than normal mantle values) of up to 250 ppm in glasses and melt inclusions are found in 75% of the samples from both ridges. Cl-excess is interpreted to indicate assimilation of hydrothermal brines (as opposed to bulk altered rock or seawater) based on the large range of Cl/K ratios in samples showing a limited spread in H2O contents. Resorption and disequilibrium textures of olivine, plagioclase and clinopyroxene phenocrysts and an abundance of xenocrysts and gabbroic fragments in the SMAR lavas suggest multiple generations of crystallization and assimilation of hydrothermally altered rocks that contain these brines. Calculated pressures of last equilibration based on the major element compositions of melts cannot provide reliable estimates of the depths at which this crystallization/assimilation occurred as the assimilation negates the assumption of crystallization under equilibrium conditions implicit in such calculations. Clinopyroxene–melt thermobarometry on rare clinopyroxene phenocrysts present in the SMAR magmas yield lower crustal crystallization/assimilation depths (10–13 km in the segment containing clinopyroxene). The Cl-excesses in SMAR melt inclusions indicate that assimilation occurred before crystallization, while also homogeneous Cl in melts from Gakkel Ridge indicate Cl addition during magma chamber processes. Combined, these observations imply that hydrothermal circulation reaches the lower crust at slow-spreading ridges, and thereby promotes cooling of the lower crust. The generally lower Cl-excess at slow-spreading ridges (compared to fast-spreading ridges) is probably related to them having few if any permanent magma chambers. Magmas therefore do not fractionate as extensively in the crust, providing less heat for assimilation (on average, slow-spreading ridge magmas have higher Mg#), and hydrothermal systems are ephemeral, leading to lower total degrees of crustal alteration and more variation in the amount of Cl contamination. Hydrothermal plumes and vent fields have samples in close vicinity that display Cl-excess, mostly of 〉 25 ppm, which thus can aid as a guide for the exploration of (active or extinct) hydrothermal vent fields on the axis.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2021-03-04
    Description: Numerous studies have been conducted on the effect of ocean acidification on calcifiers inhabiting nearshore benthic habitats, such as the blue mussel Mytilus edulis. The majority of these experiments was performed under stable CO2 partial pressure (pCO2), carbonate chemistry and oxygen (O2) levels, reflecting present or expected future open ocean conditions. Consequently, levels and variations occurring in coastal habitats, due to biotic and abiotic processes, were mostly neglected, even though these variations largely override global long-term trends. To highlight this hiatus and guide future research, state-of-the-art technologies were deployed to obtain high-resolution time series of pCO2 and [O2] on a mussel patch within a Zostera marina seagrass bed, in Kiel Bay (western Baltic Sea) in August and September 2013. Combining the in situ data with results of discrete sample measurements, a full seawater carbonate chemistry was derived using statistical models. An average pCO2 more than 50 % (~ 640 µatm) higher than current atmospheric levels was found right above the mussel patch. Diel amplitudes of pCO2 were large: 765 ± 310 (mean ± SD). Corrosive conditions for calcium carbonates (Ωarag and Ωcalc 〈 1) centered on sunrise were found, but the investigated habitat never experienced hypoxia throughout the study period. It is estimated that mussels experience conditions limiting calcification for 12–15 h per day, based on a regional calcium carbonate concentration physiological threshold. Our findings call for more extensive experiments on the impact of fluctuating corrosive conditions on mussels. We also stress the complexity of the interpretation of carbonate chemistry time series data in such dynamic coastal environments.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2020-02-06
    Description: The temporal evolution of the physical and biogeochemical structure of an oxygen-depleted anticyclonic modewater eddy is investigated over a 2-month period using high-resolution glider and ship data. A weakly stratified eddy core (squared buoyancy frequency N2  ∼  0.1  ×  10−4 s−2) at shallow depth is identified with a horizontal extent of about 70 km and bounded by maxima in N2. The upper N2 maximum (3–5  ×  10−4 s−2) coincides with the mixed layer base and the lower N2 maximum (0.4  ×  10−4 s−2) is found at about 200 m depth in the eddy centre. The eddy core shows a constant slope in temperature/salinity (T∕S) characteristic over the 2 months, but an erosion of the core progressively narrows down the T∕S range. The eddy minimal oxygen concentrations decreased by about 5 µmol kg−1 in 2 months, confirming earlier estimates of oxygen consumption rates in these eddies. Separating the mesoscale and perturbation flow components reveals oscillating velocity finestructure ( ∼  0.1 m s−1) underneath the eddy and at its flanks. The velocity finestructure is organized in layers that align with layers in properties (salinity, temperature) but mostly cross through surfaces of constant density. The largest magnitude in velocity finestructure is seen between the surface and 140 m just outside the maximum mesoscale flow but also in a layer underneath the eddy centre, between 250 and 450 m. For both regions a cyclonic rotation of the velocity finestructure with depth suggests the vertical propagation