ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (37)
  • 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring  (11)
  • 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk  (10)
  • Climate  (7)
  • Gas hydrate  (7)
  • Mid-ocean ridge  (7)
  • American Geophysical Union  (36)
  • American Institute of Physics (AIP)
  • Wiley
  • 2015-2019
  • 2010-2014  (37)
  • 1995-1999
  • 2010  (37)
  • 1996
Collection
  • Articles  (37)
Source
Years
  • 2015-2019
  • 2010-2014  (37)
  • 1995-1999
Year
  • 1
    Publication Date: 2017-04-04
    Description: On 16 November 2006 a flank collapse affected the unstable eastern slope of the South-East Crater (SEC) of Mount Etna. The collapse occurred during one of the paroxysmal events with sustained strombolian activity that characterized the August–December 2006 eruption and was triggered by erosion of loose, hydrothermally altered material of the steep south-east sector of SEC from the outpour of lava. The collapse produced a debris avalanche that involved both lithic and juvenile material and resulted in a deposit emplaced on the eastern flank of the volcano up to 1.2 km away from the source. The total volume of the deposit was estimated to be in the order of 330,000–413,000 m3. The reconstruction of the collapse event was simulated using TITAN2D software designed to model granular avalanches and landslides. This approach can be used to estimate areas that may be affected by similar collapse events in the future. The area affected by the 16 November 2006 lateral collapse of SEC was a small portion of the Mount Etna summit area, but the fact that no one was killed or injured should be considered fortuitous. The summit and adjacent areas of the volcano, in fact, are usually visited by many tourists who are not prepared to face this type of danger. The 16 November 2006 collapse points to the need to be prepared for similar events through scientific investigation (analysis of flank instability, numerical simulation of flows) and development of specific civil protection plans.
    Description: Published
    Description: B02204
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: reserved
    Keywords: Mount Etna ; flank instability ; volcaniclastic deposit ; granular flows ; numerical simulation ; volcanic hazard ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-02-03
    Description: Application of light detection and ranging (LIDAR) technology in volcanology has 7 developed rapidly over the past few years, being extremely useful for the generation 8 of high‐spatial‐resolution digital elevation models and for mapping eruption products. 9 However, LIDAR can also be used to yield detailed information about the dynamics of 10 lava movement, emplacement processes occuring across an active lava flow field, and the 11 volumes involved. Here we present the results of a multitemporal airborne LIDAR survey 12 flown to acquire data for an active flow field separated by time intervals ranging from 13 15 min to 25 h. Overflights were carried out over 2 d during the 2006 eruption of Mt. Etna, 14 Italy, coincident with lava emission from three ephemeral vent zones to feed lava flow in 15 six channels. In total 53 LIDAR images were collected, allowing us to track the volumetric 16 evolution of the entire flow field with temporal resolutions as low as ∼15 min and at a 17 spatial resolution of 〈1 m. This, together with accurate correction for systematic errors, 18 finely tuned DEM‐to‐DEM coregistration and an accurate residual error assessment, 19 permitted the quantification of the volumetric changes occuring across the flow field. We 20 record a characteristic flow emplacement mode, whereby flow front advance and channel 21 construction is fed by a series of volume pulses from the master vent. Volume pulses 22 have a characteristic morphology represented by a wave that moves down the channel 23 modifying existing channel‐levee constructs across the proximal‐medial zone and building 24 new ones in the distal zone. Our high‐resolution multitemporal LIDAR‐derived DEMs 25 allow calculation of the time‐averaged discharge rates associated with such a pulsed flow 26 emplacement regime, with errors under 1% for daily averaged values.
