ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (45)
  • Copernicus Publications (EGU)  (45)
  • American Institute of Physics (AIP)
  • Nature Publishing Group (NPG)
  • 2010-2014  (45)
  • 1995-1999
  • 1985-1989
  • 2012  (45)
Collection
Source
Years
  • 2010-2014  (45)
  • 1995-1999
  • 1985-1989
Year
  • 1
    Publication Date: 2017-06-20
    Description: Here we show the use of the 210Pb-226Ra excess method to determine the growth rate of two corals from the world's largest known cold-water coral reef, Røst Reef, north of the Arctic circle off Norway. Colonies of each of the two species that build the reef, Lophelia pertusa and Madrepora oculata, were collected alive at 350 m depth using a submersible. Pb and Ra isotopes were measured along the major growth axis of both specimens using low level alpha and gamma spectrometry and trace element compositions were studied. 210Pb and 226Ra differ in the way they are incorporated into coral skeletons. Hence, to assess growth rates, we considered the exponential decrease of initially incorporated 210Pb, as well as the increase in 210Pb from the decay of 226Ra and contamination with 210Pb associated with Mn-Fe coatings that we were unable to remove completely from the oldest parts of the skeletons. 226Ra activity was similar in both coral species, so, assuming constant uptake of 210Pb through time, we used the 210Pb-226Ra chronology to calculate growth rates. The 45.5 cm long branch of M. oculata was 31 yr with an average linear growth rate of 14.4 ± 1.1 mm yr−1 (2.6 polyps per year). Despite cleaning, a correction for Mn-Fe oxide contamination was required for the oldest part of the colony; this correction corroborated our radiocarbon date of 40 yr and a mean growth rate of 2 polyps yr−1. This rate is similar to the one obtained in aquarium experiments under optimal growth conditions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Ocean Science, 8 (4). pp. 455-471.
    Publication Date: 2020-10-16
    Description: The influence of various wind and wave conditions on the variability of downwelling irradiance Ed (490 nm) in water is subject of this study. The work is based on a two-dimensional Monte Carlo radiative transfer model with high spatial resolution. The model assumes conditions that are ideal for wave focusing, thus simulation results reveal the upper limit for light fluctuations. Local wind primarily determines the steepness of capillary-gravity waves which in turn dominate the irradiance variability near the surface. Down to 3 m depth, maximum irradiance peaks that exceed the mean irradiance Ed by a factor of more than 7 can be observed at low wind speeds up to 5 m s−1. The strength of irradiance fluctuations can be even amplified under the influence of higher ultra-gravity waves; thereby peaks can exceed 11 Ed. Sea states influence the light field much deeper; gravity waves can cause considerable irradiance variability even at 100 m depth. The simulation results show that under realistic conditions 50% radiative enhancements compared to the mean can still occur at 30 m depth. At greater depths, the underwater light variability depends on the wave steepness of the characteristic wave of a sea state; steeper waves cause stronger light fluctuations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  The Cryosphere, 6 (6). pp. 1231-1237.
    Publication Date: 2018-01-22
    Description: The Arctic featured the strongest surface warming over the globe during the recent decades, and the temperature increase was accompanied by a rapid decline in sea ice extent. However, little is known about Arctic sea ice change during the Early Twentieth Century Warming (ETCW) during 1920–1940, also a period of a strong surface warming, both globally and in the Arctic. Here, we investigate the sensitivity of Arctic winter surface air temperature (SAT) to sea ice during 1875–2008 by means of simulations with an atmospheric general circulation model (AGCM) forced by estimates of the observed sea surface temperature (SST) and sea ice concentration. The Arctic warming trend since the 1960s is very well reproduced by the model. In contrast, ETCW in the Arctic is hardly captured. This is consistent with the fact that the sea ice extent in the forcing data does not strongly vary during ETCW. AGCM simulations with observed SST but fixed sea ice reveal a strong dependence of winter SAT on sea ice extent. In particular, the warming during the recent decades is strongly underestimated by the model, if the sea ice extent does not decline and varies only seasonally. This suggests that a significant reduction of Arctic sea ice extent may have also accompanied the Early Twentieth Century Warming, pointing toward an important link between anomalous sea ice extent and Arctic surface temperature variability.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-05-23
    Description: 2-D seismic data from the top and the western slope of Mergui Ridge in water depths between 300 and 2200 m off the Thai west coast have been investigated in order to identify mass transport deposits (MTDs) and evaluate the tsunamigenic potential of submarine landslides in this outer shelf area. Based on our newly collected data, 17 mass transport deposits have been identified. Minimum volumes of individual MTDs range between 0.3 km3 and 14 km3. Landslide deposits have been identified in three different settings: (i) stacked MTDs within disturbed and faulted basin sediments at the transition of the East Andaman Basin to the Mergui Ridge; (ii) MTDs within a pile of drift sediments at the basin-ridge transition; and (iii) MTDs near the edge of/on top of Mergui Ridge in relatively shallow water depths (〈 1000 m). Our data indicate that the Mergui Ridge slope area seems to have been generally unstable with repeated occurrence of slide events. We find that the most likely causes for slope instabilities may be the presence of unstable drift sediments, excess pore pressure, and active tectonics. Most MTDs are located in large water depths (〉 1000 m) and/or comprise small volumes suggesting a small tsunami potential. Moreover, the recurrence rates of failure events seem to be low. Some MTDs with tsunami potential, however, have been identified on top of Mergui Ridge. Mass-wasting events that may occur in the future at similar locations may trigger tsunamis if they comprise sufficient volumes. Landslide tsunamis, emerging from slope failures in the working area and affecting western Thailand coastal areas therefore cannot be excluded, though the probability is very small compared to the probability of earthquake-triggered tsunamis, arising from the Sunda Trench.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 9 (10). pp. 4045-4057.
    Publication Date: 2019-09-23
    Description: Observations and model runs indicate trends in dissolved oxygen (DO) associated with current and ongoing global warming. However, a large-scale observation-to-model comparison has been missing and is presented here. This study presents a first global compilation of DO measurements covering the last 50 yr. It shows declining upper-ocean DO levels in many regions, especially the tropical oceans, whereas areas with increasing trends are found in the subtropics and in some subpolar regions. For the Atlantic Ocean south of 20° N, the DO history could even be extended back to about 70 yr, showing decreasing DO in the subtropical South Atlantic. The global mean DO trend between 50° S and 50° N at 300 dbar for the period 1960 to 2010 is –0.066 μmol kg−1 yr−1. Results of a numerical biogeochemical Earth system model reveal that the magnitude of the observed change is consistent with CO2-induced climate change. However, the pattern correlation between simulated and observed patterns of past DO change is negative, indicating that the model does not correctly reproduce the processes responsible for observed regional oxygen changes in the past 50 yr. A negative pattern correlation is also obtained for model configurations with particularly low and particularly high diapycnal mixing, for a configuration that assumes a CO2-induced enhancement of the C : N ratios of exported organic matter and irrespective of whether climatological or realistic winds from reanalysis products are used to force the model. Depending on the model configuration the 300 dbar DO trend between 50° S and 50° N is −0.027 to –0.047 μmol kg−1 yr−1 for climatological wind forcing, with a much larger range of –0.083 to +0.027 μmol kg−1 yr−1 for different initializations of sensitivity runs with reanalysis wind forcing. Although numerical models reproduce the overall sign and, to some extent, magnitude of observed ocean deoxygenation, this degree of realism does not necessarily apply to simulated regional patterns and the representation of processes involved in their generation. Further analysis of the processes that can explain the discrepancies between observed and modeled DO trends is required to better understand the climate sensitivity of oceanic oxygen fields and predict potential DO changes in the future.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
  • 7
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 9 (12). pp. 5341-5352.
