ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (236)
  • Aerospace Medicine  (127)
  • Fluid Mechanics and Thermodynamics  (109)
  • 2015-2019  (236)
  • 2015  (236)
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: Because NASA's approach to space exploration calls for long-term extended missions, there is a pressing need to equip astronauts with effective exercise regimens that will maintain musculoskeletal and cardiovascular health. ZIN Technologies, Inc., has developed an innovative miniature treadmill for use in both zero-gravity and terrestrial environments. The treadmill offers excellent periodic impact exercise to stimulate cardiovascular activity and bone remodeling as well as resistive capability to encourage full-body muscle maintenance. A novel speed-control algorithm allows users to modulate treadmill speed by adjusting stride, and a new subject load device provides a more Earth-like gravity replacement load. This new and compact treadmill offers a unique approach to managing astronaut health while addressing the inherent and stringent challenges of space flight. The innovation also has the potential to offer numerous terrestrial applications, as a real-time daily load stimulus (DLS) measurement feature provides an effective mechanism to combat or manage osteoporosis, a major public health threat for 55 percent of Americans over the age of 50.
    Keywords: Aerospace Medicine
    Type: An Overview of SBIR Phase 2 Physical Sciences and Biomedical Technologies in Space; 11; NASA/TM-2015-218857
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: This fall, I was fortunate enough to have been able to participate in an internship at NASA's Lyndon B. Johnson Space Center. I was placed into the Human Health & Performance Directorate, where I was specifically tasked to work with Dr. Zarana Patel, researching the impacts of cosmic level radiation on human cells. Using different laboratory techniques, we were able to examine the cells to see if any damage had been done due to radiation exposure, and if so, how much damage was done. Cell culture samples were exposed at different doses, and fixed at different time points so that we could accumulate a large pool of quantifiable data. After examining quantifiable results relative to the impacts of space radiation on the human body at the cellular and chromosomal level, researchers can defer to different areas of the space program that have to do with astronaut safety, and research and development (extravehicular mobility unit construction, vehicle design and construction, etc.). This experience has been very eye-opening, and I was able to learn quite a bit. I learned some new laboratory techniques, and I did my best to try and learn new ways to balance such a hectic work and school schedule. I also learned some very intimate thing about working at NASA; I learned that far more people want to watch you succeed, rather than watch you fail, and I also learned that this is a place that is alive with innovators and explorers - people who have a sole purpose of exploring space for the betterment of humanity, and not for any other reason. It's truly inspiring. All of these experiences during my internship have impacted me in a really profound way, so much that my educational and career goals are completely different than when I started. I started out as a biotechnology major, and I discovered recently toward the end of the internship, that I don't want to work in a lab, nor was I as enthralled by biological life sciences as a believed myself to be. Taking that all into consideration, I've actually changed my major to mechanical engineering. I discovered that I enjoy building things, and I enjoy learning about materials and interactions between different things. And I quickly became obsessed with rocket and aerospace engineering, so I've decided that after a mechanical engineering degree, I will be pursuing an advanced degree in aerospace engineering. One final way that I was effected by this internship, is that I discovered that I don't want to have a career at NASA. I love this agency with all of my heart, but I refuse to allow my innovation to be bound by a scientifically illiterate congress. As such, I have decided to pursue commercial aerospace companies, such as Space, XCOR, Masten Space Systems, Orbital ATK, and many, many, more. Maybe one day I'll end up back here. I believe in what this agency is doing with my whole heart, and it's unfortunate to see them curtailed in some capacities as a result of budgetary constraints, brought on by people who don't fully understand the effort behind putting people in to space. All in all, this experience has been the best experience of my life - literally a childhood dream came true during this experience - and I cannot adequately explain how grateful I am to have been here for the past sixteen weeks.
    Keywords: Aerospace Medicine
    Type: JSC-CN-35035 , Fall Internship Presentation; Dec 23, 2015; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: With international aspirations to send astronauts to deep space, the world is now faced with the complex problem of keeping astronauts healthy in unexplored hostile environments for durations of time never before attempted by humans. The great physical demands imparted by space exploration compound the problem of astronaut health, as the astronauts must not only be healthy, but physically fit upon destination arrival in order to perform the scientific tasks required of them. Additionally, future deep space exploration necessitates the development of environments conducive to long-duration habitation that would supplement propulsive vehicles. Space Launch System (SLS) core stage barrel sections present large volumes of robust structure that can be recycled and used for long duration habitation. This assessment will focus on one such conceptual craft, referred to as the SLS Derived Habitat (SLS-DH). Marshall Space Flight Center's (MSFC) Advanced Concepts Office (ACO) has formulated a high-level layout of this SLS-DH with parameters such as floor number and orientation, floor designations, grid dimensions, wall placement, etc. Yet to be determined, however, is the layout of the exercise area. Currently the SLS-DH features three floors laid out longitudinally, leaving 2m of height between the floor and ceilings. This short distance between levels introduces challenges for proper placement of exercise equipment such as treadmills and stationary bicycles, as the dynamic envelope for the 95th percentile male astronauts is greater than 2m. This study aims to assess the optimal equipment layout and sizing for the exercise area of this habitat. Figure 1 illustrates the layout of the DSH concept demonstrator located at MSFC. The exercise area is located on the lower level, seen here as the front half of the level occupied by a crew member. This small volume does not allow for numerous or bulky exercise machines, so the conceptual equipment has been limited to a treadmill and stationary bicycle. With the most current treadmill aboard the International Space Station (ISS), the Combined Operational Load-Bearing External Resistance Treadmill (COLBERT), being located in an International Standard Payload Rack (ISPR), the bottom of the conceptual treadmill features a height of 38in. Making the treadmill flush with the floor would be impossible in this rack configuration, as the distance from the outer wall of the spacecraft to the bottom floor would be too shallow. From preliminary sizing, the 38in required for the bottom of the treadmill combined with a 78in operational envelope for a 95th percentile may not be accommodated in the exercise area in a vertical orientation. Figure 2 demonstrates the volume required (in maroon) for an ISPR-bound treadmill in the concept demonstrator. Early indications as seen in this figure indicate that the crew members would contact the ceiling in such an arrangement. An assessment will be conducted to evaluate various orientations of exercise equipment in the concept demonstrator. Orientations to be tested include putting the bottom of the treadmill on the wall, having the treadmill at an angle in the floor both horizontally and vertically, and having a shorter (non-rack bound) treadmill in a vertical orientation on the floor. This assessment will yield findings regarding sizing of the area and how well participants feel they could exercise in such an environment. Due to the restrictions of assessing a microgravity vehicle in a normal-gravity environment, simulations in MSFC's Virtual Environments Lab (VEL) may be necessary. Final deliverables will include recommendations regarding the location and size of possible exercise equipment aboard the SLS-Derived DSH.
    Keywords: Aerospace Medicine
    Type: M15-4420 , AIAA Space and Astronautics Forum and Exposition (AIAA SPACE 2015); Aug 31, 2015 - Sep 02, 2015; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-19
    Description: In the current NASA crew radiation health risk assessment framework, estimates for the neutron contributions to crew radiation exposure largely rely on simulated data with sizeable uncertainties due to the lack of experimental measurements inside the ISS. Integrated in the ISS-RAD instrument, the ISS-RAD Fast Neutron Detector (FND) will deploy to the ISS on one of the next cargo supply missions. Together with the ISS-RAD Charged Particle Detector, the FND will perform, for the first time, routine and precise direct neutron measurements inside the ISS between 0.5 and 80 MeV. The measurements will close the NASA Medical Operations Requirement to monitor neutrons inside the ISS and impact crew radiation health risk assessments by reducing uncertainties on the neutron contribution to crew exposure, enabling more efficient mission planning. The presentation will focus on the FND detection mechanism, calibration results and expectations about the FND's interaction with the mixed radiation field inside the ISS.
    Keywords: Aerospace Medicine
    Type: JSC-CN-34132 , Workshop on Radiation Monitoring for the International Space Station (WRMISS); Sep 08, 2015 - Sep 10, 2015; Cologne; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-19
    Description: Current reduced-order thermal model for cryogenic propellant tanks is based on correlations built for flat plates collected in the 1950's. The use of these correlations suffers from: inaccurate geometry representation; inaccurate gravity orientation; ambiguous length scale; and lack of detailed validation. The work presented under this task uses the first-principles based Computational Fluid Dynamics (CFD) technique to compute heat transfer from tank wall to the cryogenic fluids, and extracts and correlates the equivalent heat transfer coefficient to support reduced-order thermal model. The CFD tool was first validated against available experimental data and commonly used correlations for natural convection along a vertically heated wall. Good agreements between the present prediction and experimental data have been found for flows in laminar as well turbulent regimes. The convective heat transfer between tank wall and cryogenic propellant, and that between tank wall and ullage gas were then simulated. The results showed that commonly used heat transfer correlations for either vertical or horizontal plate over predict heat transfer rate for the cryogenic tank, in some cases by as much as one order of magnitude. A characteristic length scale has been defined that can correlate all heat transfer coefficients for different fill levels into a single curve. This curve can be used for the reduced-order heat transfer model analysis.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: M15-4424 , AIAA/SAE/ASEE Joint Propulsion Conference; Jul 27, 2015 - Jul 29, 2015; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-19
    Description: This paper describes the experience of the authors in using the Generalized Fluid System Simulation Program (GFSSP) in teaching Design of Thermal Systems class at University of Alabama in Huntsville. GFSSP is a finite volume based thermo-fluid system network analysis code, developed at NASA/Marshall Space Flight Center, and is extensively used in NASA, Department of Defense, and aerospace industries for propulsion system design, analysis, and performance evaluation. The educational version of GFSSP is freely available to all US higher education institutions. The main purpose of the paper is to illustrate the utilization of this user-friendly code for the thermal systems design and fluid engineering courses and to encourage the instructors to utilize the code for the class assignments as well as senior design projects. The need for a generalized computer program for thermofluid analysis in a flow network has been felt for a long time in aerospace industries. Designers of thermofluid systems often need to know pressures, temperatures, flow rates, concentrations, and heat transfer rates at different parts of a flow circuit for steady state or transient conditions. Such applications occur in propulsion systems for tank pressurization, internal flow analysis of rocket engine turbopumps, chilldown of cryogenic tanks and transfer lines, and many other applications of gas-liquid systems involving fluid transients and conjugate heat and mass transfer. Computer resource requirements to perform time-dependent, three-dimensional Navier-Stokes computational fluid dynamic (CFD) analysis of such systems are prohibitive and therefore are not practical. Available commercial codes are generally suitable for steady state, single-phase incompressible flow. Because of the proprietary nature of such codes, it is not possible to extend their capability to satisfy the above-mentioned needs. Therefore, the Generalized Fluid System Simulation Program (GFSSP1) has been developed at NASA Marshall Space Flight Center (MSFC) as a general fluid flow system solver capable of handling phase changes, compressibility, mixture thermodynamics and transient operations. It also includes the capability to model external body forces such as gravity and centrifugal effects in a complex flow network. The objectives of GFSSP development are: a) to develop a robust and efficient numerical algorithm to solve a system of equations describing a flow network containing phase changes, mixing, and rotation; and b) to implement the algorithm in a structured, easy-to-use computer program. The analysis of thermofluid dynamics in a complex network requires resolution of the system into fluid nodes and branches, and solid nodes and conductors as shown in Figure 1. Figure 1 shows a schematic and GFSSP flow circuit of a counter-flow heat exchanger. Hot nitrogen gas is flowing through a pipe, colder nitrogen is flowing counter to the hot stream in the annulus pipe and heat transfer occurs through metal tubes. The problem considered is to calculate flowrates and temperature distributions in both streams. GFSSP has a unique data structure, as shown in Figure 2, that allows constructing all possible arrangements of a flow network with no limit on the number of elements. The elements of a flow network are boundary nodes where pressure and temperature are specified, internal nodes where pressure and temperature are calculated, and branches where flowrates are calculated. For conjugate heat transfer problems, there are three additional elements: solid node, ambient node, and conductor. The solid and fluid nodes are connected with solid-fluid conductors. GFSSP solves the conservation equations of mass and energy, and equation of state in internal nodes to calculate pressure, temperature and resident mass. The momentum conservation equation is solved in branches to calculate flowrate. It also solves for energy conservation equations to calculate temperatures of solid nodes. The equations are coupled and nonlinear; therefore, they are solved by an iterative numerical scheme. GFSSP employs a unique numerical scheme known as simultaneous adjustment with successive substitution (SASS), which is a combination of Newton-Raphson and successive substitution methods. The mass and momentum conservation equations and the equation of state are solved by the Newton-Raphson method while the conservation of energy and species are solved by the successive substitution method. GFSSP is linked with two thermodynamic property programs, GASP2 and WASP3 and GASPAK4, that provide thermodynamic and thermophysical properties of selected fluids. Both programs cover a range of pressure and temperature that allows fluid properties to be evaluated for liquid, liquid-vapor (saturation), and vapor region. GASP and WASP provide properties of 12 fluids. GASPAK includes a library of 36 fluids. GFSSP has three major parts. The first part is the graphical user interface (GUI), visual thermofluid analyzer of systems and components (VTASC). VTASC allows users to create a flow circuit by a 'point and click' paradigm. It creates the GFSSP input file after the completion of the model building process. GFSSP's GUI provides the users a platform to build and run their models. It also allows post-processing of results. The network flow circuit is first built using three basic elements: boundary node, internal node, and branch.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: M15-4360 , AIAA/SAE/ASEE Joint Propulsion Conference; Jul 27, 2015 - Jul 29, 2015; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-19
    Description: Mitigating space flight-induced bone loss is critical for space exploration, and diet can play a major role in this effort. Previous ground-based studies provide evidence that dietary composition can influence bone resorption during bed rest. In this study we examined the role of dietary intake patterns as one factor that can influence bone mineral loss in astronauts during space flight. Crew members were asked to consume, for 4 days at a time, prescribed menus with either a low (0.3-0.6 g/mEq) or high (1.0-1.3 g/mEq) ratio of animal protein to potassium (APro:K). Menus were developed for each crewmember, and were designed to meet both crew preferences and study constraints. Intakes of energy, total protein, calcium, and sodium were held relatively constant between the two diets. The order of the menus was randomized, and crews completed each set (low and high) once before and twice during space flight, for a total of 6 controlled diet sessions. One inflight session and three postflight sessions (R+30, R+180, R+365) monitored typical dietary intake. As of this writing, data are available from 14 crew members. The final three subjects' inflight samples are awaiting return from the International Space Station via Space-X. On the last day of each of the 4-d controlled diet sessions, 24-h urine samples were collected, along with a fasting blood sample on the morning of the 5th day. Preliminary analyses show that urinary excretion of sulfate (normalized to lean body mass) is a significant predictor of urinary n-telopeptide (NTX). Dietary sulfate (normalized to lean body mass) is also a significant predictor of urinary NTX. The results from this study, will be important to better understand diet and bone interrelationships during space flight as well as on Earth. This study was funded by the Human Health Countermeasures Element of the NASA Human Research Program.