    Description: This work was partially funded by the Italian 930 Dipartimento della Protezione Civile in the frame of the 2007–2009 Agree- 931 ment with Istituto Nazionale di Geofisica e Vulcanologia–INGV. A.F. 932 benefited from the MIUR‐FIRB project “Piattaforma di ricerca multi‐disci- 933 plinare su terremoti e vulcani (AIRPLANE)” n. RBPR05B2ZJ. S.T. 934 benefited from the project FIRB “Sviluppo di nuove tecnologie per la prote- 935 zione e difesa del territorio dai rischi naturali (FUMO)” funded by the Italian 936 Ministero dell’Istruzione, dell’Università e della Ricerca.
    Description: Published
    Description: B11203
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: LIDAR ; lava flow ; Etna ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Assessment of the hazard from lava flow inundation at the active volcano of Mount Etna, Italy, was performed by calculating the probability of lava flow inundation at each position on the volcano. A probability distribution for the formation of new vents was calculated using geological and volcanological data from past eruptions. The simulated lava flows from these vents were emplaced using a maximum expected flow length derived from geological data on previous lava flows. Simulations were run using DOWNFLOW, a digital-elevation-model-based model designed to predict lava flow paths. Different eruptive scenarios were simulated by varying the elevation and probability distribution of eruptive points. Inundation maps show that the city of Catania and the coastal zone may only be impacted by flows erupted from low-altitude vents (〈1500 m elevation) and that flank eruptions at elevations 〉2000 m preferentially inundate the northeast and southern sectors of the volcano as well as the Valle del Bove. Eruptions occurring in the summit area (〉3000 m elevation) pose no threat to the local population. Discrepancies between the results of simple, hydrological models and those of the DOWNFLOW model show that hydrological approaches are inappropriate when dealing with Etnean lava flows. Because hydrological approaches are not designed to reproduce the full complexity of lava flow spreading, they underestimate the catchment basins when the fluid has a complex rheology.
    Description: Published
    Description: F01019
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: volcanic hazard ; lava flow ; Mount Etna ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Forecasting the time, nature, and impact of future eruptions is difficult at volcanoes such as Mount Etna, in Italy, where eruptions occur from the summit and on the flanks, affecting areas distant from each other. Nonetheless, the identification and quantification of areas at risk from new eruptions are fundamental for mitigating potential human casualties and material damage. Here, we present new results from the application of a methodology to define flexible high‐resolution lava invasion susceptibility maps based on a reliable computational model for simulating lava flows at Etna and on a validation procedure for assessing the correctness of susceptibility mapping in the study area. Furthermore, specific scenarios can be extracted at any time from the simulation database, for land use and civil defense planning in the long term, to quantify, in real time, the impact of an imminent eruption, and to assess the efficiency of protective measures.
    Description: This work was sponsored by the Italian Ministry for Education, University and Research, FIRB project RBAU01RMZ4 “Lava flow simulations by Cellular Automata,” and by the National Civil Defense Department and INGV (National Institute of Geophysics and Volcanology), project V3_6/09 “V3_6 – Etna.”
    Description: Published
    Description: B04203
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: JCR Journal
    Description: reserved
    Keywords: lava flows ; volcanic hazard ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.02. Cellular automata, fuzzy logic, genetic alghoritms, neural networks ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.08. Risk::05.08.99. General or miscellaneous ; 05. General::05.09. Miscellaneous::05.09.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: An edited version of this paper was published by AGU. Copyright (2009) American Geophysical Union.
    Description: Despite volcanic risk having been defined quantitatively more than 30 years ago, this risk has been managed without being effectively measured. The recent substantial progress in quantifying eruption probability paves the way for a new era of rational science-based volcano risk management, based on what may be termed ‘‘volcanic risk metrics’’ (VRM). In this paper, we propose the basic principles of VRM, based on coupling probabilistic volcanic hazard assessment and eruption forecasting with cost-benefit analysis. The VRM strategy has the potential to rationalize decision making across a broad spectrum of volcanological questions. When should the call for evacuation be made? What early preparations should be made for a volcano crisis? Is it worthwhile waiting longer? What areas should be covered by an emergency plan? During unrest, what areas of a large volcanic field or caldera should be evacuated, and when? The VRM strategy has the paramount advantage of providing a set of quantitative and transparent rules that can be established well in advance of a crisis, optimizing and clarifying decision-making procedures. It enables volcanologists to apply all their scientific knowledge and observational information to assist authorities in quantifying the positive and negative risk implications of any decision.