    Publication Date: 2013-01-24
    Description: A 2-Dimensional mathematical reaction-transport model was developed to study the impact of the mud-dwelling frenulate tubeworm Siboglinum sp. on the biogeochemistry of a sediment (MUC15) at the Captain Arutyunov mud volcano (CAMV). By explicitly describing the worm in its surrounding sediment, we are able to make budgets of processes occurring in- or outside of the worm, and to quantify how different worm densities and biomasses affect the anaerobic oxidation of methane (AOM) and sulfide reoxidation (HSox). The model shows that, at the observed densities, the presence of a thin worm body is sufficient to keep the upper 10 cm of sediment well homogenised with respect to dissolved substances, in agreement with observations. By this "bio-ventilation" activity, the worm pushes the sulfate-methane transition (SMT) zone downward to the posterior end of its body, and simultaneously physically separates the sulfide produced during the anaerobic oxidation of methane from oxygen. While there is little scope for AOM to take place in the tubeworm's body, 70% of the sulfide that is produced by sulfate reduction processes or that is advected in the sediment is preferentially shunted via the organism where it is oxidised by endosymbionts providing the energy for the worm's growth. The process of sulfide reoxidation, occurring predominantly in the worm's body is thus very distinct from the anaerobic oxidation of methane, which is a diffuse process that takes place in the sediments in the methane-sulfate transition zone. We show how the sulfide oxidation process is affected by increasing densities and length of the frenulates, and by upward advection velocity. Our biogeochemical model is one of the first to describe tubeworms explicitly. It can be used to directly link biological and biogeochemical observations at seep sites, and to study the impacts of mud-dwelling frenulates on the sediment biogeochemistry under varying environmental conditions. Also, it provides a tool to explore the competition between bacteria and fauna for available energy resources.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Ocean Science, 8 (3). pp. 319-332.
    Publication Date: 2019-09-23
    Description: In the aftermath of an earthquake and tsunami on 11 March 2011 radioactive 137Cs was discharged from a damaged nuclear power plant to the sea off Fukushima Dai-ichi, Japan. Here we explore its dilution and fate with a state-of-the-art global ocean general circulation model, which is eddy-resolving in the region of interest. We find apparent consistency between our simulated circulation, estimates of 137Cs discharged ranging from 0.94 p Bq (Japanese Government, 2011) to 3.5 ± 0.7 p Bq (Tsumune et al., 2012), and measurements by Japanese authorities and the power plant operator. In contrast, our simulations are apparently inconsistent with the high 27 ± 15 p Bq discharge estimate of Bailly du Bois et al. (2012). Expressed in terms of a diffusivity we diagnose, from our simulations, an initial dilution on the shelf of 60 to 100 m2 s−1. The cross-shelf diffusivity is at 500 ± 300 m2 s−1 significantly higher and variable in time as indicated by its uncertainty. Expressed as an effective residence time of surface water on the shelf, the latter estimate transfers to 43 ± 16 days. As regards the fate of 137Cs, our simulations suggest that activities up to 4 mBq l−1 prevail in the Kuroshio-Oyashio Interfrontal Zone one year after the accident. This allows for low but detectable 0.1 to 0.3 m Bq l−1 entering the North Pacific Intermediate Water before the 137Cs signal is flushed away. The latter estimates concern the direct release to the sea only.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-09-23
    Description: The global Late Pliocene/Early Pleistocene cooling (~3.0–2.0 million years ago – Ma) concurred with extremely high diatom and biogenic opal production in most of the major coastal upwelling regions. This phenomenon was particularly pronounced in the Benguela upwelling system (BUS), off Namibia, where it is known as the Matuyama Diatom Maximum (MDM). Our study focuses on a new diatom silicon isotope (δ30Si) record covering the MDM in the BUS. Unexpectedly, the variations in δ30Si signal follow biogenic opal content, whereby the highest δ30Si values correspond to the highest biogenic opal content. We interpret the higher δ30Si values during the MDM as a result of a stronger degree of silicate utilisation in the surface waters caused by high productivity of mat-forming diatom species. This was most likely promoted by weak upwelling intensity dominating the BUS during the Late Pliocene/Early Pleistocene cooling combined with a large silicate supply derived from a strong Southern Ocean nutrient leakage responding to the expansion of Antarctic ice cover and the resulting stratification of the polar ocean 3.0–2.7 Ma ago. A similar scenario is hypothesized for other major coastal upwelling systems (e.g. off California) during this time interval, suggesting that the efficiency of the biological carbon pump was probably sufficiently enhanced in these regions during the MDM to have significantly increased the transport of atmospheric CO2 to the deep ocean. In addition, the coeval extension of the area of surface water stratification in both the Southern Ocean and the North Pacific, which decreased CO2 release to the atmosphere, led to further enhanced atmospheric CO2 drawn-down and thus contributed significantly to Late Pliocene/Early Pleistocene cooling.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-12-11
    Description: Oxygen-deficient waters in the ocean, generally referred to as oxygen minimum zones (OMZ), are expected to expand as a consequence of global climate change. Poor oxygenation is promoting microbial loss of inorganic nitrogen (N) and increasing release of sediment-bound phosphate (P) into the water column. These intermediate water masses, nutrient-loaded but with an N deficit relative to the canonical N:P Redfield ratio of 16:1, are transported via coastal upwelling into the euphotic zone. To test the impact of nutrient supply and nutrient stoichiometry on production, partitioning and elemental composition of dissolved (DOC, DON, DOP) and particulate (POC, PON, POP) organic matter, three nutrient enrichment experiments were conducted with natural microbial communities in shipboard mesocosms, during research cruises in the tropical waters of the southeast Pacific and the northeast Atlantic. Maximum accumulation of POC and PON was observed under high N supply conditions, indicating that primary production was controlled by N availability. The stoichiometry of microbial biomass was unaffected by nutrient N:P supply during exponential growth under nutrient saturation, while it was highly variable under conditions of nutrient limitation and closely correlated to the N:P supply ratio, although PON:POP of accumulated biomass generally exceeded the supply ratio. Microbial N:P composition was constrained by a general lower limit of 5:1. Channelling of assimilated P into DOP appears to be the mechanism responsible for the consistent offset of cellular stoichiometry relative to inorganic nutrient supply and nutrient drawdown, as DOP build-up was observed to intensify under decreasing N:P supply. Low nutrient N:P conditions in coastal upwelling areas overlying O2-deficient waters seem to represent a net source for DOP, which may stimulate growth of diazotrophic phytoplankton. These results demonstrate that microbial nutrient assimilation and partitioning of organic matter between the particulate and the dissolved phase are controlled by the N:P ratio of upwelled nutrients, implying substantial consequences for nutrient cycling and organic matter pools in the course of decreasing nutrient N:P stoichiometry.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Atmospheric Chemistry and Physics, 12 (22). pp. 10633-10648.