    Keywords: Aerospace Medicine
    Type: JSC-CN-32362 , Experimental Biology (EB); Mar 28, 2015 - Apr 01, 2015; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-19
    Description: Strength and aerobic capacity are predictors of astronaut performance for extravehicular activities (EVA) during exploration missions. It is expected that astronauts will selfselect a pace below their ventilatory threshold (VT). PURPOSE: To determine the percentage of VT that subjects selfselect for prolonged occupational tasks. METHODS: Maximal aerobic capacity and a variety of lowerbody strength and power variables were assessed in 17 subjects who climbed 480 rungs on a ladder ergometer and then completed 10 km on a treadmill as quickly as possible using a selfselected pace. The tasks were performed on 4 days, with a weighted suit providing 0% (suit fabric only), 40%, 60%, and 80% of additional bodyweight (BW), thereby altering the strength to BW ratio. Oxygen consumption and heart rate were continuously measured. Repeated measures ANOVA and posthoc comparisons were performed on the percent of VT values under each suited condition. RESULTS: Subjects consistently selfpaced at or below VT for both tasks and the pace was related to suit weight. At the midpoint for the ladder climb the 80% BW condition elicited the lowest metabolic cost (19+/-14% below VT), significantly different than the 0% BW (3+/-16%, P=0.002) and the 40% BW conditions (5+/-22%, P=0.023). The 60% BW condition (13+/-19%) was different than the 40% BW condition (P=0.034). Upon completion of the ladder task there were no differences among the conditions (0%BW: 3+/-18%; 40%BW: 3+/-21%; 60%BW: 8+/-25%; 80%BW: 10+/-18%). All subjects failed to complete 5km at 80%BW. At the midpoint of the treadmill test the three remaining conditions were all significantly different (0%BW: 20+/-15%; 40%BW: 33+/-15%; 60%BW: 41+/-19%). Upon completion of the treadmill test the 60% BW condition (38+/-12%) was significantly different than the 40% BW (28+/-15%, P=0.024). CONCLUSIONS: Decreasing relative strength results in progressive and disproportionate decreases (relative to VT) in selfselected pacing during longduration activities. Thus, during prolonged, endurancetype activities, large reductions in strength cause notable performance decrements despite no changes in aerobic capacity. These data highlight the importance of both aerobic capacity and muscle strength to the performance of prolonged EVA in exploration mission scenarios.
    Keywords: Aerospace Medicine
    Type: JSC-CN-32340 , World Congress on Exercise is Medicine and World Congress on the Basic Science of Exercise Fatigue; May 26, 2015 - May 30, 2015; San Diego, CA; United States|American College of Sports Medicine Annual Meeting; May 26, 2015 - May 30, 2015; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-19
    Description: INTRODUCTION: Mechanisms responsible for the ocular structural and functional changes that characterize the visual impairment and intracranial pressure (ICP) syndrome (VIIP) are unclear, but hypothesized to be secondary to the cephalad fluid shift experienced in spaceflight. This study will relate the fluid distribution and compartmentalization associated with long-duration spaceflight with VIIP symptoms. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as the VIIP-related effects of those shifts, can be predicted preflight with acute hemodynamic manipulations, and also if lower body negative pressure (LBNP) can reverse the VIIP effects. METHODS: Physiologic variables will be examined pre-, in- and post-flight in 10 International Space Station crewmembers including: fluid compartmentalization (D2O and NaBr dilution); interstitial tissue thickness (ultrasound); vascular dimensions and dynamics (ultrasound and MRI (including cerebrospinal fluid pulsatility)); ocular measures (optical coherence tomography, intraocular pressure, ultrasound); and ICP measures (tympanic membrane displacement, otoacoustic emissions). Pre- and post-flight measures will be assessed while upright, supine and during 15 deg head-down tilt (HDT). In-flight measures will occur early and late during 6 or 12 month missions. LBNP will be evaluated as a countermeasure during HDT and during spaceflight. RESULTS: The first two crewmembers are in the preflight testing phase. Preliminary results characterize the acute fluid shifts experienced from upright, to supine and HDT postures (increased stroke volume, jugular dimensions and measures of ICP) which are reversed with 25 millimeters Hg LBNP. DISCUSSION: Initial results indicate that acute cephalad fluid shifts may be related to VIIP symptoms, but also may be reversible by LBNP. The effect of a chronic fluid shift has yet to be evaluated. Learning Objectives: Current spaceflight VIIP research is described, including novel hardware and countermeasures.
    Keywords: Aerospace Medicine
    Type: JSC-CN-32334 , Annual Aerospace Medical Association Meeting; May 10, 2015 - May 14, 2015; Lake Buena Vista, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-19
    Description: Due to recently identified vision changes associated with space flight, JSC Space and Clinical Operations (SCO) implemented broad missionrelated vision testing starting in 2009. Optical Coherence Tomography (OCT), 3 Tesla Brain and Orbit MRIs, Optical Biometry were implemented terrestrially for clinical monitoring. While no inflight vision testing was in place, already available onorbit technology was leveraged to facilitate inflight clinical monitoring, including visual acuity, Amsler grid, tonometry, and ultrasonography. In 2013, onorbit testing capabilities were expanded to include contrast sensitivity testing and OCT. As these additional testing capabilities have been added, resource prioritization, particularly crew time, is under evaluation.
    Keywords: Aerospace Medicine
    Type: JSC-CN-32328 , Aerospace Medical Association (AsMA) Annual Scientific Meetings; May 10, 2015 - May 14, 2015; Lake Buena Vista, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-07-19
    Description: The Food and Drug Association Adverse Event Reports (FDA AER) from 2009-2011 were used to create a database from millions of known and suspected medication-related adverse events among the general public. Vision changes, sometimes associated with intracranial pressure changes (VIIP), have been noted in some long duration crewmembers. Changes in vision and blood pressure (which can subsequently affect intracranial pressure) are fairly common side effects of medications. The purpose of this study was to explore the possibility of medication involvement in crew VIIP symptoms.
    Keywords: Aerospace Medicine
    Type: JSC-CN-32124 , 2015 Human Research Program (HRP) Investigators'' Workshop; Jan 13, 2015 - Jan 15, 2015; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-19
    Description: It is known that medications degrade over time and that extreme storage conditions will hasten their degradation. This is the basis of the HRP Risk of Ineffective or Toxic Medications Due to Long Term Storage. Gaps include questions about the effects of the spaceflight environment and about the potential for safe use of medications beyond their expiration dates. There are also open questions regarding effects of the spaceflight environment on human physiology and subsequent changes in how medications act on the body; these unanswered questions gave rise to the HRP Concern of Clinically Relevant Unpredicted Effects of Medication. Studies designed to address this Risk and Concern are described below.
    Keywords: Aerospace Medicine
    Type: JSC-CN-32122 , 2015 Human Research Program (HRP) Investigators'' Workshop; Jan 13, 2015 - Jan 15, 2015; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-13
    Description: Current long-duration missions to the International Space Station and future exploration-class missions beyond low-Earth orbit expose astronauts to increased risk of Visual Impairment and Intracranial Pressure (VIIP) syndrome. It has been hypothesized that the headward shift of cerebrospinal fluid (CSF) and blood in microgravity may cause significant elevation of intracranial pressure (ICP), which in turn may then induce VIIP syndrome through interaction with various biomechanical pathways. However, there is insufficient evidence to confirm this hypothesis. In this light, we are developing lumped-parameter models of fluid transport in the central nervous system (CNS) as a means to simulate the influence of microgravity on ICP. The CNS models will also be used in concert with the lumped parameter and finite element models of the eye described in the related IWS works submitted by Nelson et al., Feola et al. and Ethier et al.
    Keywords: Aerospace Medicine
    Type: GRC-E-DAA-TN20417 , Human Research Program Investigators'' Workshop: Integrated Pathways to Mars; Jan 13, 2015 - Jan 15, 2015; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-13
    Description: In a cyclical heat load environment such as low Lunar orbit, a spacecraft's radiators are not sized to meet the full heat rejection demands. Traditionally, a supplemental heat rejection device (SHReD) such as an evaporator or sublimator is used to act as a "topper" to meet the additional heat rejection demands. Utilizing a Phase Change Material (PCM) heat exchanger (HX) as a SHReD provides an attractive alternative to evaporators and sublimators as PCM HX's do not use a consumable, thereby leading to reduced launch mass and volume requirements. In continued pursuit of water PCM HX development two full-scale, Orion sized water-based PCM HX's were constructed by Mezzo Technologies. These HX's were designed by applying prior research on freeze front propagation to a full-scale design. Design options considered included bladder restraint and clamping mechanisms, bladder manufacturing, tube patterns, fill/drain methods, manifold dimensions, weight optimization, and midplate designs. Two units, Units A and B, were constructed and differed only in their midplate design. Both units failed multiple times during testing. This report highlights learning outcomes from these tests and are applied to a final sub-scale PCM HX which is slated to be tested on the ISS in early 2017.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ICES-2015-188 , JSC-CN-33129 , International Conference on Environmental Systems; Jul 12, 2015 - Jul 16, 2015; Bellevue, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-13
    Description: Future manned exploration spacecraft will need to operate in challenging thermal environments. State-of-the-art technology for active thermal control relies on sublimating water ice and venting the vapor overboard in very hot environments, and or heavy phase change material heat exchangers for thermal storage. These approaches can lead to large loss of water and a significant mass penalties for the spacecraft. This paper describes an innovative thermal control system that uses a Space Evaporator Absorber Radiator (SEAR) to control spacecraft temperatures in highly variable environments without venting water. SEAR uses heat pumping and energy storage by LiCl/water absorption to enable effective cooling during hot periods and regeneration during cool periods. The LiCl absorber technology has the potential to absorb over 800 kJ per kg of system mass, compared to phase change heat sink systems that typically achieve approx. 50 kJ/kg. This paper describes analysis models to predict performance and optimize the size of the SEAR system, estimated size and mass of key components, and an assessment of potential mass savings compared with alternative thermal management approaches. We also describe a concept design for an ISS test package to demonstrate operation of a subscale system in zero gravity.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JSC-CN-33071 , International Conference on Environmental Systems; Jul 12, 2015 - Jul 15, 2015; Bellevue, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-13
    Description: Astronauts experience a microgravity environment during spaceflight, which results in a central reinterpretation of both vestibular and body axial-loading information by the sensorimotor system. Subjects in bed rest studies lie at 6deg head-down in strict bed rest to simulate the fluid shift and gravity-unloading of the microgravity environment. However, bed rest subjects still sense gravity in the vestibular organs. Therefore, bed rest isolates the axial-unloading component, thus allowing for the direct study of its effects. The Tandem Walk is a standard sensorimotor test of dynamic postural stability. In a previous abstract, we compared performance on a Tandem Walk test between bed rest control subjects, and short- and long-duration astronauts both before and after flight/bed rest using a composite index of performance, called the Tandem Walk Parameter (TWP), that takes into account speed, accuracy, and balance control. This new study extends the previous data set to include bed rest subjects who performed exercise countermeasures. The purpose of this study was to compare performance during the Tandem Walk test between bed rest subjects (with and without exercise), short-duration (Space Shuttle) crewmembers, and long-duration International Space Station (ISS) crewmembers at various time points during their recovery from bed rest or spaceflight.
    Keywords: Aerospace Medicine
    Type: JSC-CN-33118 , Annual Meeting of the American Society of Biomechanics; Aug 05, 2015 - Aug 08, 2015; Columbus, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-13
    Description: Dengue fever is a mosquitoborne viral disease reemerging throughout much of the tropical Americas. Dengue virus transmission is explicitly influenced by climate and the environment through its primary vector, Aedes aegypti. Temperature regulates Ae. aegypti development, survival, and replication rates as well as the incubation period of the virus within the mosquito. Precipitation provides water for many of the preferred breeding habitats of the mosquito, including buckets, old tires, and other places water can collect. Although transmission regularly occurs along the border region in Mexico, dengue virus transmission in bordering Arizona has not occurred. Using NASA's TRMM (Tropical Rainfall Measuring Mission) satellite for precipitation input and Daymet for temperature and supplemental precipitation input, we modeled dengue transmission along a USMexico transect using a dynamic dengue transmission model that includes interacting vector ecology and epidemiological components. Model runs were performed for 5 cities in Sonora, Mexico and southern Arizona. Employing a Monte Carlo approach, we performed ensembles of several thousands of model simulations in order to resolve the model uncertainty arising from using different combinations of parameter values that are not well known. For cities with reported dengue case data, the top model simulations that best reproduced dengue case numbers were retained and their parameter values were extracted for comparison. These parameter values were used to run simulations in areas where dengue virus transmission does not occur or where dengue fever case data was unavailable. Additional model runs were performed to reveal how changes in climate or parameter values could alter transmission risk along the transect. The relative influence of climate variability and model parameters on dengue virus transmission is assessed to help public health workers prepare location specific infection prevention strategies.