    Description: Published
    Description: B03213
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: risk assessment ; decision making ; campi flegrei ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Stromboli is a 3000 m high island volcano, rising to 900 m above sea-level. It is the most active volcano of the Aeolian Archipelago in the Tyrrhenian Sea (Italy). Major, large volume (1 km3) sector collapses, four occurring in the last 13 kyr, have played an important role in shaping the north-western flank (Sciara del Fuoco) of the volcano, potentially generating a high-risk tsunami hazard for the Aeolian Islands and the Italian coast. However, smaller volume, partial collapses of the Sciara del Fuoco have been shown to be more frequent tsunami-generating events. One such event occurred on 30 December 2002, when a partial collapse of the north-western flank of the island took place. The resulting landslide generated 10 m high tsunami waves that impacted the island. Multibeam bathymetry, side-scan sonar imaging and visual observations reveal that the landslide deposited 25 to 30 × 106 m3 of sediment on the submerged slope offshore from the Sciara del Fuoco. Two contiguous main deposit facies are recognized: (i) a chaotic, coarse-grained (metre-sized to centimetre-sized clasts) deposit; and (ii) a sand deposit containing a lower, cross-bedded sand layer and an upper structureless pebbly sand bed capped by sea floor ripple bedforms. The sand facies develops adjacent to and partially overlying the coarse deposits. Characteristics of the deposits suggest that they were derived from cohesionless, sandy matrix density flows. Flow rheology and dynamics led to the segregation of the density flow into sand-rich and clast-rich regions. A range of density flow transitions, both in space and in time, caused principally by particle concentration and grain-size partitioning within cohesionless parent flows was identified in the deposits of this relatively small-scale submarine landslide event.
    Description: Published
    Description: 1488-1504
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Flow transitions ; island volcano ; subaqueous cohesionless density flows ; submarine landslide deposits ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Long duration time-series of the chemical composition of fumaroles and of soil CO2 flux reveal that important variations in the activity of the Solfatara fumarolic field, the most important hydrothermal site of Campi Flegrei, occurred in the 2000-2008 period. A continuous increase of the CO2 concentrations, and a general decrease of the CH4 concentrations are interpreted as the consequence of the increment of the relative amount of magmatic fluids, rich in CO2 and poor in CH4, hosted by the hydrothermal system. Contemporaneously, the H2O-CO2-He-N2 gas system shows remarkable compositional variations in the samples collected after July 2000 with respect to the previous ones, indicating the progressive arrival at the surface of a magmatic component different from that involved in the 1983-84 episode of volcanic unrest (1983-1984 bradyseism). The change starts in 2000 concurrently with the occurrence of relatively deep, long-period seismic events which were the indicator of the opening of an easy-ascent pathway for the transfer of magmatic fluids towards the shallower, brittle domain hosting the hydrothermal system. Since 2000, this magmatic gas source is active and causes ground deformations, seismicity as well as the expansion of the area affected by soil degassing of deeply derived CO2. Even though the activity will most probably be limited to the expulsion of large amounts of gases and thermal energy, as observed in other volcanoes and in the past activity of Campi Flegrei, the behavior of the system in the future is, at the moment, unpredictable.