    Publication Date: 2019-09-23
    Description: Oceanic emissions of halogenated very short-lived substances (VSLS) are expected to contribute significantly to the stratospheric halogen loading and therefore to ozone depletion. The amount of VSLS transported into the stratosphere is estimated based on in-situ observations around the tropical tropopause layer (TTL) and on modeling studies which mostly use prescribed global emission scenarios to reproduce observed atmospheric concentrations. In addition to upper-air VSLS measurements, direct observations of oceanic VSLS emissions are available along ship cruise tracks. Here we use such in-situ observations of VSLS emissions from the West Pacific and tropical Atlantic together with an atmospheric Lagrangian transport model to estimate the direct contribution of bromoform (CHBr3), and dibromomethane (CH2Br2) to the stratospheric bromine loading as well as their ozone depletion potential. Our emission-based estimates of VSLS profiles are compared to upper-air observations and thus link observed oceanic emissions and in situ TTL measurements. This comparison determines how VSLS emissions and transport in the cruise track regions contribute to global upper-air VSLS estimates. The West Pacific emission-based profiles and the global upper-air observations of CHBr3 show a relatively good agreement indicating that emissions from the West Pacific provide an average contribution to the global CHBr3 budget. The tropical Atlantic, although also being a CHBr3 source region, is of less importance for global upper-air CHBr3 estimates as revealed by the small emission-based abundances in the TTL. Western Pacific CH2Br2 emission-based estimates are considerably smaller than upper-air observations as a result of the relatively low sea-to-air flux found in the West Pacific. Together, CHBr3 and CH2Br2 emissions from the West Pacific are projected to contribute to the stratospheric bromine budget with 0.4 pptv Br on average and 2.3 pptv Br for cases of maximum emissions through product and source gas injection. These relatively low estimates reveal that the tropical West Pacific, although characterized by strong convective transport, might overall contribute less VSLS to the stratospheric bromine budget than other regions as a result of only low CH2Br2 and moderate CHBr3 oceanic emissions.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-09-23
    Description: In this study we present an initial dataset of Mn/Ca and Fe/Ca ratios in tests of benthic foraminifera from the Peruvian oxygen minimum zone (OMZ) determined with SIMS. These results are a contribution to a better understanding of the proxy potential of these elemental ratios for ambient redox conditions. Foraminiferal tests are often contaminated by diagenetic coatings, like Mn rich carbonate- or Fe and Mn rich (oxyhydr)oxide coatings. Thus, it is substantial to assure that the cleaning protocols are efficient or that spots chosen for microanalyses are free of contaminants. Prior to the determination of the element/Ca ratios, the distributions of several elements (Ca, Mn, Fe, Mg, Ba, Al, Si, P and S) in tests of the shallow infaunal species Uvigerina peregrina and Bolivina spissa were mapped with an electron microprobe (EMP). To visualize the effects of cleaning protocols uncleaned and cleaned specimens were compared. The cleaning protocol included an oxidative cleaning step. An Fe rich phase was found on the inner test surface of uncleaned U. peregrina specimens. This phase was also enriched in Al, Si, P and S. A similar Fe rich phase was found at the inner test surface of B. spissa. Specimens of both species treated with oxidative cleaning show the absence of this phase. Neither in B. spissa nor in U. peregrina were any hints found for diagenetic (oxyhydr)oxide or carbonate coatings. Mn/Ca and Fe/Ca ratios of single specimens of B. spissa from different locations have been determined by secondary ion mass spectrometry (SIMS). Bulk analyses using solution ICP-MS of several samples were compared to the SIMS data. The difference between SIMS analyses and ICP-MS bulk analyses from the same sampling sites was 14.0–134.8 μmol mol−1 for the Fe/Ca and 1.68(±0.41) μmol mol−1 for the Mn/Ca ratios. This is in the same order of magnitude as the variability inside single specimens determined with SIMS at these sampling sites (1σ[Mn/Ca] = 0.35–2.07 μmol mol−1; 1σ[Fe/Ca] = 93.9–188.4 μmol mol−1). The Mn/Ca ratios in the calcite were generally relatively low (2.21–9.93 μmol mol−1) but in the same magnitude and proportional to the surrounding pore waters (1.37–6.67 μmol mol−1). However, the Fe/Ca ratios in B. spissa show a negative correlation to the concentrations in the surrounding pore waters. Lowest foraminiferal Fe/Ca ratios (87.0–101.0 μmol mol−1) were found at 465 m water depth, a location with a strong sharp Fe peak in the pore water next to the sediment surface and respectively, high Fe concentrations in the surrounding pore waters. Previous studies found no living specimens of B. spissa at this location. All these facts hint that the analysed specimens already were dead before the Fe flux started and the sampling site just recently turned anoxic due to fluctuations of the lower boundary of the OMZ near the sampling site (465 m water depth). Summarized Mn/Ca and Fe/Ca ratios are potential proxies for redox conditions, if cleaning protocols are carefully applied. The data presented here may be rated as base for the still pending detailed calibration.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Atmospheric Measurement Techniques, 5 (10). pp. 2391-2401.
    Publication Date: 2016-05-31
    Description: The aim of this study is to determine cloud-type resolved cloud radiative budgets and cloud radiative effects from surface measurements of broadband radiative fluxes over the Atlantic Ocean. Furthermore, based on simultaneous observations of the state of the cloudy atmosphere, a radiative closure study has been performed by means of the ECHAM5 single column model in order to identify the model's ability to realistically reproduce the effects of clouds on the climate system. An extensive database of radiative and atmospheric measurements has been established along five meridional cruises of the German research icebreaker Polarstern. Besides pyranometer and pyrgeometer for downward broadband solar and thermal radiative fluxes, a sky imager and a microwave radiometer have been utilized to determine cloud fraction and cloud type on the one hand and temperature and humidity profiles as well as liquid water path for warm non-precipitating clouds on the other hand. Averaged over all cruise tracks, we obtain a total net (solar + thermal) radiative flux of 144 W m(-2) that is dominated by the solar component. In general, the solar contribution is large for cirrus clouds and small for stratus clouds. No significant meridional dependencies were found for the surface radiation budgets and cloud effects. The strongest surface longwave cloud effects were shown in the presence of low level clouds. Clouds with a high optical density induce strong negative solar radiative effects under high solar altitudes. The mean surface net cloud radiative effect is -33 W m(-2). For the purpose of quickly estimating the mean surface longwave, shortwave and net cloud effects in moderate, subtropical and tropical climate regimes, a new parameterisation was created, considering the total cloud amount and the solar zenith angle. The ECHAM5 single column model provides a surface net cloud effect that is more cooling by 17 W m(-2) compared to the radiation observations. This overestimation in solar cooling is mostly caused by the shortwave impact of convective clouds. The latter show a large overestimation in solar cooling of up to 114 W m(-2). Mean cloud radiative effects of cirrus and stratus clouds were simulated close to the observations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 9 . pp. 3787-3798.
    Publication Date: 2014-02-11
    Description: The internal consistency of measurements and computations of components of the CO2-system, namely total alkalinity (AT), total dissolved carbon dioxide (CT), CO2 fugacity (fCO2), and pH, has been confirmed repeatedly in open ocean studies when the CO2 system had been over determined. Differences between measured and computed properties, such as ΔfCO2 (=fCO2(measured) – fCO2(computed from AT and CT))/ fCO2(measured)× 100), there are usually below 5%. Recently, Hoppe et al. (2010) provided evidence of significantly larger ΔfCO2 in experimental setups. These observations are currently not well understood. Here we discuss a case from a series of phytoplankton culture experiments with ΔfCO2 of up to about 25%. ΔfCO2 varied systematically during the course of these experiments and showed a clear correlation with the accumulation of dissolved organic carbon (DOC). Culture and mesocosm experiments are often carried out under very high initial nutrient concentrations, yielding high biomass concentrations that in turn often lead to a substantial build-up of DOC. DOC can reach concentrations much higher than typically observed in the open ocean. To the extent that DOC includes organic acids and bases, it will contribute to the alkalinity of the seawater contained in the experimental device. Our analysis suggests that whenever substantial amounts of DOC are produced during the experiment, standard computer programs used to compute CO2 fugacity can underestimate true fCO2 significantly when the computation is based on AT and CT. Alternative explanations for large ΔfCO2, e.g. uncertainties of pKs, are explored as well, but are found to be of minor importance. Unless the effect of DOC-alkalinity is accounted for, this might lead to significant errors in the interpretation of the system under consideration to the experimentally applied CO2 perturbation, which could misguide the development of parameterisations used in simulations with global carbon cycle models in future CO2-scenarios.
    Type: Article , PeerReviewed
    Format: other
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 9 (8). pp. 3405-3423.
    Publication Date: 2019-09-23
    Description: Emiliania huxleyi (strain B 92/11) was exposed to different nutrient supply, CO2 and temperature conditions in phosphorus controlled chemostats to investigate effects on organic carbon exudation and partitioning between the pools of particulate organic carbon (POC) and dissolved organic carbon (DOC). 14C incubation measurements for primary production (PP) and extracellular release (ER) were performed. Chemical analysis included the amount and composition of high molecular weight (〉1 kDa) dissolved combined carbohydrates (HMW-dCCHO), particulate combined carbohydrates (pCCHO) and the carbon content of transparent exopolymer particles (TEP-C). Applied CO2 and temperature conditions were 300, 550 and 900 μatm pCO2 at 14 °C, and additionally 900 μatm pCO2 at 18 °C simulating a greenhouse ocean scenario. Enhanced nutrient stress by reducing the dilution rate (D) from D = 0.3 d−1 to D = 0.1 d−1 (D = μ) induced the strongest response in E. huxleyi. At μ = 0.3 d−1, PP was significantly higher at elevated CO2 and temperature and DO14C production correlated to PO14C production in all treatments, resulting in similar percentages of extracellular release (PER; (DO14C production/PP) × 100) averaging 3.74 ± 0.94%. At μ = 0.1 d−1, PO14C production decreased significantly, while exudation of DO14C increased. Thus, indicating a stronger partitioning from the particulate to the dissolved pool. Maximum PER of 16.3 ± 2.3% were observed at μ = 0.1 d−1 at elevated CO2 and temperature. While cell densities remained constant within each treatment and throughout the experiment, concentrations of HMW-dCCHO, pCCHO and TEP were generally higher under enhanced nutrient stress. At μ = 0.3 d−1, pCCHO concentration increased significantly with elevated CO2 and temperature. At μ = 0.1 d−1, the contribution (mol % C) of HMW-dCCHO to DOC was lower at elevated CO2 and temperature while pCCHO and TEP concentrations were higher. This was most pronounced under greenhouse conditions. Our findings suggest a stronger transformation of primary produced DOC into POC by coagulation of exudates under nutrient limitation. Our results further imply that elevated CO2 and temperature will increase exudation by E. huxleyi and may affect organic carbon partitioning in the ocean due to an enhanced transfer of HMW-dCCHO to TEP by aggregation processes.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 9 . pp. 4819-4833.