    Keywords: Aerospace Medicine
    Type: M14-4024 , American Meteorological Society Annual Meeting; Jan 04, 2015 - Jan 08, 2015; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-13
    Description: The desire to reduce or eliminate the operational restrictions of supersonic aircraft over populated areas has led to extensive research at NASA. Restrictions are due to the disturbance of the sonic boom, caused by the coalescence of shock waves formed by the aircraft. A study has been performed focused on reducing the magnitude of the sonic boom N-wave generated by airplane components with a focus on shock waves caused by the exhaust nozzle plume. Testing was completed in the 1-foot by 1-foot supersonic wind tunnel to study the effects of an exhaust nozzle plume and shock wave interaction. The plume and shock interaction study was developed to collect data for computational fluid dynamics (CFD) validation of a nozzle plume passing through the shock generated from the wing or tail of a supersonic vehicle. The wing or tail was simulated with a wedgeshaped shock generator. This test entry was the first of two phases to collect schlieren images and off-body static pressure profiles. Three wedge configurations were tested consisting of strut-mounted wedges of 2.5- degrees and 5-degrees. Three propulsion configurations were tested simulating the propulsion pod and aft deck from a low boom vehicle concept, which also provided a trailing edge shock and plume interaction. Findings include how the interaction of the jet plume caused a thickening of the shock generated by the wedge (or aft deck) and demonstrate how the shock location moved with increasing nozzle pressure ratio.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GRC-E-DAA-TN19474 , SciTech 2015; Jan 05, 2015 - Jan 09, 2015; Kissimmee, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-13
    Description: Ultrasonography is increasingly used to quickly measure optic nerve sheath diameter (ONSD) when increased intracranial pressure (ICP) is suspected. NASA Space and Clinical Operations Division has been using ground and onorbit ultrasound since 2009 as a proxy for ICP in nonacute monitoring for space medicine purposes. In the terrestrial emergency room population, an ONSD greater than 0.59 cm is considered highly predictive of elevated intracranial pressure. However, this cutoff limit is not applicable to the spaceflight setting since over 50% of US Operating Segment (USOS) astronauts have an ONSD greater than 0.60 cm even before launch. Crew Surgeon clinical decisionmaking is complicated by the fact that many astronauts have history of previous spaceflights. Our data characterize the distribution of baseline ONSD in the astronaut corps, its longitudinal trends in longduration spaceflight, and the predictive power of this measure related to increased ICP outcomes.
    Keywords: Aerospace Medicine
    Type: JSC-CN-32700 , Human Research Program Investigators'' Workshop: Integrated Pathways to Mars; Jan 13, 2015 - Jan 15, 2015; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aerospace Medicine
    Type: JSC-CN-32686 , 2015 Human Research Program Investigators'' Workshop; Jan 13, 2015 - Jan 15, 2015; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aerospace Medicine
    Type: JSC-CN-32586 , 2015 Human Research Program Investigators'' Workshop; Jan 13, 2015 - Jan 15, 2015; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-07-13
    Description: Lung cancer induced from exposures to space radiation is one of the most significant health risks for long-term space travels. Evidences show that low- and high- Linear energy transfer (LET)-induced transformation of normal human bronchial epithelial cells (HBEC) that are immortalized through the expression of Cdk4 and hTERT. The cells were exposed to gamma rays and high-energy Fe ions for the selection of transformed clones. Transformed HBEC are identified and analyzed chromosome aberrations (i.e. genomic instability) using the multi-color fluorescent in situ hybridization (mFISH), as well as the multi-banding in situ hybridization (mBAND) techniques. Our results show chromosomal translocations between different chromosomes and several of the breaks occurred in the q-arm of chromosome 3. We also identified copy number variations between the transformed and the parental HBEC regardless of the exposure conditions. We observed chromosomal aberrations in the lowand high-LET radiation-induced transformed clones and they are imperfectly different from clones obtain in spontaneous soft agar growth.
    Keywords: Aerospace Medicine
    Type: JSC-CN-32696 , 2015 Human Research Program (HRP) Investigators'' Workshop; Jan 13, 2015 - Jan 15, 2015; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aerospace Medicine
    Type: JSC-CN-32652 , 2015 Human Research Program (HRP) Investigators'' Workshop; Jan 13, 2015 - Jan 15, 2015; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aerospace Medicine
    Type: JSC-CN-32653 , 2015 Human Research Program (HRP) Investigators'' Workshop; Jan 13, 2015 - Jan 15, 2015; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-13
    Description: This paper describes the use of Smoothed Particle Hydrodynamics (SPH) to simulate the water flow from the rainbird nozzle system used in the sound suppression system during pad abort and nominal launch. The simulations help determine if water from rainbird nozzles will impinge on the rocket nozzles and other sensitive ground support elements.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: KSC-E-DAA-TN18736 , KSC-E-DAA-TN18727 , SciTech 2015; Jan 05, 2015 - Jan 09, 2015; Kissimmee, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-13
    Description: Some crewmembers have experienced changes in their vision after long-duration spaceflight on the ISS. These impairments include visual performance decrements, development of cotton-wool spots or choroidal folds, optic-disc edema, optic nerve sheath distention, and/or posterior globe flattening with varying degrees of severity and permanence. These changes are now used to define the visual impairment/intracranial pressure (VIIP) syndrome. It is known that many medications can have side effects that are similar to VIIP symptoms. Some medications raise blood pressure, which can affect intracranial pressure. Many medications that act in the central nervous system can affect intracranial pressures and/or vision. About 40% of the medications in the ISS kit are known to cause side effects involving changes in blood pressure, intracranial pressure and/or vision. For this reason, we have begun an investigation of the potential relationship between ISS medications and their risk of causing or exacerbating VIIP-like symptoms.
    Keywords: Aerospace Medicine
    Type: JSC-CN-32606 , 2014 Human Research Program (HRP) Investigators'' Workshop; Jan 13, 2015 - Jan 15, 2015; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-07-13
    Description: Venous thromboembolism (VTE) is a common and serious condition affecting approximately 12 per 1000 people in the USA every year. There have been no documented case reports of VTE in female astronauts during spaceflight in the published literature. Some female astronauts use hormonal contraception to control their menstrual cycles and it is currently unknown how this affects their risk of VTE. Current terrestrial risk prediction models do not account for the spaceflight environment and the physiological changes associated with it. We therefore aim to estimate a specific risk score for female astronauts who are taking hormonal contraception for menstrual cycle control, to deduce whether they are at an elevated risk of VTE. A systematic review of the literature was conducted in order to identify and quantify known terrestrial risk factors for VTE. Studies involving analogues for the female astronaut population were also reviewed, for example, military personnel who use the oral contraceptive pill for menstrual suppression. Well known terrestrial risk factors, for example, obesity or smoking would not be applicable to our study population as these candidates would have been excluded during astronaut selection processes. Other risk factors for VTE include hormonal therapy, lower limb paralysis, physical inactivity, hyperhomocysteinemia, low methylfolate levels and minor injuries, all of which potentially apply to crew members LSAH data will be assessed to identify which of these risk factors are applicable to our astronaut population. Using known terrestrial risk data, an overall estimated risk of VTE for female astronauts using menstrual cycle control methods will therefore be calculated. We predict this will be higher than the general population but not significantly higher requiring thromboprophylaxis. This study attempts to delineate what is assumed to be true of our astronaut population, for example, they are known to be a healthy fit cohort of individuals, and combine physiological impacts of spaceflight (cephalic fluid shifts, lower limb inactivity) to understand specific risks associated with hormonal contraception.
    Keywords: Aerospace Medicine
    Type: JSC-CN-32277 , Annual Scientific Meeting of the Aerospace Medical Association; May 10, 2015 - May 14, 2015; Lake Buena Vista, FL.; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-07-13
    Description: The effect of turbulence models in the off-body grids on the accuracy of solutions for rotor flows in hover has been investigated. Results from the Reynolds-Averaged Navier-Stokes and Laminar Off-Body models are compared. Advection of turbulent eddy viscosity has been studied to find the mechanism leading to inaccurate solutions. A coaxial rotor result is also included.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 2015-2766 , ARC-E-DAA-TN19269 , AIAA Fluid Dynamics Conference; Jun 22, 2015 - Jun 26, 2015; Dallas, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NF1676L-21143 , High-Performance Computing (HPC) User Forum; Apr 13, 2015 - Apr 15, 2015; Norfolk, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NF1676L-20975 , NATO Working Group on Hypersonic Transition; Mar 26, 2015 - Mar 27, 2015; Tucson, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NF1676L-20977 , AIAA HRS: Annual Axel T. Mattson Lecture; Mar 26, 2015; Hampton, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NF1676L-20976 , Axel T. Mattson Lecture; Mar 26, 2015; Hampton, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NF1676L-20537 , AIAA SciTech 2015; Jan 05, 2015 - Jan 09, 2015; Kissimmee, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NF1676L-20545 , AIAA SciTech 2015; Jan 05, 2015 - Jan 09, 2015; Kissimmee, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NF1676L-22323 , Symposium on Global Flow Instability and Control; Sep 28, 2015 - Oct 02, 2015; Crete; Greece
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-13
    Description: The NASA Langley Turbulence Model Resource (TMR) website has been active for over five years. Its main goal of providing a one-stop, easily accessible internet site for up-to-date information on Reynolds-averaged Navier-Stokes turbulence models remains unchanged. In particular, the site strives to provide an easy way for users to verify their own implementations of widely-used turbulence models, and to compare the results from different models for a variety of simple unit problems covering a range of flow physics. Some new features have been recently added to the website. This paper documents the site's features, including recent developments, future plans, and open questions.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Aviation 2015 , NF1676L-20221 , AIAA Aviation 2015; Jun 22, 2015 - Jun 26, 2015; Dallas, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-13
    Description: The implementation of the SSG/LRR-omega differential Reynolds stress model into the NASA flow solvers CFL3D and FUN3D and the DLR flow solver TAU is verified by studying the grid convergence of the solution of three different test cases from the Turbulence Modeling Resource Website. The model's predictive capabilities are assessed based on four basic and four extended validation cases also provided on this website, involving attached and separated boundary layer flows, effects of streamline curvature and secondary flow. Simulation results are compared against experimental data and predictions by the eddy-viscosity models of Spalart-Allmaras (SA) and Menter's Shear Stress Transport (SST).