    Description: Published
    Description: B03205
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: Campi Flegrei ; CO2 ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-02-03
    Description: An edited version of this paper was published by AGU. Copyright (2010) American Geophysical Union
    Description: Seismic, deformation, and volcanic gas observations offer independent and complementary information on the activity state and dynamics of quiescent and eruptive volcanoes and thus all contribute to volcanic risk assessment. In spite of their wide use, there have been only a few efforts to systematically integrate and compare the results of these different monitoring techniques. Here we combine seismic (volcanic tremor and long‐period seismicity), deformation (GPS), and geochemical (volcanic gas plume CO2/SO2 ratios) measurements in an attempt to interpret trends in the recent (2007–2008) activity of Etna volcano. We show that each eruptive episode occurring at the Southeast Crater (SEC) was preceded by a cyclic phase of increase‐decrease of plume CO2/SO2 ratios and by inflation of the volcano’s summit captured by the GPS network. These observations are interpreted as reflecting the persistent supply of CO2‐rich gas bubbles (and eventually more primitive magmas) to a shallow (depth of 1–2.8 km asl) magma storage zone below the volcano’s central craters (CCs). Overpressuring of the resident magma stored in the upper CCs’ conduit triggers further magma ascent and finally eruption at SEC, a process which we capture as an abrupt increase in tremor amplitude, an upward (〉2800 m asl) and eastward migration of the source location of seismic tremor, and a rapid contraction of the volcano’s summit. Resumption of volcanic activity at SEC was also systematically anticipated by declining plume CO2/SO2 ratios, consistent with magma degassing being diverted from the central conduit area (toward SEC).
    Description: Published
    Description: Q09008
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: volcano monitoring ; Mt. Etna volcano ; geochemistry and geophysics ; volcanic tremor ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-02-03
    Description: Influences of distant earthquakes on volcanic systems by dynamic stress transfer are well documented. We analyzed seismic signals and volcanic activity at Mount Etna during two periods, January 2006 and May 2008, that clearly showed variations coincident with distant earthquakes. In the first period, characterized by mild volcano activity, the effect of the dynamic stress transfer, caused by an earthquake in Greece (M = 6.8), was twofold: (1) banded tremor activity changed its features and almost disappeared; (2) a swarm of volcano‐tectonic (VT) earthquakes took place. The changes of the banded tremor were likely due to variations in rock permeability, caused by fluid flows driven by dynamic strain. The VT earthquake swarm probably developed as a secondary process, promoted by the dynamically triggered activation of magmatic fluids. The second period, May 2008, showed an intense explosive activity. During this interval, the dynamic stress transfer, associated with the arrival of the seismic waves of the Sichuan earthquake (M = 7.9), affected the character of the seismo‐volcanic signals and on the following day triggered an eruption. In particular, we observed changes in volcanic tremor and increases of both occurrence rate and energy of long period events. In this case, we suggest that dynamic stress transfer caused nucleation of new bubbles in volatile‐rich magma bodies with consequent buildup of pressure, highlighted by the increase of long period activity, followed by the occurrence of an eruption. We conclude that stresses from distant earthquakes are capable of modifying the state of the volcano.
    Description: Published
    Description: B12304
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Mt. Etna volcano ; dynamic stress transfer ; triggered eruption ; triggered seismicity ; volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-02-03
    Description: An edited version of this paper was published by AGU. Copyright (2010) American Geophysical Union.
    Description: Volcano deformation may occur under different conditions. To understand how a volcano deforms, as well as relations with magmatic activity, we studied Mt. Etna in detail using interferometric synthetic aperture radar (InSAR) data from 1994 to 2008. From 1994 to 2000, the volcano inflated with a linear behavior. The inflation was accompanied by eastward and westward slip on the eastern and western flanks, respectively. The portions proximal to the summit showed higher inflation rates, whereas the distal portions showed several sectors bounded by faults, in some cases behaving as rigid blocks. From 2000 to 2003, the deformation became nonlinear, especially on the proximal eastern and western flanks, showing marked eastward and westward displacements, respectively. This behavior resulted from the deformation induced by the emplacement of feeder dikes during the 2001 and 2002–2003 eruptions. From 2003 to 2008, the deformation approached linearity again, even though the overall pattern continued to be influenced by the emplacement of the dikes from 2001 to 2002. The eastward velocity on the eastern flank showed a marked asymmetry between the faster sectors to the north and those (largely inactive) to the south. In addition, from 1994 to 2008 part of the volcano base (south, west, and north lower slopes) experienced a consistent trend of uplift on the order of ∼0.5 cm/yr. This study reveals that the flanks of Etna have undergone a complex instability resulting from three main processes. In the long term (103–104 years), the load of the volcano is responsible for the development of a peripheral bulge. In the intermediate term (≤101 years, observed from 1994 to 2000), inflation due to the accumulation of magma induces a moderate and linear uplift and outward slip of the flanks. In the short term (≤1 year, observed from 2001 to 2002), the emplacement of feeder dikes along the NE and south rifts results in a nonlinear, focused, and asymmetric deformation on the eastern and western flanks. Deformation due to flank instability is widespread at Mt. Etna, regardless of volcanic activity, and remains by far the predominant type of deformation on the volcano.