    Publication Date: 2015-01-12
    Description: Increasing concentrations of dissolved inorganic carbon (DIC) in the interior ocean is expected as a direct consequence of increasing concentrations of CO2 in the atmosphere. This extra DIC is often referred to as anthropogenic carbon (Cant), and its inventory, or increase rate, in the interior ocean has previously been estimated by a multitude of observational approaches. Each of these methods are associated with hard to test assumptions since Cant cannot be directly observed. Results from a simpler concept with few assumptions applied to the Atlantic Ocean are reported on here using two large data collections of carbon relevant bottle data. The change in column inventory on decadal time scales, i.e. the storage rate, of DIC, respiration compensated DIC and oxygen is calculated for the Atlantic Ocean. The average storage rates for DIC and oxygen is calculated to 0.72 ± 1.22 (95% confidence interval of the mean trend: 0.65–0.78) mol m−2 yr−1 and −0.54 ± 1.64 (95% confidence interval of the mean trend: –0.64–(−0.45)) mol m−2 yr−1, respectively, for the Atlantic Ocean, where the uncertainties reflect station-to-station variability and where the mean trends are non-zero at the 95% confidence level. The standard deviation mainly reflects uncertainty due to regional variations, whereas the confidence interval reflects the mean trend. The storage rates are similar to changes found by other studies, although with large uncertainty. For the subpolar North Atlantic the storage rates show significant temporal variation of all variables. This seems to be due to variations in the prevalence of subsurface water masses with different DIC concentrations leading to sometimes different signs of storage rates for DIC and Cant. This study suggest that accurate assessment of the uptake of CO2 by the oceans will require accounting not only for processes that influence Cant but also additional processes that modify CO2 storage.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Atmospheric Chemistry and Physics, 12 (3). pp. 1213-1228.
    Publication Date: 2019-09-23
    Description: We conducted measurements of the five important short-lived organic bromine species in the marine boundary layer (MBL). Measurements were made in the Northern Hemisphere mid-latitudes (Sylt Island, North Sea) in June 2009 and in the tropical Western Pacific during the TransBrom ship campaign in October 2009. For the one-week time series on Sylt Island, mean mixing ratios of CHBr3, CH2Br2, CHBr2Cl and CH2BrCl were 2.0, 1.1, 0.2, 0.1 ppt, respectively. We found maxima of 5.8 and 1.6 ppt for the two main components CHBr3 and CH2Br2. Along the cruise track in the Western Pacific (between 41° N and 13° S) we measured mean mixing ratios of 0.9, 0.9, 0.2, 0.1 and 0.1 ppt for CHBr3, CH2Br2, CHBrCl2, CHBr2Cl and CH2BrCl. Air samples with coastal influence showed considerably higher mixing ratios than the samples with open ocean origin. Correlation analyses of the two data sets yielded strong linear relationships between the mixing ratios of four of the five species (except for CH2BrCl). Using a combined data set from the two campaigns and a comparison with the results from two former studies, rough estimates of the molar emission ratios between the correlated substances were: 9/1/0.35/0.35 for CHBr3/CH2Br2/CHBrCl2/CHBr2Cl. Additional measurements were made in the tropical tropopause layer (TTL) above Teresina (Brazil, 5° S) in June 2008, using balloon-borne cryogenic whole air sampling technique. Near the level of zero clear-sky net radiative heating (LZRH) at 14.8 km about 2.25 ppt organic bromine was bound to the five short-lived species, making up 13% of total organic bromine (17.82 ppt). CH2Br2 (1.45 ppt) and CHBr3 (0.56 ppt) accounted for 90% of the budget of short-lived compounds in that region. Near the tropopause (at 17.5 km) organic bromine from these substances was reduced to 1.35 ppt, with 1.07 and 0.12 ppt attributed to CH2Br2 and CHBr3, respectively.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Geoscientific Model Development, 5 . pp. 1195-1220.
    Publication Date: 2019-09-23
    Description: Earth System Climate Models (ESCMs) are valuable tools that can be used to gain a better understanding of the climate system, global biogeochemical cycles and how anthropogenically-driven changes may affect them. Here we describe improvements made to the marine biogeochemical ecosystem component of the University of Victoria's ESCM (version 2.9). Major changes include corrections to the code and equations describing phytoplankton light limitation and zooplankton grazing, the implementation of a more realistic zooplankton growth and grazing model, and the implementation of an iron limitation scheme to constrain phytoplankton growth. The new model is evaluated after a 10 000-yr spin-up and compared to both the previous version and observations. For the majority of biogeochemical tracers and ecosystem processes the new model shows significant improvements when compared to the previous version and evaluated against observations. Many of the improvements are due to better simulation of seasonal changes in higher latitude ecosystems and the effect that this has on ocean biogeochemistry. This improved model is intended to provide a basic new ESCM model component, which can be used as is or expanded upon (i.e., the addition of new tracers), for climate change and biogeochemical cycling research.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2013-01-31
    Description: Lake Ohrid shared by the Republics of Albania and Macedonia is formed by a tectonically active graben within the south Balkans and suggested to be the oldest lake in Europe. Several studies have shown that the lake provides a valuable record of climatic and environmental changes and a distal tephrostratigraphic record of volcanic eruptions from Italy. Fault structures identified in seismic data demonstrate that sediments have also the potential to record tectonic activity in the region. Here, we provide an example of linking seismic and sedimentological information with tectonic activity and historical documents. Historical documents indicate that a major earthquake destroyed the city of Lychnidus (today: city of Ohrid) in the early 6th century AD. Multichannel seismic profiles, parametric sediment echosounder profiles, and a 10.08m long sediment record from the western part of the lake indicate a 2m thick mass wasting deposit, which is tentatively correlated with this earthquake. The mass wasting deposit is chronologically well constrained, as it directly overlays the AD472/AD 512 tephra. Moreover, radiocarbon dates and cross correlation with other sediment sequences with similar geochemical characteristics of the Holocene indicate that the mass wasting event took place prior to the onset of the Medieval Warm Period, and is attributed it to one of the known earthquakes in the region in the early 6th century AD.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-09
    Description: Confocal Raman microscopy (CRM) mapping was used to investigate the microstructural arrangement and organic matrix distribution within the skeleton of the coral Porites lutea. Relative changes in the crystallographic orientation of crystals within the fibrous fan-system could be mapped, without the need to prepare thin sections, as required if this information is obtained by polarized light microscopy. Simultaneously, incremental growth lines can be visualized without the necessity of etching and hence alteration of sample surface. Using these methods two types of growth lines could be identified: one corresponds to the well-known incremental growth layers, whereas the second type of growth lines resemble denticle finger-like structures (most likely traces of former spines or skeletal surfaces). We hypothesize that these lines represent the outer skeletal surface before another growth cycle of elongation, infilling and thickening of skeletal areas continues. We show that CRM mapping with high spatial resolution can significantly improve our understanding of the micro-structural arrangement and growth patterns in coral skeletons.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Atmospheric Chemistry and Physics, 12 (13). pp. 5691-5701.