of near-inertial wave (NIW) energy. Modification of the planetary vorticity by anticyclonic (eddy core) and cyclonic (eddy periphery) relative vorticity is most likely impacting the NIW energy propagation. Below the low oxygen core salt-finger type double diffusive layers are found that align with the velocity finestructure. Apparent oxygen utilization (AOU) versus dissolved inorganic nitrate (NO3−) ratios are about twice as high (16) in the eddy core compared to surrounding waters (8.1). A large NO3− deficit of 4 to 6 µmol kg−1 is determined, rendering denitrification an unlikely explanation. Here it is hypothesized that the differences in local recycling of nitrogen and oxygen, as a result of the eddy dynamics, cause the shift in the AOU : NO3− ratio. High NO3− and low oxygen waters are eroded by mixing from the eddy core and entrain into the mixed layer. The nitrogen is reintroduced into the core by gravitational settling of particulate matter out of the euphotic zone. The low oxygen water equilibrates in the mixed layer by air–sea gas exchange and does not participate in the gravitational sinking. Finally we propose a mesoscale–submesoscale interaction concept where wind energy, mediated via NIWs, drives nutrient supply to the euphotic zone and drives extraordinary blooms in anticyclonic mode-water eddies.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2020-02-06
    Description: The structural evolution of Lake Van Basin, eastern Turkey, was reconstructed based on seismic reflection profiles through the sedimentary fill as well as from newly acquired multibeam echosounder data. The major sub-basins (Tatvan Basin and Northern Basin) of Lake Van, bound by NE-trending faults with normal components, formed during the past ~600 ka probably due to extensional tectonics resulting from lithospheric thinning and mantle upwelling related to the westward escape of Anatolia. Rapid extension and subsidence during early lake formation led to the opening of the two sub-basins. Two major, still active volcanoes (Nemrut and Süphan) grew close to the lake basins approximately synchronously, their explosive deposits making up 〉20 % of the drilled upper 220 m of the ca. 550-m-thick sedimentary fill. During basin development, extension and subsidence alternated with compressional periods, particularly between ~340 and 290 ka and sometime before ~14 ka, when normal fault movements reversed and gentle anticlines formed as a result of inversion. The ~14 ka event was accompanied by widespread uplift and erosion along the northeastern margin of the lake, and substantial erosion took place on the crests of the folds. A series of closely spaced eruptions of Süphan volcano occurred synchronously suggesting a causal relationship. Compression is still prevalent inside and around Lake Van as evidenced by recent faults offsetting the lake floor and by recent devastating earthquakes along their onshore continuations. New, high-resolution bathymetry data from Lake Van reveal the morphology of the Northern Ridge and provide strong evidence for ongoing transpression on a dextral strike-slip fault as documented by the occurrence of several pop-up structures along the ridge.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2020-02-06
    Description: Community approaches to investigating ocean acidification (OA) effects suggest a high tolerance of micro- and mesozooplankton to carbonate chemistry changes expected to occur within this century. Plankton communities in the coastal areas of the Baltic Sea frequently experience pH variations partly exceeding projections for the near future both on a diurnal and seasonal basis. We conducted a large-scale mesocosm CO2 enrichment experiment ( ∼  55 m3) enclosing the natural plankton community in Tvärminne–Storfjärden for 8 weeks during June–August 2012 and studied community and species–taxon response of ciliates and mesozooplankton to CO2 elevations expected for this century. In addition to the response to fCO2, we also considered temperature and chlorophyll a variations in our analyses. Shannon diversity of ciliates significantly decreased with fCO2 and temperature with a greater dominance of smaller species. The mixotrophic Myrionecta rubra seemed to indirectly and directly benefit from higher CO2 concentrations in the post-bloom phase through increased occurrence of picoeukaryotes (most likely Cryptophytes) and Dinophyta at higher CO2 levels. With respect to mesozooplankton, we did not detect significant effects for either total abundance or for Shannon diversity. The cladocera Bosmina sp. occurred at distinctly higher abundance for a short time period during the second half of the experiment in three of the CO2-enriched mesocosms except for the highest CO2 level. The ratio of Bosmina sp. with empty to embryo- or resting-egg-bearing brood chambers, however, was significantly affected by CO2, temperature, and chlorophyll a. An indirect CO2 effect via increased food availability (Cyanobacteria) stimulating Bosmina sp. reproduction cannot be ruled out. Although increased regenerated primary production diminishes trophic transfer in general, the presence of organisms able to graze on bacteria such as cladocerans may positively impact organic matter transfer to higher trophic levels. Thus, under increasing OA in cladoceran-dominated mesozooplankton communities, the importance of the microbial loop in the pelagic zone may be temporarily enhanced and carbon transfer to higher trophic levels may be stimulated.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Geoscientific Model Development, 10 . pp. 127-154.