    Description: ESA provided the SAR data (Cat‐1 no. 4532 and GEO Supersite initiative). The DEM was obtained from the SRTM archive, while the ERS‐1/2 orbits are courtesy of the TU‐Delft, The Netherlands. This work was partially funded by INGV and the Italian DPC (DPCINGV project V4 “Flank”), the Italian DPC (under special agreement with IREA‐CNR), and the Italian Space Agency under contract “sistema rischio vulcanico (SRV).” The authors thank Francesco Casu, Paolo Berardino, and Riccardo Lanari for their support and Geoff Wadge and Michael Poland for their helpful and constructive review of the manuscript.
    Description: Published
    Description: B10405
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Flank instability ; InSAR ; volcanoes ; Etna ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.04. Instrumentation and techniques of general interest::05.04.99. General or miscellaneous ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-04-04
    Description: Forecasting the time, nature and impact of future eruptions is difficult at volcanoes such as Mount Etna, in Italy, where eruptions occur from the summit and on the flanks, affecting areas distant from each other. Nonetheless, the identification and quantification of areas at risk from new eruptions is fundamental for mitigating potential human casualties and material damage. Here, we present new results from the application of a methodology to define flexible high-resolution lava invasion susceptibility maps based on a reliable computational model for simulating lava flows at Etna and on a validation procedure for assessing the correctness of susceptibility mapping in the study area. Furthermore, specific scenarios can be extracted at any time from the simulation database, for land-use and civil defence planning in the long-term, to quantify, in real-time, the impact of an imminent eruption, and to assess the efficiency of protective measures.
    Description: This work was sponsored by the Italian Ministry for Education, University and Research, FIRB project n° RBAU01RMZ4 “Lava flow simulations by Cellular Automata”, and by the National Civil Defence Department and INGV (National Institute of Geophysics and Volcanology), project V3_6/09 “V3_6 – Etna”.
    Description: In press
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: JCR Journal
    Description: open
    Keywords: lava flows ; Etna ; hazard evaluation ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.02. Cellular automata, fuzzy logic, genetic alghoritms, neural networks ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.08. Risk::05.08.99. General or miscellaneous ; 05. General::05.09. Miscellaneous::05.09.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017-04-04
    Description: Long duration time-series of the chemical composition of fumaroles and of soil CO2 flux reveal that important variations in the activity of the Solfatara fumarolic field, the most important hydrothermal site of Campi Flegrei, occurred in the 2000-2008 period. A continuous increase of the CO2 concentrations, and a general decrease of the CH4 concentrations are interpreted as the consequence of the increment of the relative amount of magmatic fluids, rich in CO2 and poor in CH4, hosted by the hydrothermal system. Contemporaneously, the H2O-CO2-He-N2 gas system shows remarkable compositional variations in the samples collected after July 2000 with respect to the previous ones, indicating the progressive arrival at the surface of a magmatic componentdifferent from that involved in the 1983-84 episode of volcanic unrest (1983-1984 bradyseism). The change starts in 2000 concurrently with the occurrence of relatively deep, long-period seismic events which were the indicator of the opening of an easy-ascent pathway for the transfer of magmatic fluids towards the shallower, brittle domain hosting the hydrothermal system. Since 2000, this magmatic gas source is active and causes ground deformations, seismicity as well as the expansion of the area affected by soil degassing of deeply derived CO2. Even though the activity will most probably be limited to the expulsion of large amounts of gases and thermal energy, as observed in other volcanoes and in the past activity of Campi Flegrei, the behavior of the system in the future is, at the moment, unpredictable.