    Publication Date: 2019-06-28
    Description: The variability of the north-polar stratospheric vortex is a prominent aspect of the middle atmosphere. This work investigates a wide class of statistical models with respect to their ability to model geopotential and temperature anomalies, representing variability in the polar stratosphere. Four partly nonstationary, nonlinear models are assessed: linear discriminant analysis (LDA); a cluster method based on finite elements (FEM-VARX); a neural network, namely the multi-layer perceptron (MLP); and support vector regression (SVR). These methods model time series by incorporating all significant external factors simultaneously, including ENSO, QBO, the solar cycle, volcanoes, to then quantify their statistical importance. We show that variability in reanalysis data from 1980 to 2005 is successfully modeled. The period from 2005 to 2011 can be hindcasted to a certain extent, where MLP performs significantly better than the remaining models. However, variability remains that cannot be statistically hindcasted within the current framework, such as the unexpected major warming in January 2009. Finally, the statistical model with the best generalization performance is used to predict a winter 2011/12 with warm and weak vortex conditions. A vortex breakdown is predicted for late January, early February 2012.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2020-10-16
    Description: The coccolithophore Emiliania huxleyi is a marine phytoplankton species capable of forming small calcium carbonate scales (coccoliths) which cover the organic part of the cell. Calcification rates of E. huxleyi are known to be sensitive to changes in seawater carbonate chemistry. It has, however, not yet been clearly determined how these changes are reflected in size and weight of individual coccoliths and which specific parameter(s) of the carbonate system drive morphological modifications. Here, we compare data on coccolith size, weight, and malformation from a set of five experiments with a large diversity of carbonate chemistry conditions. This diversity allows distinguishing the influence of individual carbonate chemistry parameters such as carbon dioxide (CO2), bicarbonate (HCO3−), carbonate ion (CO32−), and protons (H+) on the measured parameters. Measurements of fine-scale morphological structures reveal an increase of coccolith malformation with decreasing pH suggesting that H+ is the major factor causing malformations. Coccolith distal shield area varies from about 5 to 11 μm2. Changes in size seem to be mainly induced by varying [HCO3−] and [H+] although influence of [CO32−] cannot be entirely ruled out. Changes in coccolith weight were proportional to changes in size. Increasing CaCO3 production rates are reflected in an increase in coccolith weight and an increase of the number of coccoliths formed per unit time. The combined investigation of morphological features and coccolith production rates presented in this study may help to interpret data derived from sediment cores, where coccolith morphology is used to reconstruct calcification rates in the water column.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-09-23
    Description: Heterocystous cyanobacteria of the genus Nodularia form extensive blooms in the Baltic Sea and contribute substantially to the total annual primary production. Moreover, they dispense a large fraction of new nitrogen to the ecosystem when inorganic nitrogen concentration in summer is low. Thus, it is of ecological importance to know how Nodularia will react to future environmental changes, in particular to increasing carbon dioxide (CO2) concentrations and what consequences there might arise for cycling of organic matter in the Baltic Sea. Here, we determined carbon (C) and dinitrogen (N2) fixation rates, growth, elemental stoichiometry of particulate organic matter and nitrogen turnover in batch cultures of the heterocystous cyanobacterium Nodularia spumigena under low (median 315 μatm), mid (median 353 μatm), and high (median 548 μatm) CO2 concentrations. Our results demonstrate an overall stimulating effect of rising pCO2 on C and N2 fixation, as well as on cell growth. An increase in pCO2 during incubation days 0 to 9 resulted in an elevation in growth rate by 84 ± 38% (low vs. high pCO2) and 40 ± 25% (mid vs. high pCO2), as well as in N2 fixation by 93 ± 35% and 38 ± 1%, respectively. C uptake rates showed high standard deviations within treatments and in between sampling days. Nevertheless, C fixation in the high pCO2 treatment was elevated compared to the other two treatments by 97% (high vs. low) and 44% (high vs. mid) at day 0 and day 3, but this effect diminished afterwards. Additionally, elevation in carbon to nitrogen and nitrogen to phosphorus ratios of the particulate biomass formed (POC : POP and PON : POP) was observed at high pCO2. Our findings suggest that rising pCO2 stimulates the growth of heterocystous diazotrophic cyanobacteria, in a similar way as reported for the non-heterocystous diazotroph Trichodesmium. Implications for biogeochemical cycling and food web dynamics, as well as ecological and socio-economical aspects in the Baltic Sea are discussed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2013-07-17
    Description: It is expected that the calcification of foraminifera will be negatively affected by the ongoing acidification of the oceans. Compared to the open oceans, these organisms are subjected to much more adverse carbonate system conditions in coastal and estuarine environments such as the southwestern Baltic Sea, where benthic foraminifera are abundant. This study documents the seasonal changes of carbonate chemistry and the ensuing response of the foraminiferal community with bi-monthly resolution in Flensburg Fjord. In comparison to the surface pCO2, which is close to equilibrium with the atmosphere, we observed large seasonal fluctuations of pCO2 in the bottom and sediment pore waters. The sediment pore water pCO2 was constantly high during the entire year ranging from 1244 to 3324 μatm. Nevertheless, in contrast to the bottom water, sediment pore water was slightly supersaturated with respect to calcite as consequence of higher alkalinity (AT) for the most time of the year. Foraminiferal assemblages were dominated by two calcareous species, Ammonia aomoriensis and Elphidium incertum, and the agglutinated Ammotium cassis. The one year-cycle was characterized by seasonal community shifts. Our results revealed that there is no dynamic response of foraminiferal population density and diversity to elevated sediment pore water pCO2. Surprisingly, the fluctuations of sediment pore water undersaturation (Ωcalc) co-vary with the population densities of living Ammonia aomoriensis. Further, we observed that most of the tests of living calcifying specimens were intact. Only Ammonia aomorienis showed dissolution and recalcification structures on the tests, especially at undersaturated conditions. Therefore, the benthic community is subjected to constantly high pCO2 and tolerates elevated levels as long as sediment pore water remains supersaturated. Model calculations inferred that increasing atmospheric CO2 concentrations will finally lead to a perennial undersaturation in sediment pore waters. Whereas benthic foraminifera indeed may cope with a high sediment pore water pCO2, the steady undersaturation of sediment pore waters would likely cause a significant higher mortality of the dominating Ammonia aomoriensis. This shift may eventually lead to changes in the benthic foraminiferal communities in Flensburg Fjord, as well as in other regions experiencing naturally undersaturated Ωcalc levels.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-09-24
    Description: The Eastern Tropical Pacific (ETP) is believed to be one of the largest marine sources of the greenhouse gas nitrous oxide N2O). Future N2Oemissions from the ETP are highly uncertain because oxygen minimum zones are expected to expand, affecting both regional production and consumption of N2O. Here we assess three primary uncertainties in how N2O may respond to changing O2 levels: (1) the relationship between N2O production and O2 (is it linear or exponential at low O2 concentrations?), (2) the cutoff point at which net N2O production switches to net N2O consumption (uncertainties in this parameterization can lead to differences in model ETP N2O concentrations of more than 20%), and (3) the rate of net N2O consumption at low O2. Based on the MEMENTO database, which is the largest N2O dataset currently available, we find that N2O production in the ETP increases linearly rather than exponentially with decreasing O2. Additionally, net N2O consumption switches to net N2O production at ~ 10 μM O2, a value in line with recent studies that suggest consumption occurs on a larger scale than previously thought. N2O consumption is on the order of 0.129 mmol N2O m−3 yr−1 in the Peru–Chile Undercurrent. Based on these findings, it appears that recent studies substantially overestimated N2O production in the ETP. In light of expected deoxygenation, future N2O production is still uncertain, but due to higher-than-expected consumption levels, it is possible that N2Oconcentrations may decrease rather than increase as oxygen minimum zones expand.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2012-11-06
    Description: Bivalve shells can provide excellent archives of past environmental change but have not been used to interpret ocean acidification events. We investigated carbon, oxygen and trace element records from different shell layers in the mussels Mytilus galloprovincialis combined with detailed investigations of the shell ultrastructure. Mussels from the harbour of Ischia (Mediterranean, Italy) were transplanted and grown in water with mean pHT 7.3 and mean pHT 8.1 near CO2 vents on the east coast of the island. Most prominently, the shells recorded the shock of transplantation, both in their shell ultrastructure, textural and geochemical record. Shell calcite, precipitated subsequently under acidified seawater responded to the pH gradient by an in part disturbed ultrastructure. Geochemical data from all test sites show a strong metabolic effect that exceeds the influence of the low-pH environment. These field experiments showed that care is needed when interpreting potential ocean acidification signals because various parameters affect shell chemistry and ultrastructure. Besides metabolic processes, seawater pH, factors such as salinity, water temperature, food availability and population density all affect the biogenic carbonate shell archive.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2012-11-12