    Publication Date: 2020-02-06
    Description: Global biogeochemical ocean models contain a variety of different biogeochemical components and often much simplified representations of complex dynamical interactions, which are described by many (≈10–≈100) parameters. The values of many of these parameters are empirically difficult to constrain, due to the fact that in the models they represent processes for a range of different groups of organisms at the same time, while even for single species parameter values are often difficult to determine in situ. Therefore, these models are subject to a high level of parametric uncertainty. This may be of consequence for their skill with respect to accurately describing the relevant features of the present ocean, as well as their sensitivity to possible environmental changes. We here present a framework for the calibration of global biogeochemical ocean models on short and long time scales. The framework combines an offline approach for transport of biogeochemical tracers with an Estimation of Distribution Algorithm (Covariance Matrix Adaption Evolution Strategy, CMAES). We explore the performance and capability of this framework by five different optimizations of six biogeochemical parameters of a global biogeochemical model. First, a twin experiment explores the feasibility of this approach. Four optimizations against a climatology of observations of annual mean dissolved nutrients and oxygen determine the extent, to which different setups of the optimization influence model's fit and parameter estimates. Because the misfit function applied focuses on the large-scale distribution of inorganic biogeochemical tracers, parameters that act on large spatial and temporal scales are determined earliest, and with the least spread. Parameters more closely tied to surface biology, which act on shorter time scales, are more difficult to determine. In particular the search for optimum zooplankton parameters can benefit from a sound knowledge of maximum and minimum parameter values, leading to a more efficient optimization. It is encouraging that, although the misfit function does not contain any direct information about biogeochemical turnover, the optimized models nevertheless provide a better fit to observed global biogeochemical fluxes.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2020-02-06
    Description: We investigate changes in the seasonal cycle of the Atlantic Ocean meridional heat transport (OHT) in a climate projection experiment with the Max Planck Institute Earth System Model (MPI-ESM) performed for the Coupled Model Intercomparison Project Phase 5 (CMIP5). Specifically, we compare a Representative Concentration Pathway (RCP) RCP 8.5 climate change scenario, covering the simulation period from 2005 to 2300, to a historical simulation, covering the simulation period from 1850 to 2005. In RCP 8.5, the OHT declines by 30–50 % in comparison to the historical simulation in the North Atlantic by the end of the 23rd century. The decline in the OHT is accompanied by a change in the seasonal cycle of the total OHT and its components. We decompose the OHT into overturning and gyre component. For the OHT seasonal cycle, we find a northward shift of 5° and latitude-dependent shifts between 1 and 6 months that are mainly associated with changes in the meridional velocity field. We find that the changes in the OHT seasonal cycle predominantly result from changes in the wind-driven surface circulation, which projects onto the overturning component of the OHT in the tropical and subtropical North Atlantic. This leads in turn to latitude-dependent shifts between 1 and 6 months in the overturning component. In comparison to the historical simulation, in the subpolar North Atlantic, in RCP 8.5 we find a reduction of the North Atlantic Deep Water formation and changes in the gyre heat transport result in a strongly weakened seasonal cycle with a weakened amplitude by the end of the 23rd century.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 14 (7). pp. 1857-1882.
    Publication Date: 2020-02-06
    Description: The effect of ocean acidification on growth and calcification of the marine algae Emiliania huxleyi was investigated in a series of mesocosm experiments where enclosed water volumes that comprised a natural plankton community were exposed to different carbon dioxide (CO2) concentrations. Calcification rates observed during those experiments were found to be highly variable, even among replicate mesocosms that were subject to similar CO2 perturbations. Here, data from an ocean acidification mesocosm experiment are reanalysed with an optimality-based dynamical plankton model. According to our model approach, cellular calcite formation is sensitive to variations in CO2 at the organism level. We investigate the temporal changes and variability in observations, with a focus on resolving observed differences in total alkalinity and particulate inorganic carbon (PIC). We explore how much of the variability in the data can be explained by variations of the initial conditions and by the level of CO2 perturbation. Nine mesocosms of one experiment were sorted into three groups of high, medium, and low calcification rates and analysed separately. The spread of the three optimised ensemble model solutions captures most of the observed variability. Our results show that small variations in initial abundance of coccolithophores and the prevailing physiological acclimation states generate differences in calcification that are larger than those induced by ocean acidification. Accordingly, large deviations between optimal mass flux estimates of carbon and of nitrogen are identified even between mesocosms that were subject to similar ocean acidification conditions. With our model-based data analysis we document how an ocean acidification response signal in calcification can be disentangled from the observed variability in PIC.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2020-10-26