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NF1676L-20223 , AIAA Aviation 2015; Jun 22, 2015 - Jun 26, 2015; Dallas, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-13
    Description: A controlled disturbance is generated in the freestream of the Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT) by focusing a high-powered Nd:YAG laser to create a laser-induced breakdown plasma. The plasma then cools, creating a freestream thermal disturbance that can be used to study receptivity. The freestream disturbance convects down-stream in the Mach-6 wind tunnel to interact with a flared cone model. The adverse pressure gradient created by the flare of the model is capable of generating second-mode instability waves that grow large and become nonlinear before experiencing natural transition in quiet flow. The freestream laser perturbation generates a wave packet in the boundary layer at the same frequency as the natural second mode, complicating time-independent analyses of the effect of the laser perturbation. The data show that the laser perturbation creates an instability wave packet that is larger than the natural waves on the sharp flared cone. The wave packet is still difficult to distinguish from the natural instabilities on the blunt flared cone.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NF1676L-20091 , AIAA Aviation 2015; Jun 22, 2015 - Jun 25, 2015; Dallas, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-13
    Description: A parametric experimental study was performed with sweeping jet actuators (fluidic oscillators) to determine their effectiveness in controlling flow separation on an adverse pressure gradient ramp. Actuator parameters that were investigated include blowing coefficients, operation mode, pitch and spreading angles, streamwise location, aspect ratio, and scale. Surface pressure measurements and surface oil flow visualization were used to characterize the effects of these parameters on the actuator performance. 2D Particle Image Velocimetry measurements of the flow field over the ramp and hot-wire measurements of the actuator's jet flow were also obtained for selective cases. In addition, the sweeping jet actuators were compared to other well-known flow control techniques such as micro-vortex generators, steady blowing, and steady vortex-generating jets. The results confirm that the sweeping jet actuators are more effective than steady blowing and steady vortex-generating jets. The results also suggest that an actuator with a larger spreading angle placed closer to the location where the flow separates provides better performance. For the cases tested, an actuator with an aspect ratio, which is the width/depth of the actuator throat, of 2 was found to be optimal. For a fixed momentum coefficient, decreasing the aspect ratio to 1 produced weaker vortices while increasing the aspect ratio to 4 reduced coverage area. Although scaling down the actuator (based on the throat dimensions) from 0.25 inch x 0.125 inch to 0.15 inch x 0.075 inch resulted in similar flow control performance, scaling down the actuator further to 0.075 inch x 0.0375 inch reduced the actuator efficiency by reducing the coverage area and the amount of mixing in the near-wall region. The results of this study provide insight that can be used to design and select the optimal sweeping jet actuator configuration for flow control applications.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NF1676L-20117 , AIAA Fluid Dynamics Conference; Jun 22, 2015 - Jun 26, 2015; Dallas, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-13
    Description: A low-speed experiment was performed on a swept at plate model with an imposed pressure gradient to determine the effect of a backward-facing step on transition in a stationary-cross flow dominated flow. Detailed hot-wire boundary-layer measurements were performed for three backward-facing step heights of approximately 36, 45, and 49% of the boundary-layer thickness at the step. These step heights correspond to a subcritical, nearly-critical, and critical case. Three leading-edge roughness configurations were tested to determine the effect of stationary-cross flow amplitude on transition. The step caused a local increase in amplitude of the stationary cross flow for the two larger step height cases, but farther downstream the amplitude decreased and remained below the baseline amplitude. The smallest step caused a slight local decrease in amplitude of the primary stationary cross flow mode, but the amplitude collapsed back to the baseline case far downstream of the step. The effect of the step on the amplitude of the primary cross flow mode increased with step height, however, the stationary cross flow amplitudes remained low and thus, stationary cross flow was not solely responsible for transition. Unsteady disturbances were present downstream of the step for all three step heights, and the amplitudes increased with increasing step height. The only exception is that the lower frequency (traveling crossflow-like) disturbance was not present in the lowest step height case. Positive and negative spikes in instantaneous velocity began to occur for the two larger step height cases and then grew in number and amplitude downstream of reattachment, eventually leading to transition. The number and amplitude of spikes varied depending on the step height and cross flow amplitude. Despite the low amplitude of the disturbances in the intermediate step height case, breakdown began to occur intermittently and the flow underwent a long transition region.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NF1676L-20019 , AIAA Aviation Technology, Integration, and Operations Conference; Jun 22, 2015 - Jun 26, 2015; Dallas, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-13
    Description: The goal of this work was to quantify the uncertainty and sensitivity of commonly used turbulence models in Reynolds-Averaged Navier-Stokes codes due to uncertainty in the values of closure coefficients for transonic, wall-bounded flows and to rank the contribution of each coefficient to uncertainty in various output flow quantities of interest. Specifically, uncertainty quantification of turbulence model closure coefficients was performed for transonic flow over an axisymmetric bump at zero degrees angle of attack and the RAE 2822 transonic airfoil at a lift coefficient of 0.744. Three turbulence models were considered: the Spalart-Allmaras Model, Wilcox (2006) k-w Model, and the Menter Shear-Stress Trans- port Model. The FUN3D code developed by NASA Langley Research Center was used as the flow solver. The uncertainty quantification analysis employed stochastic expansions based on non-intrusive polynomial chaos as an efficient means of uncertainty propagation. Several integrated and point-quantities are considered as uncertain outputs for both CFD problems. All closure coefficients were treated as epistemic uncertain variables represented with intervals. Sobol indices were used to rank the relative contributions of each closure coefficient to the total uncertainty in the output quantities of interest. This study identified a number of closure coefficients for each turbulence model for which more information will reduce the amount of uncertainty in the output significantly for transonic, wall-bounded flows.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NF1676L-20048 , AIAA Aviation 2015; Jun 22, 2015 - Jun 26, 2015; Dallas, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-13
    Description: Given the wide diversity of cryogenic fluid management technology that had been developed at the research level, there was a need for eCryo to prioritize and focus on a limited subset of the possibilities in order to set a practical scope. As part of the effort to determine that focus, a survey was conducted in May of 2014 to solicit opinions of members of the aerospace industry as to what they considered the most important and beneficial cryogenic technologies to be developed in the near term. The project was also directed to consider the SLS exploration upper stage (EUS) as a potential infusion target, and to focus on technology that would provide the most immediate benefit to a cryogenic system of that type.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GRC-E-DAA-TN24737 , Internal briefing; Jun 30, 2015; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-13
    Description: The Zero Boil-Off Technology (ZBOT) Experiment involves performing a small scale ISS experiment to study tank pressurization and pressure control in microgravity. The ZBOT experiment consists of a vacuum jacketed test tank filled with an inert fluorocarbon simulant liquid. Heaters and thermo-electric coolers are used in conjunction with an axial jet mixer flow loop to study a range of thermal conditions within the tank. The objective is to provide a high quality database of low gravity fluid motions and thermal transients which will be used to validate Computational Fluid Dynamic (CFD) modeling. This CFD can then be used in turn to predict behavior in larger systems with cryogens. This paper will discuss the current status of the ZBOT experiment as it approaches its flight to installation on the International Space Station, how its findings can be scaled to larger and more ambitious cryogenic fluid management experiments, as well as ideas for follow-on investigations using ZBOT like hardware to study other aspects of cryogenic fluid management.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GRC-E-DAA-TN24539 , Space Cryogenics Workshop; Jun 24, 2015 - Jun 26, 2015; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-13
    Description: A gas turbine engine is anywhere from 40-50% efficient. A large amount of energy is wasted as heat. Some of this heat is recoverable through the use of energy harvesting and can be used for powering on-board systems or for storing energy in batteries to replace auxiliary power units (APUs). As hybrid electric aircraft become more common, the use of energy harvesting will see increasingly more benefit and become commonplace in gas turbine engines. For electric aircraft with motors, TEGs would be beneficial for reclaiming waste heat from electric motors. The primary focus of this work was to evaluate the feasibility of harvesting energy from the hot section of a gas turbine engine (for a single aisle Boeing 737 thrust class) using thermoelectric generators (TEGs). The resulting heat could be used to power on-board actuation mechanisms such as plasma actuators and piezoelectric actuators. The work is a result of a two year NASA Center Innovation Fund from 2009 to 2011. The trade-off between thermoelectric harvesting and blade surface temperature were studied to ensure that blade durability is not adversely impacted by embedding a low thermal conductivity TEG. Calculations show that.5-10 Watts can be harvested per blade depending on flow conditions and on the thermoelectric material chosen. BiTe and SiGe were used for this analysis and future thermoelectric generators or multiferroic alloys could considerably improve power output.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ISABE-2015-20259 , GRC-E-DAA-TN27800 , International Symposium on Air Breathing Engines (ISABE 2015); Oct 25, 2015 - Oct 30, 2015; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-13
    Description: An effort was undertaken to analyze the performance of a model Lean-Direct Injection (LDI) combustor designed to meet emissions and performance goals for NASA's N+3 program. Computational predictions of Emissions Index (EINOx) and combustor exit temperature were obtained for operation at typical power conditions expected of a small-core, high pressure-ratio (greater than 50), high T3 inlet temperature (greater than 950K) N+3 combustor. Reacting-flow computations were performed with the National Combustion Code (NCC) for a model N+3 LDI combustor, which consisted of a nine-element LDI flame-tube derived from a previous generation (N+2) thirteen-element LDI design. A consistent approach to mesh-optimization, spray-modeling and kinetics-modeling was used, in order to leverage the lessons learned from previous N+2 flame-tube analysis with the NCC. The NCC predictions for the current, non-optimized N+3 combustor operating indicated a 74% increase in NOx emissions as compared to that of the emissions-optimized, parent N+2 LDI combustor.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ISABE Paper 2015-20245 , GRC-E-DAA-TN27636 , International Symposium on Airbreathing Engines (ISABE 2015); Oct 25, 2015 - Oct 29, 2015; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-13
    Description: This paper provides an overview of the SPHERES-Slosh Experiment (SSE) aboard the International Space Station (ISS) and presents on-orbit results with data analysis. In order to predict the location of the liquid propellant during all times of a spacecraft mission, engineers and mission analysts utilize Computational Fluid Dynamics (CFD). These state-of-the-art computer programs numerically solve the fluid flow equations to predict the location of the fluid at any point in time during different spacecraft maneuvers. The models and equations used by these programs have been extensively validated on the ground, but long duration data has never been acquired in a microgravity environment. The SSE aboard the ISS is designed to acquire this type of data, used by engineers on earth to validate and improve the CFD prediction models, improving the design of the next generation of space vehicles as well as the safety of current missions. The experiment makes use of two Synchronized Position Hold, Engage, Reorient Experimental Satellites (SPHERES) connected by a frame. In the center of the frame there is a plastic, pill shaped tank that is partially filled with green-colored water. A pair of high resolution cameras records the movement of the liquid inside the tank as the experiment maneuvers within the Japanese Experimental Module test volume. Inertial measurement units record the accelerations and rotations of the tank, making the combination of stereo imaging and inertial data the inputs for CFD model validation.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: IAC-15-A2.6.2 , KSC-E-DAA-TN26909 , International Astronautical Congress; Oct 12, 2015 - Oct 16, 2015; Jerusalem; Israel
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-13
    Description: The proposed research aims to develop an integrated two-phase flow boiling/condensation facility for the International Space Station (ISS) to serve as primary platform for obtaining two-phase flow and heat transfer data in microgravity.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GRC-E-DAA-TN28005 , Annual Meeting of American Society for Gravitational and Space Research; Nov 10, 2015 - Nov 14, 2015; Alexandria, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-13
    Description: An experimental facility to perform flow boiling and condensation experiments in long duration microgravity environment is being designed for operation on the International Space Station (ISS). This work describes the design of the subsystems of the FBCE including the Fluid subsystem modules, data acquisition, controls, and diagnostics. Subsystems and components are designed within the constraints of the ISS Fluid Integrated Rack in terms of power availability, cooling capability, mass and volume, and most importantly the safety requirements. In this work we present the results of ground-based performance testing of the FBCE subsystem modules and test module which consist of the two condensation modules and the flow boiling module. During this testing, we evaluated the pressure drop profile across different components of the fluid subsystem, heater performance, on-orbit degassing subsystem, heat loss from different modules and components, and performance of the test modules. These results will be used in the refinement of the flight system design and build-up of the FBCE which is manifested for flight in late 2017-early 2018.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GRC-E-DAA-TN27999 , Annual meeting of the American Society for Gravitational and Space Research (ASGSR); Nov 11, 2015 - Nov 14, 2015; Alexandria, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-13
    Description: This presentation will examine the development of a thermal control system (TCS) for future space missions utilizing a single active cooling loop. The system architecture enables the TCS to be reconfigured during the various mission phases to respond, not only to varying heat load, but to heat rejection temperature as well. The system will consist of an accumulator, pump, cold plates (evaporators), condenser radiator, and compressor, in addition to control, bypass and throttling valves. For cold environments, the heat will be rejected by radiation, during which the compressor will be bypassed, reducing the system to a simple pumped loop that, depending on heat load, can operate in either a single-phase liquid mode or two-phase mode. For warmer environments, the pump will be bypassed, enabling the TCS to operate as a heat pump. This presentation will focus on recent findings concerning two-phase flow regimes, pressure drop, and heat transfer coefficient trends in the cabin and avionics micro-channel heat exchangers when using the heat pump mode. Also discussed will be practical implications of using micro-channel evaporators for the heat pump.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GRC-E-DAA-TN28037 , Annual meeting of the American Society for Gravitational and Space Research (ASGSR); Nov 11, 2015 - Nov 14, 2015; Alexandria, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-13
    Description: Identify realistic and achievable pathways for surgical capabilities during exploration and colonization space operations and develop a list of recommendations to the NASA Human Research Program to address challenges to developing surgical capabilities.
    Keywords: Aerospace Medicine
    Type: JSC-CN-35012 , National Space Biomedical Research Institute; Dec 09, 2015; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-13
    Description: Obesity has become a global epidemic. Childhood obesity is global public health concern including in South Korea where 16.2% of boys and 9.9% of girls are overweight or obese in 2011. Effective and sustainable intervention programs are needed for prevention of childhood obesity. Obesity prevention programs for young children may have a greater intervention effect than in older children. The NASA Mission X: Train Like an Astronaut (MX) program was developed to promote children's exercise and healthy eating by tapping into their excitement for training like an astronaut. This study aimed to examine the feasibility and effectiveness of the adapted NASA MX intervention in promoting PA in young children and in improving parents' related perspectives.