    Description: Coccolithophores, a key phytoplankton group, are one of the most studied organisms regarding their physiological response to ocean acidification/carbonation. The biogenic production of calcareous coccoliths has made coccolithophores a promising group for paleoceanographic research aiming to reconstruct past environmental conditions. Recently, geochemical and morphological analyses of fossil coccoliths have gained increased interest in regard to changes in seawater carbonate chemistry. The cosmopolitan coccolithophore Emiliania huxleyi (Lohm.) Hay and Mohler was cultured over a range of pCO2 levels in controlled laboratory experiments under nutrient replete and nitrogen limited conditions. Measurements of photosynthesis and calcification revealed, as previously published, an increase in particulate organic carbon production and a moderate decrease in calcification from ambient to elevated pCO2. The enhancement in particulate organic carbon production was accompanied by an increase in cell diameter. Changes in coccolith volume were best correlated with the coccosphere/cell diameter and no significant correlation was found between the coccolith volume and the particulate inorganic carbon production. The conducted experiments revealed that the coccolith volume of E. huxleyi is variable with aquatic CO2 concentration but its sensitivity is rather small in comparison with its sensitivity to nitrogen limitation. Comparing coccolith morphological and geometrical parameters like volume, mass and size to physiological parameters under controlled laboratory conditions is an important step to understand variations in fossil coccolith geometry.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-09-23
    Description: Fixed nitrogen (N) loss to biogenic N2 in intense oceanic O2 minimum zones (OMZ) accounts for a large fraction of the global N sink and is an essential control on the ocean's N budget. However, major uncertainties exist regarding microbial pathways as well as net impact on the magnitude of N-loss and the ocean's overall N budget. Here we report the discovery of a N-loss hotspot in the Peru OMZ associated with a coastally trapped mesoscale eddy that is marked by an extreme N deficit matched by biogenic N2 production, high NO2− levels, and the highest isotope enrichments observed so far in OMZ's for the residual NO3−. High sea surface chlorophyll (SSC) in seaward flowing streamers provides evidence for offshore eddy transport of highly productive, inshore water. Resulting pulses in the downward flux of particles likely stimulated heterotrophic dissimilatory NO3− reduction and subsequent production of biogenic N2. The associated temporal/spatial heterogeneity of N-loss, mediated by a local succession of microbial processes, may explain inconsistencies observed among prior studies. Similar transient enhancements of N-loss likely occur within all other major OMZ's exerting a major influence on global ocean N and N isotope budgets.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-09-23
    Description: Dimethylsulphide (DMS) and dissolved and particulate dimethylsulfoniopropionate (DMSPd, DMSPp) were measured in near-surface waters along theMauritanian coast, Northwest Africa, during the upwelling season in February 2008. DMS, DMSPd and DMSPp surface concentrations of up to 10 nmol L−1, 15 nmol L−1 and 990 nmol L−1, respectively, were measured. However, the DMS concentrations measured are in the low range compared to other upwelling regions. The maximum DMSPp concentration is the highest reported from upwelling regions so far, which might indicate that the Mauritanian upwelling is a hot spot for DMSP. Within the phytoplankton groups, dinoflagellates were identified as important contributors to DMS concentrations, while other algae seemed to have only a minor or no influence on DMS and DMSP concentrations. A pronounced switch from high DMSP to high DMS concentrations was observed when the nitrogen to phosphorus ratio (N:P) was below 7. The high DMS/DMSP ratios at N:P ratios 〈7 indicate that nitrogen limitation presumably triggered a switch from DMSP to DMS independent of the species composition. Our results underline the importance of coastal upwelling regions as a local source for surface seawater sulphur.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  [Talk] In: EGU General Assembly 2012, 22.04.-27.04.2012, Vienna, Austria . Geophysicas Research Abstracts .
    Publication Date: 2012-12-27
    Description: Within Europe there are more than 380 Ocean Bottom Seismometers (OBS) distributed across 10 instrument parks in 6 countries. At least 120 of these OBS are wideband or broadband, over 260 can be deployed for at least 6 months at a time and 140 for at least one year. New parks are planned in two other European countries, which should add over 70 OBSs to this “fleet”. However, these parks are under the control of individual countries or universities and hence to date this has made it difficult to organize large-scale experiments, especially for seismologists without marine experience. There has recently been an initiative to coordinate the use of these distributed instruments and their data products, to encourage large-scale experiments, possibly with onshore and offshore components, by seismologists who have not necessarily used OBSs before. The ongoing or planned developments include: Helping scientists with marine-specific formalities such as ship requests; clearer explanations of the noise floors of OBS instrumentation; improved clarity of instrument pricing and availability; standardized data output formats and data validation; and archiving in established seismological data centers. These efforts should allow improved experiment design in scientifically interesting regions with an offshore component and an easier, clearer way to organize large-scale, multi-country experiments. We will present details of this initiative to help organize large-scale experiments, the particularities of OBS sensors and marine deployments, the available instrumentation and new developments.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-09-23
    Description: The recent finding that microbial ammonia oxidation in the ocean is performed by archaea to a greater extent than by bacteria has drastically changed the view on oceanic nitrification. The numerical dominance of archaeal ammonia-oxidizers (AOA) over their bacterial counterparts (AOB) in large parts of the ocean leads to the hypothesis that AOA rather than AOB could be the key organisms for the oceanic production of the strong greenhouse gas nitrous oxide (N2O) that occurs as a by-product of nitrification. Very recently, enrichment cultures of marine ammonia-oxidizing archaea have been reported to produce N2O. Here, we demonstrate that archaeal ammonia monooxygenase genes (amoA) were detectable throughout the water column of the eastern tropical North Atlantic (ETNA) and eastern tropical South Pacific (ETSP) Oceans. Particularly in the ETNA, comparable patterns of abundance and expression of archaeal amoA genes and N2O co-occurred in the oxygen minimum, whereas the abundances of bacterial amoA genes were negligible. Moreover, selective inhibition of archaea in seawater incubations from the ETNA decreased the N2O production significantly. In studies with the only cultivated marine archaeal ammonia-oxidizer Nitrosopumilus maritimus SCM1, we provide the first direct evidence for N2O production in a pure culture of AOA, excluding the involvement of other microorganisms as possibly present in enrichments. N. maritimus showed high N2O production rates under low oxygen concentrations comparable to concentrations existing in the oxycline of the ETNA, whereas the N2O production from two AOB cultures was comparably low under similar conditions. Based on our findings, we hypothesize that the production of N2O in tropical ocean areas results mainly from archaeal nitrification and will be affected by the predicted decrease in dissolved oxygen in the ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2016-09-05
    Description: A submarine eruption started off the south coast of El Hierro, Canary Islands, on 10 October 2011 and continues at the time of this writing (February 2012). In the first days of the event, peculiar eruption products were found floating on the sea surface, drifting for long distances from the eruption site. These specimens, which have in the meantime been termed "restingolites" (after the close-by village of La Restinga), appeared as black volcanic "bombs" that exhibit cores of white and porous pumice-like material. Since their brief appearance, the nature and origin of these "floating stones" has been vigorously debated among researchers, with important implications for the interpretation of the hazard potential of the ongoing eruption. The "restingolites" have been proposed to be either (i) juvenile high-silica magma (e.g. rhyolite), (ii) remelted magmatic material (trachyte), (iii) altered volcanic rock, or (iv) reheated hyaloclastites or zeolite from the submarine slopes of El Hierro. Here, we provide evidence that supports yet a different conclusion. We have analysed the textures and compositions of representative "restingolites" and compared the results to previous work on similar rocks found in the Canary Islands. Based on their high-silica content, the lack of igneous trace element signatures, the presence of remnant quartz crystals, jasper fragments and carbonate as well as wollastonite (derived from thermal overprint of carbonate) and their relatively high oxygen isotope values, we conclude that "restingolites" are in fact xenoliths from pre-island sedimentary layers that were picked up and heated by the ascending magma, causing them to partially melt and vesiculate. As they are closely resembling pumice in appearance, but are xenolithic in origin, we refer to these rocks as "xeno-pumice". The El Hierro xeno-pumices hence represent messengers from depth that help us to understand the interaction between ascending magma and crustal lithologies beneath the Canary Islands as well as in similar Atlantic islands that rest on sediment-covered ocean crust (e.g. Cape Verdes, Azores). The occurrence of "restingolites" indicates that crustal recycling is a relevant process in ocean islands, too, but does not herald the arrival of potentially explosive high-silica magma in the active plumbing system beneath El Hierro.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Ocean Science, 8 . pp. 103-120.