    Description: Coastal seas may account for more than 75 % of global oceanic methane emissions. There, methane is mainly produced microbially in anoxic sediments from where it can escape to the overlying water column. Aerobic methane oxidation (MOx) in the water column acts as a biological filter reducing the amount of methane that eventually evades to the atmosphere. The efficiency of the MOx filter is potentially controlled by the availability of dissolved methane and oxygen, as well as temperature, salinity, and hydrographic dynamics, and all of these factors undergo strong temporal fluctuations in coastal ecosystems. In order to elucidate the key environmental controls, specifically the effect of oxygen availability, on MOx in a seasonally stratified and hypoxic coastal marine setting, we conducted a 2-year time-series study with measurements of MOx and physico-chemical water column parameters in a coastal inlet in the southwestern Baltic Sea (Eckernförde Bay). We found that MOx rates always increased toward the seafloor, but were not directly linked to methane concentrations. MOx exhibited a strong seasonal variability, with maximum rates (up to 11.6 nmol l−1 d−1) during summer stratification when oxygen concentrations were lowest and bottom-water temperatures were highest. Under these conditions, 70–95 % of the sediment-released methane was oxidized, whereas only 40–60 % were consumed during the mixed and oxygenated periods. Laboratory experiments with manipulated oxygen concentrations in the range of 0.2–220 µmol l−1 revealed a sub-micromolar oxygen-optimum for MOx at the study site. In contrast, the fraction of methane-carbon incorporation into the bacterial biomass (compared to the total amount of oxidised methane) was up to 38-fold higher at saturated oxygen concentrations, suggesting a different partitioning of catabolic and anabolic processes under oxygen-replete and oxygen-starved conditions, respectively. Our results underscore the importance of MOx in mitigating methane emission from coastal waters and indicate an organism-level adaptation of the water column methanotrophs to hypoxic conditions.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2020-02-06
    Description: Uncertainty in the strength of the Atlantic Meridional Overturning Circulation (AMOC) is analyzed in the Coupled Model Intercomparison Project Phase 3 (CMIP3) and Phase 5 (CMIP5) projections for the twenty-first century; and the different sources of uncertainty (scenario, internal and model) are quantified. Although the uncertainty in future projections of the AMOC index at 30°N is larger in CMIP5 than in CMIP3, the signal-to-noise ratio is comparable during the second half of the century and even larger in CMIP5 during the first half. This is due to a stronger AMOC reduction in CMIP5. At lead times longer than a few decades, model uncertainty dominates uncertainty in future projections of AMOC strength in both the CMIP3 and CMIP5 model ensembles. Internal variability significantly contributes only during the first few decades, while scenario uncertainty is relatively small at all lead times. Model uncertainty in future changes in AMOC strength arises mostly from uncertainty in density, as uncertainty arising from wind stress (Ekman transport) is negligible. Finally, the uncertainty in changes in the density originates mostly from the simulation of salinity, rather than temperature. High-latitude freshwater flux and the subpolar gyre projections were also analyzed, because these quantities are thought to play an important role for the future AMOC changes. The freshwater input in high latitudes is projected to increase and the subpolar gyre is projected to weaken. Both the freshening and the gyre weakening likely influence the AMOC by causing anomalous salinity advection into the regions of deep water formation. While the high model uncertainty in both parameters may explain the uncertainty in the AMOC projection, deeper insight into the mechanisms for AMOC is required to reach a more quantitative conclusion.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 14 (6). pp. 1349-1364.
    Publication Date: 2020-02-06
    Description: Ocean eddies can both trigger mixing (during their formation and decay) and effectively shield water encompassed from being exchanged with ambient water (throughout their lifetimes). These antagonistic effects of eddies complicate the interpretation of synoptic snapshots typically obtained by ship-based oceanographic measurement campaigns. Here we use a coupled physical–biogeochemical model to explore biogeochemical dynamics within anticyclonic eddies in the eastern tropical South Pacific Ocean. The goal is to understand the diverse biogeochemical patterns that have been observed at the subsurface layers of the anticyclonic eddies in this region. Our model results suggest that the diverse subsurface nutrient patterns within eddies are associated with the presence of water masses of different origins at different depths.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Atmospheric Chemistry and Physics, 17 . pp. 4093-4114.