    Keywords: Aerospace Medicine
    Type: JSC-CN-34662 , ObesityWeek 2015; Nov 02, 2015 - Nov 06, 2015; Los Angeles, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-13
    Description: Life support systems in space depend on the ability to effectively separate gas from liquid. Passive cyclonic phase separators use the centripetal acceleration of a rotating gas-liquid mixture to carry out phase separation. The gas migrates to the center, while gas-free liquid may be withdrawn from one of the end plates. We have designed, constructed and tested a breadboard that accommodates the test sections of two independent principal investigators and satisfies their respective requirements, including flow rates, pressure and video diagnostics. The breadboard was flown in the NASA low-gravity airplane in order to test the system performance and design under reduced gravity conditions.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GRC-E-DAA-TN27281 , Annual Meeting of the American Society for Gravitational and Space Research; Nov 11, 2015 - Nov 14, 2015; Alexandria, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-13
    Description: Once on orbit, high performing insulation systems for cryogenic systems need just as good radiation (optical) properties as conduction properties. This requires the use of radiation shields with low conductivity spacers in between. By varying the height and cross-sectional area of the spacers between the radiation shields, the relative radiation and conduction heat transfers can be manipulated. However, in most systems, there is a fixed thickness or volume allocated to the insulation. In order to understand how various combinations of different multilayer insulation (MLI) systems work together and further validate thermal models of such a hybrid MLI set up, test data is needed. The MLI systems include combinations of Load Bearing MLI (LB-MLI) and traditional MLI. To further simulate the space launch vehicle case wherein both ambient pressure and vacuum environments are addressed, different cold-side thermal insulation substrates were included for select tests.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GRC-E-DAA-TN24552 , 2015 Cryogenic Engineering Conference; Jun 29, 2015 - Jul 01, 2015; Tucson, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-13
    Description: Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LO2) are a part of NASA's future space exploration plans due to their high specific impulse for rocket motors of upper stages. However, the low storage temperatures of LH2 and LO2 cause substantial boil-off losses for long duration missions. These losses can be eliminated by incorporating high performance cryocooler technology to intercept heat load to the propellant tanks and modulating the cryocooler temperature to control tank pressure. The technology being developed by NASA is the reverse turbo-Brayton cycle cryocooler and its integration to the propellant tank through a distributed cooling tubing network coupled to the tank wall. This configuration was recently tested at NASA Glenn Research Center in a vacuum chamber and cryoshroud that simulated the essential thermal aspects of low Earth orbit, its vacuum and temperature. This test series established that the active cooling system integrated with the propellant tank eliminated boil-off and robustly controlled tank pressure.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GRC-E-DAA-TN27285 , Space Cryogenics Workshop; Jun 24, 2015 - Jun 26, 2015; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-13
    Description: NASA is currently investigating methods to reduce the boil-off rate on large cryogenic upper stages. Two such methods to reduce the total heat load on existing upper stages are vapor cooling of the cryogenic tank support structure and integration of thick multilayer insulation systems to the upper stage of a launch vehicle. Previous efforts have flown a 2-layer MLI blanket and shown an improved thermal performance, and other efforts have ground-tested blankets up to 70 layers thick on tanks with diameters between 2 3 meters. However, thick multilayer insulation installation and testing in both thermal and structural modes has not been completed on a large scale tank. Similarly, multiple vapor cooled shields are common place on science payload helium dewars; however, minimal effort has gone into intercepting heat on large structural surfaces associated with rocket stages. A majority of the vapor cooling effort focuses on metallic cylinders called skirts, which are the most common structural components for launch vehicles. In order to provide test data for comparison with analytical models, a representative test tank is currently being designed to include skirt structural systems with integral vapor cooling. The tank is 4 m in diameter and 6.8 m tall to contain 5000 kg of liquid hydrogen. A multilayer insulation system will be designed to insulate the tank and structure while being installed in a representative manner that can be extended to tanks up to 10 meters in diameter. In order to prove that the insulation system and vapor cooling attachment methods are structurally sound, acoustic testing will also be performed on the system. The test tank with insulation and vapor cooled shield installed will be tested thermally in the B2 test facility at NASAs Plumbrook Station both before and after being vibration tested at Plumbrooks Space Power Facility.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GRC-E-DAA-TN24555 , Space Cryogenics Workshop; Jun 24, 2015 - Jun 26, 2015; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-13
    Description: Experimental investigations of specific flow phenomena, e.g., Shock Wave Boundary-Layer Interactions (SWBLI), provide great insight to the flow behavior but often lack the necessary details to be useful as CFD validation experiments. Reasons include: 1.Undefined boundary conditions Inconsistent results 2.Undocumented 3D effects (CL only measurements) 3.Lack of uncertainty analysis While there are a number of good subsonic experimental investigations that are sufficiently documented to be considered test cases for CFD and turbulence model validation, the number of supersonic and hypersonic cases is much less. This was highlighted by Settles and Dodsons [1] comprehensive review of available supersonic and hypersonic experimental studies. In all, several hundred studies were considered for their database.Of these, over a hundred were subjected to rigorous acceptance criteria. Based on their criteria, only 19 (12 supersonic, 7 hypersonic) were considered of sufficient quality to be used for validation purposes. Aeschliman and Oberkampf [2] recognized the need to develop a specific methodology for experimental studies intended specifically for validation purposes.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GRC-E-DAA-TN25302 , 2015 AJK Fluids Engineering Division Summer Meeting; Jul 26, 2015 - Jul 31, 2015; Seoul; Korea, Democratic People''s Republic of
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-13
    Description: The Soft X-ray Spectrometer (SXS) instrument[1] on Astro-H[2] will use a 3-stage ADR[3] to cool the microcalorimeter array to 50 mK. In the primary operating mode, two stages of the ADR cool the detectors using superfluid helium at 1.20 K as the heat sink[4]. In the secondary mode, which is activated when the liquid helium is depleted, the ADR uses a 4.5 K Joule-Thomson cooler as its heat sink. In this mode, all three stages operate together to continuously cool the (empty) helium tank and singleshot cool the detectors. The flight instrument - dewar, ADR, detectors and electronics - were integrated in 2014 and have since undergone extensive performance testing. This paper presents a thermodynamic analysis of the ADR's operation, including cooling capacity, heat rejection to the heat sinks, and various measures of efficiency.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GSFC-E-DAA-TN27442 , Cryogenics (ISSN 0011-2275); 74; 24-30
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-13
    Description: The Laser Thermal Control System (LCTS) for the Advanced Topographic Laser Altimeter System (ATLAS) to be installed on NASA's Ice, Cloud, and Land Elevation Satellite (ICESat-2) consists of a constant conductance heat pipe and a loop heat pipe (LHP) with an associated radiator. During the recent thermal vacuum testing of the LTCS where the LHP condenser/radiator was placed in a vertical position above the evaporator and reservoir, it was found that the LHP reservoir control heater power requirement was much higher than the analytical model had predicted. Even with the control heater turned on continuously at its full power, the reservoir could not be maintained at its desired set point temperature. An investigation of the LHP behaviors found that the root cause of the problem was fluid flow and reservoir temperature oscillations, which led to persistent alternate forward and reversed flow along the liquid line and an imbalance between the vapor mass flow rate in the vapor line and liquid mass flow rate in the liquid line. The flow and temperature oscillations were caused by an interaction between gravity and reservoir heating, and were exacerbated by the large thermal mass of the instrument simulator which modulated the net heat load to the evaporator, and the vertical radiator/condenser which induced a variable gravitational pressure head. Furthermore, causes and effects of the contributing factors to flow and temperature oscillations intermingled.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GSFC-E-DAA-TN24219 , International Conference on Environmental Systems; Jul 12, 2015 - Jul 16, 2015; Bellevue, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-07-13
    Description: NASA's Space Launch System (SLS) uses four clustered liquid rocket engines along with two solid rocket boosters. The interaction between all six rocket exhaust plumes will produce a complex and severe thermal environment in the base of the vehicle. This work focuses on a recent 2% scale, hot-fire SLS base heating test. These base heating tests are short-duration tests executed with chamber pressures near the full-scale values with gaseous hydrogen/oxygen engines and RSRMV analogous solid propellant motors. The LENS II shock tunnel/Ludwieg tube tunnel was used at or near flight duplicated conditions up to Mach 5. Model development was strongly based on the Space Shuttle base heating tests with several improvements including doubling of the maximum chamber pressures and duplication of freestream conditions. Detailed base heating results are outside of the scope of the current work, rather test methodology and techniques are presented along with broader applicability toward scaled rocket testing in supersonic and hypersonic flow.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: M15-4744 , AIAA International Space Planes and Hypersonic Systems and Technologies Conference (Hypersonics 2015); Jul 06, 2015 - Jul 09, 2015; Glasgow, Scotland; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-13
    Description: The microcalorimeter array on the Soft X-ray Spectrometer instrument on Astro-H requires cooling to 50 mK, which will be accomplished by a 3-stage adiabatic demagnetization refrigerator (ADR). The ADR is surrounded by a cryogenic system consisting of a superfluid helium tank, a 4.5 K Joule-Thomson (JT) cryocooler, and additional 2-stage Stirling cryocoolers that pre-cool the JT cooler and radiation shields within the cryostat. The unique ADR design allows the instrument to meet all of its science requirements using either the stored cryogen or the JT cryocooler as its heat sink, giving the instrument an unusual degree of tolerance for component failures or degradation in the cryogenic system. The flight detector assembly, ADR and dewar were integrated in early 2014, and have since been extensively characterized and calibrated. At present, the four instruments are being integrated with the spacecraft in preparation for an early 2016 launch. This presentation summarizes the operation and performance of the ADR in all of its operating modes.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GSFC-E-DAA-TN22649 , Space Cryogenics Workshop 2015; Jun 24, 2015 - Jun 26, 2015; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-13
    Description: Preliminary results of an experimental investigation of a Mach 2.5 two-dimensional axisymmetric shock-wave/boundary-layer interaction (SWBLI) are presented. The purpose of the investigation is to create a SWBLI dataset specifically for CFD validation purposes. Presented herein are the details of the facility and preliminary measurements characterizing the facility and interaction region. The results will serve to define the region of interest where more detailed mean and turbulence measurements will be made.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AJK2015-06342 , GRC-E-DAA-TN23733 , 2015 AJK Fluids Engineering Division Summer Meeting; Jul 26, 2015 - Jul 31, 2015; Seoul; Korea, Republic of
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-13
    Description: Two sets of finite-rate gas-surface interaction model between air and the carbon surface are studied. The first set is an engineering model with one-way chemical reactions, and the second set is a more detailed model with two-way chemical reactions. These two proposed models intend to cover the carbon surface ablation conditions including the low temperature rate-controlled oxidation, the mid-temperature diffusion-controlled oxidation, and the high temperature sublimation. The prediction of carbon surface recession is achieved by coupling a material thermal response code and a Navier-Stokes flow code. The material thermal response code used in this study is the Two-dimensional Implicit Thermal-response and Ablation Program, which predicts charring material thermal response and shape change on hypersonic space vehicles. The flow code solves the reacting full Navier-Stokes equations using Data Parallel Line Relaxation method. Recession analyses of stagnation tests conducted in NASA Ames Research Center arc-jet facilities with heat fluxes ranging from 45 to 1100 wcm2 are performed and compared with data for model validation. The ablating material used in these arc-jet tests is Phenolic Impregnated Carbon Ablator. Additionally, computational predictions of surface recession and shape change are in good agreement with measurement for arc-jet conditions of Small Probe Reentry Investigation for Thermal Protection System Engineering.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN22266 , AIAA Thermophysics Conference; Jun 22, 2015 - Jun 26, 2015; Dallas, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aerospace Medicine
    Type: JSC-CN-33756 , Space Life Sciences Summer Institute; Jul 23, 2015; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-13
    Description: Childhood obesity is a serious global public health concern (WHO, 2015; Wang Y & Lobstein T, 2006). Low self-esteem and related mental health problems are common in obese children (Strauss RS, 2000) as well as poor academic performance and career development (Gurley-Calvez T, 2010).Westernized dietary habits and sedentary lifestyles are identified as the major risk factors of current alarming rate of obesity along with genetic susceptibility (Popkin BM, 1999). Children in many countries, including South Korea, have become increasingly sedentary due to urbanization changes in their respective societies (Ng SW, et al. 2009, Salmon J et al. 2011). In particular, South Korea had abundant dissemination of mobile technology, such as tablet and smart phone devices. Children have become reliant on mobile devices and are less likely to perform physical activities (Do, et al, 2013). Effective and sustainable intervention programs are needed to fight the global obesity epidemic (IOM, 2012; Wang Y et al, 2013; Wang Y et al, 2015). Previous studies suggested focus on prevention strategies that begin in early childhood, a period when children establish their life habits. (Salmon J et al. 2011). Recent systematic reviews and meta-analysis including ours found that obesity prevention programs for young children have a greater intervention effect (Waters E, et al, 2011; Wang Y et al, 2013; Wang Y et al, 2015). The NASA Mission X: Train Like an Astronaut (MX) program was developed to promote children's exercise and healthy eating with excitement for training like an astronaut (Lloyd C, 2012).At present, the NASA MX Program covered 28 countries, enrolled children through their teachers in school setting (MX report 2014, 2015). This pilot study adapted the NASA MX intervention program for young children in South Korea. We assessed its feasibility and effectiveness in promoting physical activity (PA) in children and in improving parents' perspectives. We also examined the status of PA in young children. More than 80% of five-year-old children go to a Kindergarten or day care center in South Korea (MH Suh et al, 2013).Thus, reaching young children through child care and education settings could be a good approach for early childhood obesity prevention.
    Keywords: Aerospace Medicine
    Type: JSC-CN-33786 , ObesityWeek 2015; Nov 02, 2015 - Nov 07, 2015; Los Angeles, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aerospace Medicine
    Type: JSC-CN-33667 , IAA Humans in Space Symposium; Jun 29, 2015 - Jul 03, 2015; Prague; Czechoslovakia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: Linea Research Corporation has developed a wearable noninvasive monitor that provides continuous blood pressure and heart rate measurements in extreme environments. Designed to monitor the physiological effects of astronauts' prolonged exposure to reduced-gravity environments as well as the effectiveness of various countermeasures, the device offers wireless connectivity to allow transfer of both real-time and historical data. It can be modified to monitor the health status of astronaut crew members during extravehicular missions.
    Keywords: Aerospace Medicine
    Type: An Overview of SBIR Phase 2 Physical Sciences and Biomedical Technologies in Space; 15; NASA/TM-2015-218857
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-12
    Description: Astronauts lose significant bone mass during lengthy space flights. NASA wishes to monitor this bone loss in order to develop nutritional and exercise countermeasures. Operational Technologies Corporation (OpTech) has developed a handheld device that quantifies bone loss in a spacecraft environment. The innovation works by adding fluorescent dyes and quenchers to aptamers to enable pushbutton, one-step bind-and-detect FRET assays that can be freeze-dried, rehydrated with body fluids, and used to quantify bone loss.