    Publication Date: 2013-01-31
    Description: A Monte Carlo based radiative transfer model has been developed for calculating the availability of solar radiation within the top 100 m of the ocean. The model is optimized for simulations of spatial high resolution downwelling irradiance Ed fluctuations that arise from the lensing effect of waves at the water surface. In a first step the accuracy of simulation results have been verified by measurements of the oceanic underwater light field and through intercomparison with an established radiative transfer model. Secondly the potential depth-impact of nonlinear shaped single waves, from capillary to swell waves, is assessed by considering the most favorable conditions for light focusing, i.e. monochromatic light at 490 nm, very clear oceanic water with a low chlorophyll a content of 0.1 mg m−3 and high sun elevation. Finally light fields below irregular wave profiles accounting for realistic sea states were simulated. Our simulations suggest that under open ocean conditions light flashes with 50 % irradiance enhancements can appear down to 35 m depth, and light variability in the range of ±10 % compared to the mean Ed is still possible in 100 m depth.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2020-10-16
    Description: Phosphate distributions simulated by seven state-of-the-art biogeochemical ocean circulation models are evaluated against observations of global ocean nutrient distributions. The biogeochemical models exhibit different structural complexities, ranging from simple nutrient-restoring to multi-nutrient NPZD type models. We evaluate the simulations using the observed volume distribution of phosphate. The errors in these simulated volume class distributions are significantly larger when preformed phosphate (or regenerated phosphate) rather than total phosphate is considered. Our analysis reveals that models can achieve similarly good fits to observed total phosphate distributions for a very different partitioning into preformed and regenerated nutrient components. This has implications for the strength and potential climate sensitivity of the simulated biological carbon pump. We suggest complementing the use of total nutrient distributions for assessing model skill by an evaluation of the respective preformed and regenerated nutrient components.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Climate of the Past, 8 (1). pp. 79-87.
    Publication Date: 2019-09-23
    Description: Ocean Drilling Program (ODP) Site 982 provided a key sediment section at Rockall Plateau for reconstructing northeast Atlantic paleoceanography and monitoring benthic δ18O stratigraphy over the late Pliocene to Quaternary onset of major Northern Hemisphere glaciation. A renewed hole-specific inspection of magnetostratigraphic reversals and the addition of epibenthic δ18O records for short Pliocene sections in holes 982A, B, and C, crossing core breaks in the δ18O record published for Hole 982B, now imply a major revision of composite core depths. After tuning to the orbitally tuned reference record LR04, the new composite δ18O record results in a hiatus, where the Kaena magnetic subchron might have been lost, and in a significant age reduction for all proxy records by 130 to 20 ky over the time span 3.2–2.7 million years ago (Ma). Our study demonstrates the general significance of reliable composite-depth scales and δ18O stratigraphies in ODP sediment records for generating ocean-wide correlations in paleoceanography. The new concept of age control makes the late Pliocene trends in SST (sea surface temperature) and atmospheric pCO2 at Site 982 more consistent with various paleoclimate trends published from elsewhere in the North Atlantic.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Journal of Micropalaeontology, 31 (1). pp. 53-72.
    Publication Date: 2018-03-23
    Description: Benthic foraminifera have proven to be suitable for environmental monitoring because of their high levels of adaptation, small size and high abundance in Recent sediments and the fossil record. Foraminifera are scarcely used in monitoring studies because a standardization of methods has not been achieved to date. When particular methods were introduced and why they were applied is often hidden in the literature. This paper reviews the development of field and laboratory methods, their constraints and consequences for faunal and data analyses. Multiple and box corers and some grab samplers retrieve reliable surface sediment samples provided the bow wave is minimized as the sampler approaches the sea floor. Most disturbances are created during handling of the unit on deck and subsampling. Ethanol for preservation, rose Bengal as vital stain and a mesh size of 63 µm to wash foraminiferal samples are used extensively. Faunal analyses of a larger size fraction are occasionally necessary. The fractions 〉125 µm and 〉150 µm are often preferentially chosen even though this may artificially reduce specimen numbers and faunal diversity. Generally, a much lower level of common practice prevails in sample preparation and faunal analyses than in sampling or laboratory procedures. Increasing preference has been given to quantitative methods and the acquisition of independently revisable census data during recent decades.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-09-23
    Description: Sea-to-air and diapycnal fluxes of nitrous oxide (N2O) into the mixed layer were determined during three cruises to the upwelling region off Mauritania. Sea-to-air fluxes as well as diapycnal fluxes were elevated close to the shelf break, but elevated sea-to-air fluxes reached further offshore as a result of the offshore transport of upwelled water masses. To calculate a mixed layer budget for N2O we compared the regionally averaged sea-to-air and diapycnal fluxes and estimated the potential contribution of other processes, such as vertical advection and biological N2O production in the mixed layer. Using common parameterizations for the gas transfer velocity, the comparison of the average sea-toair and diapycnal N2O fluxes indicated that the mean sea-toair flux is about three to four times larger than the diapycnal flux. Neither vertical and horizontal advection nor biological production were found sufficient to close the mixed layer budget. Instead, the sea-to-air flux, calculated using a parameterization that takes into account the attenuating effect of surfactants on gas exchange, is in the same range as the diapycnal flux. From our observations we conclude that common parameterizations for the gas transfer velocity likely overestimate the air-sea gas exchange within highly productive upwelling zones.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-09-23
    Description: The ongoing rise in atmospheric pCO2 and consequent increase in ocean acidification have direct effects on marine calcifying phytoplankton, which potentially alters carbon export. To date it remains unclear, firstly, how nutrient regime, in particular by coccolithophores preferred phosphate limitation, interacts with pCO2 on particulate carbon accumulation; secondly, how direct physiological responses on the cellular level translate into total population response. In this study, cultures of Emiliania huxleyi were full-factorially exposed to two different N:P regimes and three different pCO2 levels. Cellular biovolume and PIC and POC content significantly declined in response to pCO2 in both nutrient regimes. Cellular PON content significantly increased in the Redfield treatment and decreased in the high N:P regime. Cell abundance significantly declined in the Redfield and remained constant in the high N:P regime. We hypothesise that in the high N:P regime severe phosphorous limitation could be compensated either by reduced inorganic phosphorous demand and/or by enzymatic uptake of organic phosphorous. In the Redfield regime we suggest that enzymatic phosphorous uptake to supplement enhanced phosphorous demand with pCO2 was not possible and thus cell abundance declined. These hypothesised different physiological responses of E. huxleyi among the nutrient regimes significantly altered population carrying capacities along the pCO2 gradient. This ultimately led to the attenuated total population response in POC and PIC content and biovolume to increased pCO2 in the high N:P regime. Our results point to the fact that the physiological (i.e. cellular) PIC and POC response to ocean acidification cannot be linearly extrapolated to total population response and thus carbon export. It is therefore necessary to consider both effects of nutrient limitation on cell physiology and their consequences for population size when predicting the influence of coccolithophores on atmospheric pCO2 feedback and their function in carbon export mechanisms.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-09-23
    Description: Increasing concentrations of atmospheric carbon dioxide are projected to lead to an increase in sea surface temperatures, potentially impacting marine ecosystems and biogeochemical cycling. Here we conducted an indoor mesocosm experiment with a natural plankton community taken from the Baltic Sea in summer. We induced a plankton bloom via nutrient addition and followed the dynamics of the different carbon and nitrogen pools for a period of one month at temperatures ranging from 9.5 °C to 17.5 °C, representing a range of ± 4 °C relative to ambient temperature. The uptake of dissolved inorganic carbon (DIC) and the net build-up of both particulate (POC) and dissolved organic carbon (DOC) were all enhanced at higher temperatures and almost doubled over a temperature gradient of 8 °C. Furthermore, elemental ratios of carbon and nitrogen (C:N) in both particulate and dissolved organic matter increased in response to higher temperatures, both reaching very high C:N ratios of 〉30 at +4 °C. Altogether, these observations suggest a pronounced increase in excess carbon fixation in response to elevated temperatures. Most of these findings are contrary to results from similar experiments conducted with plankton populations sampled in spring, revealing large uncertainties in our knowledge of temperature sensitivities of key processes in marine carbon cycling. Since a major difference to previous mesocosm experiments was the dominant phytoplankton species, we hypothesize that species composition might play an important role in the response of biogeochemical cycling to increasing temperatures.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2014-02-05