    Publication Date: 2020-02-06
    Description: This study aims to quantify how much of the extratropical Tropopause Inversion Layer (TIL) comes from the modulation by planetary and synoptic-scale waves. By analyzing high-resolution observations, it also puts other TIL enhancing mechanisms into context. Using gridded COSMIC GPS-RO temperature profiles from 2007–2013 we are able to extract the extratropical wave signal by a simplified wavenumber-frequency domain filtering method, and to quantify the resulting TIL enhancement. By subtracting the extratropical wave signal, we show how much of the TIL is associated with other processes, at mid and high latitudes, for both Hemispheres and all seasons. The instantaneous modulation by planetary and synoptic-scale waves is almost entirely responsible for the TIL in mid-latitudes. This means that wave-mean flow interactions, inertia-gravity waves or the residual circulation are of minor importance in mid-latitudes. At polar regions, the extratropical wave modulation is dominant for the TIL strength as well, but there is also a clear fingerprint from sudden stratospheric warmings (SSWs) and final warmings in both hemispheres. Therefore, polar vortex breakups are partially responsible for the observed polar TIL strength in winter (if SSWs occur) and spring. Also, part of the polar summer TIL strength cannot be explained by extratropical wave modulation. After many modelling studies that proposed different TIL enhancing mechanisms in the last decade, our study finally identifies which processes dominate the extratropical TIL strength and their relative contribution, by analyzing observations only. It remains to be determined, however, which roles the different planetary and synoptic-scale wave types play within the total extratropical wave modulation of the TIL; and what causes the observed amplification of extratropical waves near the tropopause.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    Springer
    In:  In: Biological Oceanography of the Baltic Sea. , ed. by Snoeijs-Leijonmalm, P., Schubert, H. and Radziejewska, T. Springer, Dordrecht, pp. 457-482. ISBN 978-94-007-0668-2
    Publication Date: 2019-08-07
    Description: 1. Sandy coasts, including the epilittoral part of sandy beaches and the shallow sandy sublittoral, are particularly extensive in the southern and southeastern part of the Baltic Sea. 2. In the Baltic Sea ecosystem, sandy coasts function as biocatalytic filters by decomposing organic matter (including detritus) most of which originates directly or indirectly (e.g. via waterbirds) from the sea. 3. Sandy coasts are unstable, erodable environments which change in time and space due to e.g. erosion in winter and deposition of sand on the beaches in summer, and to the constant shifting of the substrate by winds and currents. 4. The sandy epilittoral and shallow sublittoral habitats support a variety of life forms, from microbes to birds, and are the space in which diverse processes involved in energy flow and matter cycling operate at different temporal and spatial scales. 5. The sandy coast food webs are partly based on the direct input of solar energy and nutrients used by primary producers (phytoplankton, microphytobenthos, macrophytes) whose production is subsequently utilised by invertebrates (meiobenthos, macrozoobenthos), fish and birds. 6. Another part of the sandy coast food webs is based on the input of organic material in the form of detritus, a source of energy for microbial communities consisting of bacteria, fungi, yeasts and actinomycetes as well as of heterotrophic protists living attached to sand grains and in the interstices. 7. Birds collect invertebrate prey from the sand on the beach or from the shallow sublittoral and contribute to the organic matter pool of the sandy habitat. 8. The sandy coasts of the Baltic Sea experience heavy anthropogenic pressure which primarily involves tourism and recreation, but also effects of eutrophication, establishment of non-indigenous species, sand extraction and dredging, fishing, infrastructure and shore defence constructions.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2020-02-06
    Description: Observations indicate an expansion of oxygen minimum zones (OMZs) over the past 50 years, likely related to ongoing deoxygenation caused by reduced solubility, changes in stratification and circulation, and a potential acceleration of organic matter turnover in a warming climate. Higher temperatures also lead to enhanced weathering on land, which, in turn, increase the phosphorus and alkalinity flux into the ocean. The overall area of ocean sediments that are in direct contact with low oxygen bottom waters also increases with expanding OMZs. This leads to an additional release of phosphorus from ocean sediments and therefore raises the ocean's phosphorus inventory even further. Higher availability in phosphorus enhances biological production, remineralisation and oxygen consumption, and might therefore lead to further expansions of OMZs, representing a positive feedback. A negative feedback arises from the enhanced productivity-induced drawdown of carbon and also increased uptake of CO2 due to increased alkalinity, which, in turn, got there through weathering. This feedback leads to a decrease in atmospheric CO2 and weathering rates. Here we quantify these two competing feedbacks on millennial timescales for a high CO2 emission scenario. Using the UVic Earth System Climate Model of intermediate complexity, our model results suggest that the positive benthic phosphorus release feedback has only a minor impact on the size of OMZs in the next 1000 years, although previous studies assume that the phosphorus release feedback was the main factor for anoxic conditions during Cretaceous period. The increase in the marine phosphorus inventory under assumed business-as-usual global warming conditions originates, on millennial timescales, almost exclusively from the input via terrestrial weathering and causes a 4 to 5-fold expansion of the suboxic water volume in the model.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2020-02-06