    Keywords: Aerospace Medicine
    Type: An Overview of SBIR Phase 2 Physical Sciences and Biomedical Technologies in Space; 4; NASA/TM-2015-218857
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-12
    Description: The Flame Extinguishment Experiment (FLEX) program is a continuing set of experiments on droplet combustion, performed employing the Multi-User Droplet Combustion Apparatus (MDCA), inside the chamber of the Combustion Integrated Rack (CIR), which is located in the Destiny module of the International Space Station (ISS). This report describes the experimental hardware, the diagnostic equipment, the experimental procedures, and the methods of data analysis for FLEX. It also presents the results of the first 284 tests performed. The intent is not to interpret the experimental results but rather to make them available to the entire scientific community for possible future interpretations.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TP-2015-216046 , E-18493 , GRC-E-DAA-TN5314
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: A simple control volume model has been developed to calculate the discharge coefficient through a mass flow plug (MFP) and validated with a calibration experiment. The maximum error of the model in the operating region of the MFP is 0.54%. The model uses the MFP geometry and operating pressure and temperature to couple continuity, momentum, energy, an equation of state, and wall shear. Effects of boundary layer growth and the reduction in cross-sectional flow area are calculated using an in- integral method. A CFD calibration is shown to be of lower accuracy with a maximum error of 1.35%, and slower by a factor of 100. Effects of total pressure distortion are taken into account in the experiment. Distortion creates a loss in flow rate and can be characterized by two different distortion descriptors.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/CR-2015-218820 , E-19092 , GRC-E-DAA-TN23120
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-12
    Description: The most serious risks of long-duration flight involve radiation, behavioral stresses, and physiological deconditioning. Artificial gravity (AG), by substituting for the missing gravitational cues and loading in space, has the potential to mitigate the last of these risks by preventing the adaptive responses from occurring. The rotation of a Mars-bound spacecraft or an embarked human centrifuge offers significant promise as an effective, efficient multi-system countermeasure against the physiological deconditioning associated with prolonged weightlessness. Virtually all of the identified risks associated with bone loss, muscle weakening, cardiovascular deconditioning, and sensorimotor disturbances might be alleviated by the appropriate application of AG. However, experience with AG in space has been limited and a human-rated centrifuge is currently not available on board the ISS. A complete R&D program aimed at determining the requirements for gravity level, gravity gradient, rotation rate, frequency, and duration of AG exposure is warranted before making a decision for implementing AG in a human spacecraft.
    Keywords: Aerospace Medicine
    Type: JSC-CN-33431
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-12
    Description: The Visual Impairment and Intracranial Pressure (VIIP) syndrome affects 60% of astronauts returning from long-duration missions and is characterized by structural and functional changes of the eye (3). Upon entry into weightlessness, approximately two liters of fluid translocates from the lower body to the thorax and cephalad regions, potentially contributing to elevated intracranial and intraocular pressures. The choroid is the vasculature that supplies blood flow to the posterior part of the retina and has limited autoregulation. As a consequence these vessels may engorge during a cephalad fluid shift, contributing to structural changes in the retina. The purpose of this experiment was to quantify changes in choroid thickness during a fluid shift. In order to fulfill this objective, it was also necessary to improve the measurement technique for assessing choroid thickness.
    Keywords: Aerospace Medicine
    Type: JSC-CN-34130
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-12
    Description: Possible acute and late risks to the central nervous system (CNS) from galactic cosmic rays (GCR) and solar particle events (SPE) are a documented concern for human exploration of space. Acute CNS risks include: altered cognitive function, reduced motor function, and behavioral changes, all of which may affect performance and human health. Late CNS risks include neurological disorders such as Alzheimer's disease (AD), dementia and premature aging. Although detrimental CNS changes are observed in humans treated with high-dose radiation (e.g., gamma rays and protons) for cancer and are supported by experimental evidence showing neurocognitive and behavioral effects in animal models, the significance of these results on the morbidity to astronauts has not been elucidated. There is a lack of human epidemiology data on which to base CNS risk estimates; therefore, risk projection based on scaling to human data, as done for cancer risk, is not possible for CNS risks. Research specific to the spaceflight environment using animal and cell models must be compiled to quantify the magnitude of CNS changes in order to estimate this risk and to establish validity of the current permissible exposure limits (PELs). In addition, the impact of radiation exposure in combination with individual sensitivity or other space flight factors, as well as assessment of the need for biological/pharmaceutical countermeasures, will be considered after further definition of CNS risk occurs.
    Keywords: Aerospace Medicine
    Type: JSC-CN-34054
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-12
    Description: A methodology is given that converts an existing finite volume radiative transfer method that requires input of local absorption coefficients to one that can treat a mixture of combustion gases and compute the coefficients on the fly from the local mixture properties. The Full-spectrum k-distribution method is used to transform the radiative transfer equation (RTE) to an alternate wave number variable, g . The coefficients in the transformed equation are calculated at discrete temperatures and participating species mole fractions that span the values of the problem for each value of g. These results are stored in a table and interpolation is used to find the coefficients at every cell in the field. Finally, the transformed RTE is solved for each g and Gaussian quadrature is used to find the radiant heat flux throughout the field. The present implementation is in an existing cartesian/cylindrical grid radiative transfer code and the local mixture properties are given by a solution of the National Combustion Code (NCC) on the same grid. Based on this work the intention is to apply this method to an existing unstructured grid radiation code which can then be coupled directly to NCC.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2015-218815 , E-19089 , GRC-E-DAA-TN22948
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-12
    Description: This report provides a code-to-code comparison between PATO, a recently developed high fidelity material response code, and FIAT, NASA's legacy code for ablation response modeling. The goal is to demonstrates that FIAT and PATO generate the same results when using the same models. Test cases of increasing complexity are used, from both arc-jet testing and flight experiment. When using the exact same physical models, material properties and boundary conditions, the two codes give results that are within 2% of errors. The minor discrepancy is attributed to the inclusion of the gas phase heat capacity (cp) in the energy equation in PATO, and not in FIAT.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/CR-2015-218960 , ARC-E-DAA-TN27949
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-12
    Description: While preventive measures limit the presence of many medically significant microorganisms during spaceflight missions, microbial infection of crewmembers cannot be completely prevented. Spaceflight experiments over the past 50 years have demonstrated a unique microbial response to spaceflight culture, although the mechanisms behind those responses and their operational relevance were unclear. In 2007, the operational importance of these microbial responses was emphasized as the results of an experiment aboard STS-115 demonstrated that the enteric pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) increased in virulence in a murine model of infection. The experiment was reproduced in 2008 aboard STS-123 confirming this finding. In response to these findings, the Institute of Medicine of the National Academies recommended that NASA investigate this risk and its potential impact on the health of the crew during spaceflight. NASA assigned this risk to the Human Research Program. To better understand this risk, evidence has been collected and reported from both spaceflight analog systems and actual spaceflight. Although the performance of virulence studies during spaceflight are challenging and often impractical, additional information has been and continues to be collected to better understand the risk to crew health. Still, the uncertainty concerning the extent and severity of these alterations in host-microorganism interactions is very large and requires more investigation.
    Keywords: Aerospace Medicine
    Type: JSC-CN-34586
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-12
    Description: Medication usage records can be used as a relatively nonintrusive means of monitoring health. This has been attempted previously through crew medical records, but these records are incomplete from the perspective of a research pharmacologist. During the shuttle era, NASA operations did not include routine questioning of crewmembers about their medication use until after missions were complete. The (long!) questionnaire was on paper. Asking crewmembers to recall medication use from weeks before questioning made getting complete and accurate information virtually impossible. This study will document medication usage of crewmembers before and during their missions. It will capture previously unrecorded data regarding medication use during spaceflight, including side effect qualities, frequencies and severities. The research-oriented data will be collected for research purposes, separate from medical records. Dose Tracker employs an iOS application (app) for fast & easy collection of medication usage data from crewmember participants during their missions.
    Keywords: Aerospace Medicine
    Type: JSC-CN-33744
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-12
    Description: For my summer internship project, I organized a pilot study to analyze the effects of a cephalic fluid shift on venous return and right ventricular mechanics to increase right ventricular and venous knowledge. To accomplish this pilot study, I wrote a testing protocol, obtained Institutional Review Board (IRB) approval, completed subject payment forms, lead testing sessions, and analyzed the data. This experiment used -20deg head down tilt (20 HDT) as the ground based simulation for the fluid shift that occurs during spaceflight and compared it to data obtained from the seated and supine positions. Using echocardiography, data was collected for the right ventricle, hepatic vein, internal jugular vein, external jugular vein, and inferior vena cava. Additionally, non-invasive venous pressure measurements, similar to those soon to be done in-orbit, were collected. It was determined that the venous return from below the heard is increased during 20 HDT, which was supported by increased hepatic vein velocities, increased right ventricular inflow, and increased right ventricular strain at 20 HDT relative to seated values. Jugular veins in the neck undergo an increase in pressure and area, but no significant increase in flow, relative to seated values when a subject is tilted 20 HDT. Contrary to the initial expectations based on this jugular flow, there was no significant increase in central venous pressure, as evidenced by no change in Doppler indices for right arterial pressure or inferior vena cava diameter. It is suspected that these differences in pressure are due to the hydrostatic pressure indifference point shifting during tilt; there is a potential for a similar phenomenon with microgravity. This data will hopefully lead to a more in-depth understanding of the response of the body to microgravity and how those relate to the previously mentioned cardiovascular risk of fluid shift that is associated with spaceflight. These results were presented in greater detail to the Cardiovascular Laboratory and the Space Life Science Summer Institute, which helped me prepare for future graduate school research presentations. This internship allowed me to apply and expand the anatomy, physiology, and mechanics information I learned during my undergraduate degree in Biomedical Engineering to the cardiovascular system with the unique zero gravity perspective. Additionally, I was able to develop skills with data analysis techniques involving speckle tracking for ventricular strain and Doppler waveforms for blood velocities. Additionally, I was able to expand upon my previous work in the Cardiovascular Laboratory by writing a literature review on a data analysis project I completed last summer. Ultimately, this internship and venous relationship comparison project provided me with a significant learning experience and additional skill sets, which are applicable to my goals of attaining a Ph.D. in biomedical engineering with a focus on tissue engineering and the cardiovascular system.
    Keywords: Aerospace Medicine
    Type: JSC-CN-33870
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-19
    Description: The Field Test study is currently in full swing, preceded by the successful completion of the Pilot Field Test study that paved the way for collecting data on the astronauts in the medical tent in Kazakhstan. Abigail Sherriff worked alongside Logan Dobbe on one Field Test aspect to determine foot clearance over obstacles (5cm, 10cm, and 15cm) using APDM Inc. Internal Measurement Units (IMU) worn by the astronauts. They created a program to accurately calculate foot clearance using the accelerometer, magnetometer, and gyroscope data with the IMUs attached to the top of the shoes. To validate the functionality of their program, they completed a successful study on test subjects performing various tasks in an optical motion studio, considered a gold standard in biomechanics research. Future work will include further validation and expanding the program to include other analyses.
    Keywords: Aerospace Medicine
    Type: JSC-CN-34207
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-19
    Description: Humans will set foot on the moon again. The lunar surface has been bombarded for 4 billion years by micrometeoroids and cosmic radiation, creating a layer of fine dust having a potentially reactive particle surface. To investigate the impact of surface reactivity (SR) on the toxicity of particles, and in particular, lunar dust (LD), we ground 2 Apollo 14 LD samples to increase their SR and compare their toxicity with those of unground LD, TiO2 and quartz. Intratracheally instilled at 0, 1, 2.5, or 7.5 mg/rat, all dusts caused dose-dependent increases in pulmonary lesions, and enhancement of biomarkers of toxicity assessed in bronchoalveolar lavage fluids (BALF). The toxicity of LD was greater than that of TiO2 but less than that of quartz. Three LDs differed 14-fold in SR but were equally toxic; quartz had the lowest SR but was most toxic. These results show no correlation between particle SR and toxicity. Often pulmonary toxicity of a dust can be attributed to oxidative stress (OS). We further observed dose-dependent and dustcytotoxicity- dependent increases in neutrophils. The oxidative content per BALF cell was also directly proportional to both the dose and cytotoxicity of the dusts. Because neutrophils are short-lived and release of oxidative contents after they die could initiate and promote a spectrum of lesions, we postulate a general mechanism for the pathogenesis of particle-induced diseases in the lung that involves chiefly neutrophils, the source of persistent endogenous OS. This mechanism explains why one dust (e.g., quartz or nanoparticles) is more toxic than another (e.g., micrometer-sized TiO2), why dust-induced lesions progress with time, and why lung cancer occurs in rats but not in mice and hamsters exposed to the same duration and concentration of dust.
    Keywords: Aerospace Medicine
    Type: JSC-CN-32372 , SOT (Society of Toxicology) Annual Meeting; Mar 22, 2015 - Mar 26, 2015; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-19
    Description: In a cyclical heat load environment such as low Lunar orbit, a spacecraft's radiators are not sized to reject the full heat load requirement. Traditionally, a supplemental heat rejection device (SHReD) such as an evaporator or sublimator is used to act as a "topper" to meet the additional heat rejection demands. Utilizing a Phase Change Material (PCM) heat exchanger (HX) as a SHReD provides an attractive alternative to evaporators and sublimators as PCM HXs do not use a consumable, thereby leading to reduced launch mass and volume requirements. In continued pursuit of water PCM HX development an Orion system level analysis was performed using Thermal Desktop for a water PCM HX integrated into Orion's thermal control system and in a 100km Lunar orbit. The study analyzed 1) placing the PCM on the Internal Thermal Control System (ITCS) versus the External Thermal Control System (ETCS) 2) use of 30/70 PGW verses 50/50 PGW and 3) increasing the radiator area in order to reduce PCM freeze times. The analysis showed that for the assumed operating and boundary conditions utilizing a water PCM HX on Orion is not a viable option. Additionally, it was found that the radiator area would have to be increased over 20% in order to have a viable waterbased PCM HX.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JSC-CN-32449 , International Conference on Environmental Systems (ICES 2015); Jul 12, 2015 - Jul 16, 2015; Bellevue, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-19
    Description: Intermediates of the one-carbon metabolic pathway are altered in astronauts who experience vision-related issues during and after space flight. Serum concentrations of homocysteine, cystathionine, 2-methylcitric acid, and methylmalonic acid were higher in astronauts with ophthalmic changes than in those without (Zwart et al., J Nutr, 2012). These differences existed before, during, and after flight. Potential confounding factors did not explain the differences. Genetic polymorphisms could contribute to these differences, and could help explain why crewmembers on the same mission do not all have ophthalmic issues, despite the same environmental factors (e.g., microgravity, exercise, diet). A follow-up study was conducted to evaluate 5 polymorphisms of enzymes in the one-carbon pathway, and to evaluate how these relate to vision and other ophthalmic changes after flight. Preliminary evaluations of the genetic data indicate that all of the crewmembers with the MTRR GG genotype had vision issues to one degree or another. However, not everyone who had vision issues had this genetic polymorphism, so the situation is more complex than the involvement of this single polymorphism. Metabolomic and further data analyses are underway to clarify these findings, but the preliminary assessments are promising.