    Description: Comprehensive synoptic datasets (surface water down to 4000 m) of dissolved cadmium (Cd), copper (Cu), manganese (Mn), lead (Pb) and silver (Ag) are presented along a section between 34° S and 57° S in the southeastern Atlantic Ocean and the Southern Ocean to the south off South Africa. The vertical distributions of Cu and Ag display nutrient-like profiles similar to silicic acid, and of Cd similar to phosphate. The distribution of Mn shows a subsurface maximum in the oxygen minimum zone, whereas Pb concentrations are rather invariable with depth. Dry deposition of aerosols is thought to be an important source of Pb to surface waters close to South Africa, and dry deposition and snowfall may have been significant sources of Cu and Mn at the higher latitudes. Furthermore, the advection of water masses enriched in trace metals following contact with continental margins appeared to be an important source of trace elements to the surface, intermediate and deep waters in the southeastern Atlantic Ocean and the Antarctic Circumpolar Current. Hydrothermal inputs may have formed a source of trace metals to the deep waters over the Bouvet Triple Junction ridge crest, as suggested by relatively enhanced dissolved Mn concentrations. The biological utilization of Cu and Ag was proportional to that of silicic acid across the section, suggesting that diatoms formed an important control over the removal of Cu and Ag from surface waters. However, uptake by dino- and nano-flagellates may have influenced the distribution of Cu and Ag in the surface waters of the subtropical Atlantic domain. Cadmium correlated strongly with phosphate (P), yielding lower Cd / P ratios in the subtropical surface waters where phosphate concentrations were below 0.95 μM. The greater depletion of Cd relative to P observed in the Weddell Gyre compared to the Antarctic Circumpolar Current could be due to increase Cd uptake induced by iron-limiting conditions in these high-nutrient–low-chlorophyll waters. Similarly, an increase of Mn uptake under Fe-depleted conditions may have caused the highest depletion of Mn relative to P in the surface waters of the Weddell Gyre. In addition, a cellular Mn-transport channel of Cd was possibly activated in the Weddell Gyre, which in turn may have yielded depletion of both Mn and Cd in these surface waters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2020-05-13
    Description: Marine N2 fixing microorganisms, termed diazotrophs, are a key functional group in marine pelagic ecosystems. The biological fixation of dinitrogen (N2) to bioavailable nitrogen provides an important new source of nitrogen for pelagic marine ecosystems and influences primary productivity and organic matter export to the deep ocean. As one of a series of efforts to collect biomass and rates specific to different phytoplankton functional groups, we have constructed a database on diazotrophic organisms in the global pelagic upper ocean by compiling about 12 000 direct field measurements of cyanobacterial diazotroph abundances (based on microscopic cell counts or qPCR assays targeting the nifH genes) and N2 fixation rates. Biomass conversion factors are estimated based on cell sizes to convert abundance data to diazotrophic biomass. The database is limited spatially, lacking large regions of the ocean especially in the Indian Ocean. The data are approximately log-normal distributed, and large variances exist in most sub-databases with non-zero values differing 5 to 8 orders of magnitude. Reporting the geometric mean and the range of one geometric standard error below and above the geometric mean, the pelagic N2 fixation rate in the global ocean is estimated to be 62 (52–73) Tg N yr−1 and the pelagic diazotrophic biomass in the global ocean is estimated to be 2.1 (1.4–3.1) Tg C from cell counts and to 89 (43–150) Tg C from nifH-based abundances. Reporting the arithmetic mean and one standard error instead, these three global estimates are 140 ± 9.2 Tg N yr−1, 18 ± 1.8 Tg C and 590 ± 70 Tg C, respectively. Uncertainties related to biomass conversion factors can change the estimate of geometric mean pelagic diazotrophic biomass in the global ocean by about ±70%. It was recently established that the most commonly applied method used to measure N2 fixation has underestimated the true rates. As a result, one can expect that future rate measurements will shift the mean N2 fixation rate upward and may result in significantly higher estimates for the global N2 fixation. The evolving database can nevertheless be used to study spatial and temporal distributions and variations of marine N2 fixation, to validate geochemical estimates and to parameterize and validate biogeochemical models, keeping in mind that future rate measurements may rise in the future. The database is stored in PANGAEA (doi:10.1594/PANGAEA.774851).
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-06-28
    Description: Arkona Basin (southwestern Baltic Sea) is a seasonally-hypoxic basin characterized by the presence of free methane gas in its youngest organic-rich muddy stratum. Through the use of reactive transport models, this study tracks the development of the methane geochemistry in Arkona Basin as this muddy sediment became deposited during the last 8 kyr. Four cores are modeled each pertaining to a unique geochemical scenario according to their respective contemporary geochemical profiles. Ultimately the thickness of the muddy sediment and the flux of particulate organic carbon are crucial in determining the advent of both methanogenesis and free methane gas, the timescales over which methanogenesis takes over as a dominant reaction pathway for organic matter degradation, and the timescales required for free methane gas to form.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Ocean Science, 8 (2). pp. 175-181.
    Publication Date: 2015-09-24
    Description: Hydroacoustic detection of natural gas release from the seafloor has been conducted in the past by using singlebeam echosounders. In contrast, modern multibeam swath mapping systems allow much wider coverage, higher resolution, and offer 3-D spatial correlation. Up to the present, the extremely high data rate hampers water column backscatter investigations and more sophisticated visualization and processing techniques are needed. Here, we present water column backscatter data acquired with a 50 kHz prototype multibeam system over a period of 75 seconds. Display types are of swath-images as well as of a "re-sorted" singlebeam presentation. Thus, individual and/or groups of gas bubbles rising from the 24 m deep seafloor clearly emerge in the acoustic images, making it possible to estimate rise velocities. A sophisticated processing scheme is introduced to identify those rising gas bubbles in the hydroacoustic data. We apply a cross-correlation technique adapted from particle imaging velocimetry (PIV) to the acoustic backscatter images. Temporal and spatial drift patterns of the bubbles are assessed and are shown to match very well to measured and theoretical rise patterns. The application of this processing to our field data gives clear results with respect to unambiguous bubble detection and remote bubble rise velocimetry. The method can identify and exclude the main source of misinterpretations, i.e. fish-mediated echoes. Although image-based cross-correlation techniques are well known in the field of fluid mechanics for high resolution and non-inversive current flow field analysis, we present the first application of this technique as an acoustic bubble detector.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: video
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2023-01-04
    Description: REMO-HAM is a new regional aerosol-climate model. It is based on the REMO regional climate model and includes most of the major aerosol processes. The structure for aerosol is similar to the global aerosol-climate model ECHAM5-HAM, for example the aerosol module HAM is coupled with a two-moment stratiform cloud scheme. On the other hand, REMO-HAM does not include an online coupled aerosol-radiation nor a secondary organic aerosol module. In this work, we evaluate the model and compare the results against ECHAM5-HAM and measurements. Four different measurement sites were chosen for the comparison of total number concentrations, size distributions and gas phase sulfur dioxide concentrations: Hyytiälä in Finland, Melpitz in Germany, Mace Head in Ireland and Jungfraujoch in Switzerland. REMO-HAM is run with two different resolutions: 50 × 50 km2 and 10 × 10 km2. Based on our simulations, REMO-HAM is in reasonable agreement with the measured values. The differences in the total number concentrations between REMO-HAM and ECHAM5-HAM can be mainly explained by the difference in the nucleation mode. Since we did not use activation nor kinetic nucleation for the boundary layer, the total number concentrations are somewhat underestimated. From the meteorological point of view, REMO-HAM represents the precipitation fields and 2 m temperature profile very well compared to measurement. Overall, we show that REMO-HAM is a functional aerosol-climate model, which will be used in further studies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2023-01-31
    Description: We present new data for the stable isotope ratio ofinorganic nitrogen species from the contrasting oxygen minimum zones (OMZs) of the Eastern Tropical North Atlantic, south of Cape Verde, and the Eastern Tropical South Pacific off Peru. Differences in minimum oxygen concentration and corresponding N-cycle processes for the two OMZs are reflected in strongly contrasting δ15N distributions. Pacific surface waters are marked by strongly positive values for δ15N-NO−3) reflecting fractionation associated withsubsurface N loss and partial NO−3 utilization. This contrasts with negative values in NO−3 depleted surface waters of the Atlantic which are lower than can be explained by N supply via N2 fixation. We suggest the negative values reflect inputs of nitrate, possibly transient, associated withdeposition of Saharan dust. Strong signals of N-loss processes in the subsurfacePacific OMZ are evident in the isotope and N2O data, both ofwhich are compatible with a contribution of canonical denitrification to overall N-loss. However the apparent N isotope fractionation factor observed is relatively low (ɛd=11.4 ‰) suggesting an effect of influence from denitrification in sediments. Identical positive correlation of N2O vs. AOU for waters with oxygen concentrations ([O2]〈5 μmol l−1) in both regions reflect a nitrification source. Sharp decrease in N2O concentrations is observed in the Pacific OMZ due to denitrification under oxygen concentrations O2 〈5 μmol l−1.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...