    Description: Thecosome pteropods are considered highly sensitive to ocean acidification. During the Arctic winter, increased solubility of CO2 in cold waters intensifies ocean acidification and food sources are limited. Ocean warming is also particularly pronounced in the Arctic. Here, we present the first data on metabolic rates of two pteropod species (Limacina helicina, Limacina retroversa) during the Arctic winter at 79°N (polar night/twilight phase). Routine oxygen consumption rates and the metabolic response [oxygen consumption (MO2), ammonia excretion (NH3), overall metabolic balance (O:N)] to elevated levels of pCO2 and temperature were examined. Our results suggest lower routine MO2 rates for both Limacina species in winter than in summer. In an 18-h experiment, both pCO2 and temperature affected MO2 of L. helicina and L. retroversa. After a 9-day experiment with L. helicina all three metabolic response variables were affected by the two factors with interactive effects in case of NH3 and O:N. The response resembled a “hormesis-type” pattern with up-regulation at intermediate pCO2 and the highest temperature level. For L. retroversa, NH3 excretion was affected by both factors and O:N only by temperature. No significant effects of pCO2 or temperature on MO2 were detected. Metabolic up-regulation will entail higher energetic costs that may not be covered during periods of food limitation such as the Arctic winter and compel pteropods to utilize storage compounds to a greater extent than usual. This may reduce the fitness and survival of overwintering pteropods and negatively impact their reproductive success in the following summer.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2020-02-06
    Description: This paper describes the recommended solar forcing dataset for CMIP6 and highlights changes with respect to CMIP5. The solar forcing is provided for radiative properties, namely total solar irradiance (TSI), solar spectral irradiance (SSI), and the F10.7 index as well as particle forcing, including geomagnetic indices Ap and Kp, and ionization rates to account for effects of solar protons, electrons, and galactic cosmic rays. This is the first time that a recommendation for solar-driven particle forcing has been provided for a CMIP exercise. The solar forcing datasets are provided at daily and monthly resolution separately for the CMIP6 preindustrial control, historical (1850–2014), and future (2015–2300) simulations. For the preindustrial control simulation, both constant and time-varying solar forcing components are provided, with the latter including variability on 11-year and shorter timescales but no long-term changes. For the future, we provide a realistic scenario of what solar behavior could be, as well as an additional extreme Maunder-minimum-like sensitivity scenario. This paper describes the forcing datasets and also provides detailed recommendations as to their implementation in current climate models. For the historical simulations, the TSI and SSI time series are defined as the average of two solar irradiance models that are adapted to CMIP6 needs: an empirical one (NRLTSI2–NRLSSI2) and a semi-empirical one (SATIRE). A new and lower TSI value is recommended: the contemporary solar-cycle average is now 1361.0 W m−2. The slight negative trend in TSI over the three most recent solar cycles in the CMIP6 dataset leads to only a small global radiative forcing of −0.04 W m−2. In the 200–400 nm wavelength range, which is important for ozone photochemistry, the CMIP6 solar forcing dataset shows a larger solar-cycle variability contribution to TSI than in CMIP5 (50 % compared to 35 %). We compare the climatic effects of the CMIP6 solar forcing dataset to its CMIP5 predecessor by using time-slice experiments of two chemistry–climate models and a reference radiative transfer model. The differences in the long-term mean SSI in the CMIP6 dataset, compared to CMIP5, impact on climatological stratospheric conditions (lower shortwave heating rates of −0.35 K day−1 at the stratopause), cooler stratospheric temperatures (−1.5 K in the upper stratosphere), lower ozone abundances in the lower stratosphere (−3 %), and higher ozone abundances (+1.5 % in the upper stratosphere and lower mesosphere). Between the maximum and minimum phases of the 11-year solar cycle, there is an increase in shortwave heating rates (+0.2 K day−1 at the stratopause), temperatures ( ∼  1 K at the stratopause), and ozone (+2.5 % in the upper stratosphere) in the tropical upper stratosphere using the CMIP6 forcing dataset. This solar-cycle response is slightly larger, but not statistically significantly different from that for the CMIP5 forcing dataset. CMIP6 models with a well-resolved shortwave radiation scheme are encouraged to prescribe SSI changes and include solar-induced stratospheric ozone variations, in order to better represent solar climate variability compared to models that only prescribe TSI and/or exclude the solar-ozone response. We show that monthly-mean