    Description: In press
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: open
    Keywords: Solfatara crater ; CO2 content ; hydrothermal system ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-04-04
    Description: This is a parametric study that was carried out to investigate the signals generated by a hydrothermal system fed by a pulsating source of magmatic fluids. This study focuses on the effects that selected properties of the source have on the evolution of hydrothermal activity at Campi Flegrei, Italy. Numerical simulations are carried out to describe a multiphase and multicomponent hydrothermal system. Each simulation describes a short unrest phase, followed by a prolonged quiet period. During the unrest, specific properties of the fluid source (flow rate, fluid composition, source size, and unrest duration) are modified with respect to selected baseline values. The evolution of the system is tracked by looking at two parameters that can be monitored in active volcanic areas: the composition of fumarolic gases and gravity changes. The results describe the temporal evolution of these two observables and allow comparisons of the effects of different source properties. All of the simulated unrest events cause measurable changes in gas composition and gravity. For the geometry and system properties considered, these changes always last beyond the end of the unrest period, and can often persist for decades. Fluid flow rate is the source property that mostly affects the observable evolution. Gravity is more sensitive to source properties than gas composition, and it undergoes the largest and quickest changes. The results also highlight the major role that rock properties and initial conditions have in the evolution of these observable signals.
    Description: Department of Civil Protection
    Description: Published
    Description: B05201
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: hydrothermal fluids ; modeling ; monitoring ; signals ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-04-04
    Description: We investigated the banded tremor activity occurring at Mt. Etna volcano between August-October 2008 during the 2008-2009 eruption. The banded tremor occurred in episodes lasting 25-30 minutes with intervals in between the episodes of about 25 minutes. Seismic signal analyses showed that the banded tremor was characterised by spectral contents, wavefields and source locations that differed from the “ordinary” volcanic tremor. The infrasound recordings exhibited an intermittent infrasonic tremor alternating with the banded tremor episodes. Finally, nonlinear analyses suggested that banded tremor system can be considered chaotic, implying: i) sensitive dependence on initial conditions, suggesting not only that a banded tremor system requires particular conditions to generate, but also that slight variations of these conditions are able to greatly change the features of the banded tremor or even to stop it; ii) long-term unpredictability, that is, the impossibility to forecast the long-term evolution of the banded tremor. On the basis of all these results and analogies with geyser models, we suggest a model of banded tremor that invokes alternating recharge-discharge phases. Banded tremor is due to “perturbations” in shallow aquifers, such as fluid movement and bubble growth or collapse due to hydrothermal boiling, triggered by the heat and hot fluid transfer from the underlying magma bodies. This heat-fluid transfer also causes an increasing pressure in the aquifer leading to fluid-discharge. During this process the seismic radiation decreases and, if the fluid-discharge is well coupled with the atmosphere, acoustic signals are generated.
    Description: Published
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Banded tremor ; Mt. Etna volcano ; volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-10-10
    Description: An edited version of this paper was published by AGU. Copyright (2010) American Geophysical Union.