    Keywords: Aerospace Medicine
    Type: JSC-CN-32354 , Experimental Biology; Mar 28, 2015 - Apr 01, 2015; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-19
    Description: The detection of the first VIIP case occurred in 2005, and adequate eye outcome measures were available for 31 (67.4%) of the 46 long duration US crewmembers who had flown on the ISS since its first crewed mission in 2000. Therefore, this analysis is limited to a subgroup (22 males and 9 females). A "cardiovascular profile" for each astronaut was compiled by examining twelve individual parameters; eleven of these were preflight variables: systolic blood pressure, pulse pressure, body mass index, percentage body fat, LDL, HDL, triglycerides, use of antilipid medication, fasting serum glucose, and maximal oxygen uptake in ml/kg. Each of these variables was averaged across three preflight annual physical exams. Astronaut age prior to the long duration mission, and inflight salt intake was also included in the analysis. The group of cardiovascular variables for each crew member was compared with seven VIIP eye outcome variables collected during the immediate postflight period: anterior-posterior axial length of the globe measured by ultrasound and optical biometry; optic nerve sheath diameter, optic nerve diameter, and optic nerve to sheath ratio each measured by ultrasound and magnetic resonance imaging (MRI), intraocular pressure (IOP), change in manifest refraction, mean retinal nerve fiber layer (RNFL) on optical coherence tomography (OCT), and RNFL of the inferior and superior retinal quadrants. Since most of the VIIP eye outcome measures were added sequentially beginning in 2005, as knowledge of the syndrome improved, data were unavailable for 22.0% of the outcome measurements. To address the missing data, we employed multivariate multiple imputation techniques with predictive mean matching methods to accumulate 200 separate imputed datasets for analysis. We were able to impute data for the 22.0% of missing VIIP eye outcomes. We then applied Rubin's rules for collapsing the statistical results across our 200 multiply imputed data sets to assess the canonical correlation between the eye outcomes and the twelve astronaut cardiovascular variables available for all 31 subjects. Results: A highly significant canonical correlation was observed among the canonical solutions (p〈.00001), with an average best canonical correlation of.97. The results suggest a strong association between astronauts' measures of cardiovascular health and the seven eye outcomes of the VIIP syndrome used in this analysis. Furthermore, the "joint test" revealed a significant difference in cardiovascular profile between male and female astronauts (Prob 〉 F = 0.00001). Overall, female astronauts demonstrated a significantly healthier cardiovascular status. Individually, the female astronauts had significantly healthier profiles on seven of twelve cardiovascular variables than the men (p values ranging from 〈0.0001 to 〈0.05). Male astronauts did not demonstrate significantly healthier values on any of the twelve cardiovascular variables measured
    Keywords: Aerospace Medicine
    Type: JSC-CN-32236 , 2015 Human Research Program Investigators'' Workshop; Jan 13, 2015 - Jan 15, 2015; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-19
    Description: The goals of the Functional Task Test (FTT) study were to determine the effects of spaceflight on functional tests that are representative of critical exploration mission tasks and to identify the key physiological factors that contribute to decrements in performance.
    Keywords: Aerospace Medicine
    Type: JSC-CN-33366 , Annual International Gravitational Physiology Meeting; Jun 07, 2015 - Jun 12, 2015; Ljubljana; Slovenia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-19
    Description: Cardiovascular adaptations due to spaceflight are modeled with 6deg head-down tilt bed rest (BR) and result in decreased orthostatic tolerance. We investigated if high-intensity resistive and aerobic exercise with and without testosterone supplementation would improve the heart rate (HR) response to a 3.5-min stand test and how quickly these changes recovered following BR. During 70 days of BR male subjects performed no exercise (Control, n=10), high intensity supine resistive and aerobic exercise (Exercise, n=9), or supine exercise plus supplemental testosterone (Exercise+T, n=8; 100 mg i.m., weekly in 2-week on/off cycles). We measured HR for 2 min while subjects were prone and for 3 min after standing twice before and 0, 1, 6, and 11 days after BR. Mixed-effects linear regression models were used to evaluate group, time, and interaction effects. Compared to pre-bed rest, prone HR was elevated on BR+0 and BR+1 in Control, but not Exercise or Exercise+T groups, and standing HR was greater in all 3 groups. The increase in prone and standing HR in Control subjects was greater than either Exercise or Exercise+T groups and all groups recovered by BR+6. The change in HR from prone to standing more than doubled on BR+0 in all groups, but was significantly less in the Exericse+T group compared to the Control, but not Exercise group. Exercise reduces, but does not prevent the increase in HR observed in response to standing. The significantly lower HR response in the Exercise+T group requires further investigation to determine physiologic significance.
    Keywords: Aerospace Medicine
    Type: JSC-CN-33362 , Annual International Gravitational Physiology Meeting; Jun 07, 2015 - Jun 12, 2015; Ljubljana; Slovenia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-19
    Description: The NASA Twins Study, NASA's first foray into integrated omic studies in humans, illustrates how an integrated omics approach can be brought to bear on the challenges to human health and performance on a Mars mission. The NASA Twins Study involves US Astronaut Scott Kelly and his identical twin brother, Mark Kelly, a retired US Astronaut. No other opportunity to study a twin pair for a prolonged period with one subject in space and one on the ground is available for the foreseeable future. A team of 10 principal investigators are conducting the Twins Study, examining a very broad range of biological functions including the genome, epigenome, transcriptome, proteome, metabolome, gut microbiome, immunological response to vaccinations, indicators of atherosclerosis, physiological fluid shifts, and cognition. A novel aspect of the study is the integrated study of molecular, physiological, cognitive, and microbiological properties. Major sample and data collection from both subjects for this study began approximately six months before Scott Kelly's one year mission on the ISS, continue while Scott Kelly is in flight and will conclude approximately six months after his return to Earth. Mark Kelly will remain on Earth during this study, in a lifestyle unconstrained by this study, thereby providing a measure of normal variation in the properties being studied. An overview of initial results and the future plans will be described as well as the technological and ethical issues raised for spaceflight studies involving omics.
    Keywords: Aerospace Medicine
    Type: JSC-CN-33077 , IAA 2015 Humans in Space Symposium; Jun 29, 2015 - Jul 03, 2015; Prague, Czech Republic; Czechoslovakia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-19
    Description: Bed rest has been widely used as a simulation of weightlessness in studying the effects of microgravity exposure on human physiology and cognition. Changes in muscle function and functional mobility have been reported to be associated with bed rest. Understanding the effect of bed rest on neural control of movement would provide helpful information for spaceflight. In the current study, we evaluated how the brain activation for foot movement changed as a function of bed rest. Eighteen healthy men (aged 25 to 39 years) participated in this HDBR study. They remained continuously in the 6deg headdown tilt position for 70 days. Functional MRI was acquired during 1Hz right foot tapping, and repeated at 7 time points: 12 days pre, 8 days pre, 7 days in, 50 days in, 70 days in, 8 days post, and 12 days post HDBR. In all 7 sessions, we observed increased activation in the left motor cortex, right cerebellum and right occipital cortex during foot movement blocks compared to rest. Compared to the preHDBR baseline (1st and 2nd sessions), foot movementinduced activation in the left hippocampus increased during HDBR. This increase emerged in the 4th session, enlarged in the 5th session, and remained significant in the 6th and 7th sessions. Furthermore, increased activation relative to the baseline in left precuneus was observed in the 5th, 6th and 7th sessions. In addition, in comparison with baseline, increased activation in the left cerebellum was found in the 4th and 5th sessions, whereas increased activation in the right cerebellum was observed in the 4th, 6th and 7th sessions. No brain region exhibited decreased activation during bed rest compared to baseline. The increase of foot movement related brain activation during HDBR suggests that in a longterm headdown position, more neural control is needed to accomplish foot movements. This change required a couple of weeks to develop in HDBR (between 3rd and 4th sessions), and did not return to baseline even 12 days after HDBR. The observed effect of bed rest on brain activation during a foot tapping task could be linked to HDBR related changes in brain structure that we have recently reported. The relationship between pre and post HDBR changes in brain activation and performance in a functional mobility test will also be presented.
    Keywords: Aerospace Medicine
    Type: JSC-CN-32957 , Annual Conference of the Society for the Neural Control of Movement; Apr 20, 2015 - Apr 24, 2015; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-19
    Description: Physics and biology are inextricably linked. All the chemical and biological processes of life are dutifully bound to follow the rules and laws of physics. In space, these physical laws seem to turn on their head and biological systems, from microbes to humans, adapt and evolve in myriad ways to cope with the changed physical influences of the space environment. Gravity is the most prominent change in space that influences biology. In microgravity, the physical processes of sedimentation, density-driven convective flow, influence of surface tension and fluid pressure profoundly influence biology at the molecular and cellular level as well as at the whole-body level. Gravity sensing mechanisms are altered, structural and functional components of biology (such as bone and muscle) are reduced and changes in the way fluids and gasses behave also drive the way microbial systems and biofilms grow as well as the way plants and animals adapt. The radiation environment also effects life in space. Solar particle events and high energy cosmic radiation can cause serious damage to DNA and other biomolecules. The results can cause mutation, cellular damage or death, leading to health consequences of acute radiation damage or long-term health consequences such as increased cancer risk. Space Biophysics is the study and utilization of physical changes in space that cause changes in biological systems. The unique physical environment in space has been used successfully to grow high-quality protein crystals and 3D tissue cultures that could not be grown in the presence of unidirectional gravitational acceleration here on Earth. All biological processes that change in space have their root in a biophysical alteration due to microgravity and/or the radiation environment of space. In order to fully-understand the risks to human health in space and to fully-understand how humans, plants, animals and microbes can safely and effectively travel and eventually live for long periods beyond the protective environment of Earth, the biophysical properties underlying these changes must be studied, characterized and understood. This lecture reviews the current state of NASA biophysics research accomplishments and identifies future trends and challenges for biophysics research on the International Space Station and beyond.
    Keywords: Aerospace Medicine
    Type: ARC-E-DAA-TN20947 , Benson Memorial Lecture; Apr 07, 2015; Oxford, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-19
    Description: Weightlessness and radiation, two of the unique elements of the space environment, causes a profound decrement in bone mass that mimics aging. This bone loss is thought to result from increased activity of bone-resorbing osteoclasts and functional changes in bone-forming osteoblasts, cells that give rise to mature osteocytes. Our current understanding of the signaling factors and mechanisms underlying bone loss is incomplete. However, it is known that oxidative stress, characterized by the excess production of free radicals, is elevated during radiation exposure. The goals of this study is to examine the response of osteocytes to spaceflight-like radiation and to identify signaling processes that may be targeted to mitigate bone loss in scenarios of space exploration, earth-based radiotherapy and accidental radiation exposure. We hypothesize that (1) oxidative stress, as induced by radiation, decreases osteocyte survival and increases pro-osteoclastogenic signals and that (2) autophagy is one of the key cellular defenses against oxidative stress. Autophagy is the process by which cellular components including organelles and proteins are broken down and recycled. To test our hypothesis, we exposed the osteocyte-like cell line, MLO-Y4, to 0.5, 1, and 2 Gy of simulated space radiation (Iron-56 radiation at 600 MeV/n) and assessed cell numbers, cell growth-associated molecules as well as markers of autophagy and oxidative stress at various time points post-irradiation. We observed a reduction in cell numbers in the groups exposed to 1 and 2 Gy of Iron-56 radiation. Collectively, flow cytometry and gene expression analysis revealed that radiation caused a shift in cell cycle distribution consistent with growth arrest. Compared to sham-treatment, 2 Gy of Iron-56 increased FoxO3, SOD1, and RANKL gene expression yet unexpectedly decreased LC3B-II protein levels at 4 and 24 hours post-IR. Taken together, these findings suggest that simulated space radiation invoke antioxidant, pro-osteoclastogenic, and growth arrest responses in osteocytes. The implications of reduced autophagy flux at the time points examined remain to be elucidated.
    Keywords: Aerospace Medicine
    Type: ARC-E-DAA-TN27077 , 2015 Cell Biology ASCB Annual Meeting; Dec 12, 2015 - Dec 16, 2015; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-19
    Description: United States Astronauts have a very unique occupational exposure profile. In order to understand these risks and properly address them, the National Aeronautics and Atmospheric Administration, NASA, originally created the Longitudinal Study of Astronaut Health, LSAH. The first LSAH was designed to address a variety of needs regarding astronaut health and included a 3 to 1 terrestrial control population in order to compare United States "earth normal" disease and aging to that of a microgravity exposed astronaut. Over the years that program has been modified, now termed Lifetime Surveillance of Astronaut Health, still LSAH. Astronaut spaceflight exposures have also changed, with the move from short duration shuttle flights to long duration stays on international space station and considerable terrestrial training activities. This new LSAH incorporates more of an occupational health and medicine model to the study of occupationally exposed astronauts. The presentation outlines the baseline exposures and monitoring of the astronaut population to exposures, both terrestrial, and in space.
    Keywords: Aerospace Medicine
    Type: JSC-CN-34940 , American Industrial Hygiene Conference & Exposition (AIHce); May 23, 2015 - May 26, 2015; Baltimore, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-19
    Description: Long duration missions beyond low Earth orbit introduce new constraints to the medical system. Factors such as the inability to evacuate to Earth in a timely manner, communication delay, limitations in available medical equipment, and the clinical background of the crew will all have an impact on the assessment and treatment of medical conditions. The Exploration Medical Capability (ExMC) Element of NASAs Human Research Program seeks to improve the way the element derives its mitigation strategies for the risk of "Unacceptable Health and Mission Outcomes Due to Limitation of Inflight Medical Capabilities."