solar-induced ozone variations are implicitly included in the SPARC/CCMI CMIP6 Ozone Database for historical simulations, which is derived from transient chemistry–climate model simulations and has been developed for climate models that do not calculate ozone interactively. CMIP6 models without chemistry that perform a preindustrial control simulation with time-varying solar forcing will need to use a modified version of the SPARC/CCMI Ozone Database that includes solar variability. CMIP6 models with interactive chemistry are also encouraged to use the particle forcing datasets, which will allow the potential long-term effects of particles to be addressed for the first time. The consideration of particle forcing has been shown to significantly improve the representation of reactive nitrogen and ozone variability in the polar middle atmosphere, eventually resulting in further improvements in the representation of solar climate variability in global models.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2020-02-06
    Description: The El Niño/Southern Oscillation (ENSO) is the leading mode of tropical Pacific interannual variability in the present-day climate. Available proxy evidence suggests that ENSO also existed during past climates, for example during the Pliocene extending from about 5.3 million to about 2.6 million years BP. Here we investigate the influences of the Panama Seaway closing and Indonesian Passages narrowing, and also of atmospheric carbon dioxide (CO2) on the tropical Pacific mean climate and annual cycle, and their combined impact on ENSO during the Pliocene. To this end the Kiel Climate Model), a global climate model, is employed to study the influences of the changing geometry and CO2-concentration. We find that ENSO is sensitive to the closing of the Panama Seaway, with ENSO amplitude being reduced by about 15–20 %. The narrowing of the Indonesian Passages enhances ENSO strength but only by about 6 %. ENSO period changes are modest and the spectral ENSO peak stays rather broad. Annual cycle changes are more prominent. An intensification of the annual cycle by about 50 % is simulated in response to the closing of the Panama Seaway, which is largely attributed to the strengthening of meridional wind stress. In comparison to the closing of the Panama Seaway, the narrowing of the Indonesian Passages only drives relatively weak changes in the annual cycle. A robust relationship is found such that ENSO amplitude strengthens when the annual cycle amplitude weakens.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2020-02-06
    Description: It is well established that variable wintertime planetary wave forcing in the stratosphere controls the variability of Arctic stratospheric ozone through changes in the strength of the polar vortex and the residual circulation. While previous studies focused on the variations in upward wave flux entering the lower stratosphere, here the impact of downward planetary wave reflection on ozone is investigated for the first time. Utilizing the MERRA2 reanalysis and a fully coupled chemistry–climate simulation with the Community Earth System Model (CESM1(WACCM)) of the National Center for Atmospheric Research (NCAR), we find two downward wave reflection effects on ozone: (1) the direct effect in which the residual circulation is weakened during winter, reducing the typical increase of ozone due to upward planetary wave events and (2) the indirect effect in which the modification of polar temperature during winter affects the amount of ozone destruction in spring. Winter seasons dominated by downward wave reflection events (i.e., reflective winters) are characterized by lower Arctic ozone concentration, while seasons dominated by increased upward wave events (i.e., absorptive winters) are characterized by relatively higher ozone concentration. This behavior is consistent with the cumulative effects of downward and upward planetary wave events on polar stratospheric ozone via the residual circulation and the polar temperature in winter. The results establish a new perspective on dynamical processes controlling stratospheric ozone variability in the Arctic by highlighting the key role of wave reflection.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2020-02-06
    Description: The climate active trace-gas carbonyl sulfide (OCS) is the most abundant sulfur gas in the atmosphere. A missing source in its atmospheric budget is currently suggested, resulting from an upward revision of the vegetation sink. Tropical oceanic emissions have been proposed to close the resulting gap in the atmospheric budget. We present a bottom-up approach including (i) new observations of OCS in surface waters of the tropical Atlantic, Pacific and Indian oceans and (ii) a further improved global box model to show that direct OCS emissions are unlikely to account for the missing source. The box model suggests an undersaturation of the surface water with respect to OCS integrated over the entire tropical ocean area and, further, global annual direct emissions of OCS well below that suggested by top-down estimates. In addition, we discuss the potential of indirect emission from CS2 and dimethylsulfide (DMS) to account for the gap in the atmospheric budget. This bottom-up estimate of oceanic emissions has implications for using OCS as a proxy for global terrestrial CO2 uptake, which is currently impeded by the inadequate quantification of atmospheric OCS sources and sinks.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Hydrology and Earth System Sciences, 21 . pp. 1693-1719.
    Publication Date: 2020-02-06
    Description: Much of our knowledge about future changes in precipitation relies on global (GCM) and/or regional climate models (RCM) that have resolutions which are much coarser than typical spatial scales of precipitation, particularly extremes. The major problems with these projections are both climate model biases and the gap between gridbox and point scale. Wong et al. developed a model to jointly bias correct and downscale precipitation at daily scales. This approach, however, relied on pairwise correspondence between predictor and predictand for calibration, and thus, on nudged simulations which are rarely available. Here we present an extension of this approach that separates the downscaling from the bias correction and in principle is applicable to free running GCMs/RCMs. In a first step, we bias correct RCM-simulated precipitation against gridded observations at the same scale using a parametric quantile mapping approach. To correct the whole distribution including extreme tails we apply a mixture distribution of a gamma distribution for the precipitation mass and a generalized Pareto distribution for the extreme tail. In a second step, we bridge the scale gap: we predict local variance employing a vector generalized linear gamma model (VGLM gamma) with the bias corrected time series as predictor. The VGLM gamma model is calibrated between gridded and point scale (station) observations. For evaluation we adopt the perfect predictor experimental setup of VALUE. Precipitation is in most cases improved by (parts of) our method across different European climates. The method generally performs better in summer than in winter and in winter best in the Mediterranean region with a mild winter climate and worst for continental winter climate in mid & eastern Europe or Scandinavia. A strength of this two-step method is that the best combination of bias correction and downscaling methods can be selected. This implies that the concept can be extended to a wide range of method combinations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2020-02-06
    Description: Estuary-type circulation is a residual circulation in coastal systems with horizontal density gradients. It drives the accumulation of suspended particulate matter in coastal embayments where density gradients are sustained by some freshwater inflow from rivers. Ebenhöh et al. (Ecol Model 174(3):241–252, 2004) found that shallow water depth can explain nutrient gradients becoming established towards the coast even in the absence of river inflow. The present study follows their concept and investigates the characteristic transport of organic matter towards the coast based on idealised scenarios whereby an estuary-type circulation is maintained by surface freshwater fluxes and pronounced shoaling towards the coast. A coupled hydrodynamical and biogeochemical model is used to simulate the dynamics of nutrient gradients and to derive budgets of organic matter flux for a coastal transect. Horizontal nutrient gradients are considered only in terms of tidal asymmetries of suspended matter transport. The results show that the accumulation of organic matter near the coast is not only highly sensitive to variations in the sinking velocity of suspended matter but is also noticeably enhanced by an increase in precipitation. This scenario is comparable with North Sea conditions. By contrast, horizontal nutrient gradients would be reversed in the case of evaporation-dominated inverse estuaries (cf. reverse gradients of nutrient and organic matter concentrations). Credible coastal nutrient budget calculations are required for resolving trends in eutrophication. For tidal systems, the present results suggest that these calculations require an explicit consideration of freshwater flux and asymmetries in tidal mixing. In the present case, the nutrient budget for the vertically mixed zone also indicates carbon pumping from the shelf sea towards the coast from as far offshore as 25 km.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    Springer
    In:  In: Modern topics in the Phototrophic Prokaryotes: Environmental and Applied Aspects. , ed. by Hallenbeck, P. Springer, Heidelberg et al, pp. 427-480. ISBN 978-3-319-46259-2
    Publication Date: 2017-07-19
    Type: Book chapter , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2020-02-06
    Description: To describe the underlying processes involved in oceanic plankton dynamics is crucial for the determination of energy and mass flux through an ecosystem and for the estimation of biogeochemical element cycling. Many planktonic ecosystem models were developed to resolve major processes so that flux estimates can be derived from numerical simulations. These results depend on the type and number of parameterizations incorporated as model equations. Furthermore, the values assigned to respective parameters specify a model's solution. Representative model results are those that can explain data; therefore, data assimilation methods are utilized to yield optimal estimates of parameter values while fitting model results to match data. Central difficulties are (1) planktonic ecosystem models are imperfect and (2) data are often too sparse to constrain all model parameters. In this review we explore how problems in parameter identification are approached in marine planktonic ecosystem modelling. We provide background information about model uncertainties and estimation methods, and how these are considered for assessing misfits between observations and model results. We explain differences in evaluating uncertainties in parameter estimation, thereby also discussing issues of parameter identifiability. Aspects of model complexity are addressed and we describe how results from cross-validation studies provide much insight in this respect. Moreover, approaches are discussed that consider time- and space-dependent parameter values. We further discuss the use of dynamical/statistical emulator approaches, and we elucidate issues of parameter identification in global biogeochemical models. Our review discloses many facets of parameter identification, as we found many commonalities between the objectives of different approaches, but scientific insight differed between studies. To learn more from results of planktonic ecosystem models we recommend finding a good balance in the level of sophistication between mechanistic modelling and statistical data assimilation treatment for parameter estimation
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    facet.materialart.
    Unknown
    Springer
    In:  Climate Dynamics, 48 (11-12). pp. 3475-3487.
    Publication Date: 2020-02-06
    Description: The North Atlantic Oscillation (NAO) is the dominant mode of winter climate variability in the North Atlantic sector. The corresponding index varies on a wide range of timescales, from days and months to decades and beyond. Sub-decadal NAO variability has been well documented, but the underlying mechanism is still under discussion. Other indices of North Atlantic sector climate variability such as indices of sea surface and surface air temperature or Arctic sea ice extent also exhibit pronounced sub-decadal variability. Here, we use sea surface temperature and sea level pressure observations, and the Kiel Climate Model to investigate the dynamics of the sub-decadal NAO variability. The sub-decadal NAO variability is suggested to originate from dynamical large-scale air-sea interactions. The adjustment of the Atlantic Meridional Overturning Circulation to previous surface heat flux variability provides the memory of the coupled mode. The results stress the role of coupled feedbacks in generating sub-decadal North Atlantic sector climate variability, which is important to multiyear climate predictability in that region
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...