    Keywords: Aerospace Medicine
    Type: JSC-CN-32355 , Aerospace Medical Association (AsMA) Annual Scientific Meeting; May 10, 2015 - May 14, 2015; Lake Buena Vista, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-19
    Description: More than 60% of US astronauts participating in Mir and early International Space Station missions (greater than 5 months) were unable to complete a 10min 80 deg headup tilt test on landing day. This high incidence of postspaceflight orthostatic intolerance may be related to limitations of the inflight exercise hardware that prevented high intensity training. PURPOSE: This study sought to determine if a countermeasure program that included intense lowerbody resistive and rowing exercises designed to prevent cardiovascular and musculoskeletal deconditioning during 70 days of 6 deg head-down tilt bed rest (BR), a spaceflight analog, also would protect against post BR orthostatic intolerance. METHODS: Sixteen males participated in this study and performed no exercise (Control, n=10) or performed an intense supine exercise protocol with resistive and aerobic components (Exercise, n=6). On 3 days/week, exercise subjects performed lower body resistive exercise and a 30min continuous bout of rowing (greater than or equal to 75% max heart rate). On 3 other days/week, subjects performed only highintensity, intervalstyle rowing. Orthostatic intolerance was assessed using a 15min 80 deg headup tilt test performed 2 days (BR2) before and on the last day of BR (BR70). Plasma volume was measured using a carbon monoxide rebreathing technique on BR3 and before rising on the first recovery day (BR+0). RESULTS: Following 70 days of BR, tilt tolerance time decreased significantly in both the Control (BR2: 15.0 +/- 0.0, BR70: 9.9 +/- 4.6 min, mean +/- SD) and Exercise (BR2: 12.2 +/- 4.7, BR70: 4.9 +/- 1.9 min) subjects, but the decreased tilt tolerance time was not different between groups (Control: 34 +/- 31, Exercise: 56 +/- 16%). Plasma volume also decreased (Control: 0.56 +/- 0.40, Exercise: 0.48 +/- 0.33 L) from pre to postBR, with no differences between groups (Control: 18 +/- 11%, Exerciser: 15 +/-1 0%). CONCLUSIONS: These findings confirm previous reports in shorter BR studies that the performance of an exercise countermeasure protocol by itself during BR does not prevent orthostatic intolerance or plasma volume loss. This suggests that protection against orthostatic intolerance in astronauts following longduration spaceflight will require an additional intervention, such as periodic orthostatic stress, fluid repletion, and/or lowerbody compression garments.
    Keywords: Aerospace Medicine
    Type: JSC-CN-32335 , Annual Meeting of the American College of Sports Medicine; May 26, 2015 - May 30, 2015; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-19
    Description: The full array of 21st century omics-based research methods should be intelligently employed to reduce the health and performance risks that astronauts will be exposed to during exploration missions beyond low Earth Orbit. In March of 2015, US Astronaut Scott Kelly will launch to the International Space Station for a one year mission while his twin brother, Mark Kelly, a retired US Astronaut, remains on the ground. This situation presents an extremely rare flight opportunity to perform an integrated omics-based demonstration pilot study involving identical twin astronauts. A group of 10 principal investigators has been competitively selected, funded, and teamed together to form the Twins Study. A very broad range of biological function are being examined including the genome, epigenome, transcriptome, proteome, metabolome, gut microbiome, immunological response to vaccinations, indicators of atherosclerosis, physiological fluid shifts, and cognition. The plans for the Twins Study and an overview of initial results will be described as well as the technological and ethical issues raised for such spaceflight studies. An anticipated outcome of the Twins Study is that it will place NASA on a trajectory of using omics-based information to develop precision countermeasures for individual astronauts.
    Keywords: Aerospace Medicine
    Type: JSC-CN-32313 , AsMA Annual Scientific Meeting; May 10, 2015 - May 14, 2015; Lake Buena Vista, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-19
    Description: Elevated bone resorption is a hallmark of human spaceflight and bed rest indicating that elevated remodeling is a major factor in the etiology of space flight bone loss. In a collaborative effort between the NASA and JAXA space agencies, we are testing whether an antiresorptive drug would provide additional benefit to in-flight exercise to ameliorate bone loss and hypercalciuria during long-duration spaceflight. Measurements of bone loss include DXA, QCT, pQCT, urinary and blood biomarkers. We have completed analysis of R+1year data from 7 crewmembers treated with alendronate during flight, as well as immediate post flight (R+〈2wks) data from 6 of 10 concurrent controls without treatment. The treated astronauts used the Advanced Resistive Exercise Device (ARED) during their missions. The purpose of this report is twofold: 1) to report the results of inflight, post flight and one year post flight bone measures compared with available controls with and without the use of ARED; and 2) to discuss preliminary data on concurrent controls. The figure below compares the BMD changes in ISS crewmembers exercising with and without the current ARED protocol and the alendronate treated crewmembers also using the ARED. This shows that the use of ARED prevents about half the bone loss seen in early ISS crewmembers and that the addition of an antiresorptive provides additional benefit. Resorption markers and urinary Ca excretion are not impacted by exercise alone but are significantly reduced with antiresorptive treatment. Bone measures for treated subjects, 1 year after return from space remain at or near baseline. DXA data for the 6 concurrent controls using the ARED device are similar to DXA data shown in the figure below. QCT data for these six indicate that the integral data are consistent with the DXA data, i.e., comparing the two control groups suggests significant but incomplete improvement in maintaining BMD using the ARED protocol. Biochemical data of the concurrent control group await sample return and analysis. The preliminary conclusion is that an antiresorptive may be an effective adjunct to exercise during long-duration spaceflight.
    Keywords: Aerospace Medicine
    Type: JSC-CN-32238 , 2015 Human Research Program Investigators'' Workshop (HRP IWS 2015); Jan 13, 2015 - Jan 15, 2015; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-19
    Description: Mitigating space flight-induced bone loss is critical for space exploration, and diet can play a major role in this effort (1). Previous ground-based studies provide evidence that dietary composition can influence bone resorption during bed rest (2). In this study we examined the role of dietary intake patterns as one factor that can influence bone mineral loss in astronauts during space flight. Crew members were asked to consume, for 4 days at a time, prescribed menus with either a low (0.3-0.6 g/mEq) or high (1.0-1.3 g/mEq) ratio of animal protein to potassium (APro:K). Menus were developed for each crewmember, and were designed to meet both crew preferences and study constraints. Intakes of energy, total protein, calcium, and sodium were held relatively constant between the two diets. The order of the menus was randomized, and crews completed each set (low and high) once before and twice during space flight, for a total of 6 controlled diet sessions. One inflight session and three postflight sessions (R+30, R+180, R+365) monitored typical dietary intake. As of this writing, data are available from 14 crew members. Two subject's samples are awaiting return from ISS via Space-X, and the final subject has one more collection session planned in November 2014. On the last day of each of the 4-d controlled diet sessions, 24-h urine samples were collected, along with a fasting blood sample on the morning of the 5th day. Preliminary analyses will show the relationships between diet and flight on markers of bone metabolism. The results from this study, which represent healthy individuals in a unique environment, will be important to better understand diet and bone interrelationships during space flight as well as on Earth. These data will be important as nutritional requirements and food systems are developed for future exploration-class missions. This study was funded by the Human Health Countermeasures Element of NASA Human Research Program.
    Keywords: Aerospace Medicine
    Type: JSC-CN-32199 , 2015 Human Research Program Investigators'' Workshop; Jan 13, 2015 - Jan 15, 2015; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-19
    Description: In 2013, the Human Research Program at NASA began developing a new confinement analog specifically for conducting research to investigate the effects of confinement on the human system. The HERA (Human Exploration Research Analog) habitat has been used for both 7 and 14 day missions to date to examine and mitigate exploration risks to enable safe, reliable and productive human space exploration. This presentation will describe how the Flight Analogs Project developed the HERA facility and the infrastructure to suit investigator requirements for confinement research and in the process developed a new approach to analog utilization and a new state of the art analog facility. Details regarding HERA operations will be discussed including specifics on the mission simulation utilized for the current 14-day campaign, the specifics of the facility (total volume, overall size, hardware), and the capabilities available to researchers. The overall operational philosophy, mission fidelity including timeline, schedule pressures and cadence, and development and implementation of mission stressors will be presented. Research conducted to date in the HERA has addressed risks associated with behavioral health and performance, human physiology, as well as human factors. This presentation will conclude with a discussion of future research plans for the HERA, including infrastructure improvements and additional research capabilities planned for the upcoming 30-day missions in 2016.
    Keywords: Aerospace Medicine
    Type: JSC-CN-33034 , 2015 International Academy of Astronautics (IAA) Humans in Space Symposium; Jun 29, 2015 - Jul 03, 2015; Prague; Czechoslovakia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-20
    Description: The design of a new 76 mm (3 inch) nozzle of the Interaction Heating Facility arc jet at NASA Ames Research Center is described. The computational efforts which were an integral part of the preliminary design and characterization of the nozzle are described as well. Details of heat flux measurements made in this new nozzle are provided. Apart from showing the flow characteristics of the nozzle, predictions of stagnation point heat flux are compared against measurements made with a nullpoint calorimeter; the agreement between computation and measurement is found to be good. Unfortunately, pressure measurements could not be made in the first round. The predicted stagnation point pressures and heat fluxes, with appropriate scaling for a 25 mm (1 inch) diameter iso-q geometry (reference geometry), are used to establish a provisional operating envelope for the new nozzle. The envelope is shown to enclose relevant heating portions of representative atmospheric trajectories at Venus and Saturn.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN26720 , NASA/TM-2015-218934
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-20
    Description: As humans, we evolved, developed, grew, and now function in a continuous 1-gravity environment. Habitation in space poses unique challenges to human cells and organ systems. Biomedical research with rodents (primarily mice and rats) can help to both unravel molecular, cellular and physiologic mechanisms relevant to humans and test candidate interventions that mitigate adverse effects of space on humans, such as muscle atrophy, bone loss and cardiovascular deconditioning. One favored hypothesis that may explain the detrimental effects of spaceflight on humans is that reduced mechanical loading in microgravity accelerates aging. Rodents provide a relevant model system to study this problem as they age 40 times faster than humans. Now scientists from both public and commercial sectors conduct rodent experiments on the ISS using a new capability developed primarily at ARC. Results from the maiden voyage of the Rodent Research Project on the ISS reveal that long duration effects of spaceflight appear far different than short duration effects. Thus, Rodent Research missions on the ISS usher in a new era for exploration and biological discovery in space.
    Keywords: Aerospace Medicine
    Type: ARC-E-DAA-TN23872 , Seminar at ARC Summer Series; Jun 01, 2015; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-26
    Description: Radiance measurements in air at enthalpies from 8-20 MJkg have been made over a 250mm diameter flat-faced test article in Japan Aerospace Exploration Agency's HIgh-Enthalpy Shock Tunnel (HIEST). Measurements were made in the ultraviolet region (200-400 nm wavelength) in an attempt to resolve the long-standing discrepancy between theoryand measurements of heat flux over a blunt body; this discrepancy is often attributed toradiation. The spectra obtained indicate the presence of atomic iron vapor in the flowfield.At the highest enthalpies, the radiance is at the blackbody limit. An attempt to model theradiance is made by taking a nominal CFD flowfield without any contamination productsand processing it through a line-by-line radiation simulation tool. Iron vapor is introducedinto the shocked gas ahead of the model and radiation computations are repeated; the molefraction of iron vapor is adjusted to match the data. For the higher enthalpy conditions, theradiance was strongly absorbed and it was necessary to adjust the temperature and NOdensity in the freestream to match the signal below 300 nm. Once the observed spectrawere satisfactorily matched, the radiance to the stagnation point was then computed. It isshown that the impurity radiation is sufficiently large to explain the discrepancy.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN23557 , AIAA Thermophysics Conference; Jun 22, 2014 - Jun 26, 2014; Dallas, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-20
    Description: Simulation of turbulent flows with shocks employing explicit subgrid-scale (SGS) filtering may encounter a loss of accuracy in the vicinity of a shock. In this work we perform a comparative study of different approaches to reduce this loss of accuracy within the framework of the dynamic Germano SGS model. One of the possible approaches is to apply Hartens subcell resolution procedure to locate and sharpen the shock, and to use a one-sided test filter at the grid points adjacent to the exact shock location. The other considered approach is local disabling of the SGS terms in the vicinity of the shock location. In this study we use a canonical shock-turbulence interaction problem for comparison of the considered modifications of the SGS filtering procedure. For the considered test case both approaches show a similar improvement in the accuracy near the shock.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN17617 , AIAA Computational Fluid Dynamics Conference; Jun 22, 2015 - Jun 26, 2015; Dallas, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-20
    Description: This paper presents a status update for the shock layer radiation validation studies conducted at NASA. A review of the present capability for the simulation and validation of shock layer radiation is presented as well as providing an overview of the data obtained from the Electric Arc Shock Tube (EAST). The paper will include details covering updated convective and radiative heating correlations, provide an overview of the development of new kinetics for Mars entry and detail some recent work calculating after-body radiation. Furthermore, the paper will highlight conditions where there is high confidence in the validation of EAST data (e.g. Earth entry for speeds greater than approximately 10 kms and for many Mars entry conditions) and where further experimental data would be highly beneficial (e.g. lower speed Earth entry around 7.5 to 10 kms and higher speed CO2 entries relevant to Venus). Nominal test conditions for both Earth and Mars are provided for future potential facility-to-facility comparisons.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN21166 , European Symposium on Aerothermodynamics for Space Vehicles; Mar 02, 2015 - Mar 06, 2015; Lisbon; Portugal
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...