    Description: Monitoring of quiescent volcanoes, such as Campi Flegrei (Italy), involves the measurement of geochemical and geophysical parameters that are expected to change as eruptive conditions approach. Some of these changes are associated with the hydrothermal activity that is driven by the release of heat and magmatic fluids. This work focuses on the properties of the porous medium and on their effects on the signals generated by the circulating fluids. The TOUGH2 porous media flow model is applied to simulate a shallow hydrothermal system fed by a source of magmatic fluids. The simulated activity of the source, with periods of increased fluid discharge, generates changes in gas composition, gravity, and ground deformation. The same boundary conditions and source activity were applied to simulate the evolution of homogeneous and heterogeneous systems, characterized by different rock properties. Phase distribution, fluid composition, and the related signals depend on the nature and properties of the rock sequence through which the fluids propagate. Results show that the distribution of porosity and permeability affects all the observable parameters, controlling the timing and the amplitude of their changes through space and time. Preferential pathways for fluid ascent favor a faster evolution, with larger changes near permeable channels. Slower changes over wider areas characterize less permeable systems. These results imply that monitoring signals do not simply reflect the evolution of the magmatic system: intervening rocks leave a marked signature that should be taken into account when monitoring data are used to infer system conditions at depth.
    Description: This work was carried out within the research project V1-UNREST, founded by the Italian Civil Protection Department
    Description: Published
    Description: B09213
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: open
    Keywords: hydrothermal circulation ; observable ; volcanic unrest ; permeability ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 10 (2009): Q10T07, doi:10.1029/2008GC002354.
    Description: High-resolution side-scan sonar, near-bottom multibeam bathymetry, and deep-sea photo and bathymetry traverses are used to map the axial summit trough (AST) at the East Pacific Rise between 9 and 10°N. We define three ridge axis morphologic types: no AST, narrow AST, and wide AST, which characterize distinct ridge crest domains spanning tens of kilometers along strike. Near-bottom observations, modeling of deformation above intruding dikes, and comparisons to the geologic and geophysical structure of the ridge crest are used to develop a revised model of AST genesis and evolution. This model helps constrain the record of intrusive and extrusive magmatism and styles of lava deposition along the ridge crest at time scales from hundreds to tens of thousands of years. The grabens in the narrow-AST domain (9°43′–53′N) are consistent with deformation above the most recent (〈10) diking events beneath the ridge crest. Frequent high–effusion rate extrusive volcanism in this domain (several eruptions every ∼100 years) overprints near-axis deformation and maintains a consistent AST width. The most recent eruption at the ridge crest occurred in this area and did not significantly modify the physical characteristics of the AST. The grabens in the wide-AST domain (9°23′–43′N) originated with similar dimensions to the narrow AST. Spreading, driven primarily by the intrusion of shallow dikes within a narrow axial zone, causes the initial graben bounding faults to migrate away from the axis. Infrequent extrusive volcanism (several eruptions every ∼1000 years) fills a portion of the subsidence that accumulates over time but does not significantly modify the width of the AST. Outside of these domains, lower–effusion rate constructional volcanism without efficient drain-back fills and erases the signature of the AST. The relative frequency of intrusive versus extrusive magmatic events controls the morphology of the ridge crest and appears to remain constant over millennial time scales within the domains we have identified; however, over longer time scales (∼10–25 ka), domain-specific intrusive-to-extrusive ratios do not appear to be fixed in space, resulting in a fairly consistent volcanic accretion over the length scale of the second-order ridge segment between 9°N and 10°N.
    Description: This work was supported by NSF grants OCE-0525863 to D. Fornari and S. A. Soule; OCE-0732366 to S. A. Soule; and OCE-9819261 to H. Schouten, M. Tivey, and D. Fornari and by CNRS to J. Escartın.
    Keywords: Mid-ocean ridge ; Submarine volcanism ; Diking ; Seafloor morphology ; Magmatism
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Format: application/postscript
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 34 (2007): L24307, doi:10.1029/2007GL031067.
    Description: Mid-ocean ridge morphology correlates strongly with spreading rate. As the spreading rate decreases, conductive cooling becomes more important in controlling ridge thermal structure and the axial lithosphere thickens. At ultraslow spreading rates, the ridge axis becomes sufficiently cold that peridotite blocks are emplaced directly at the seafloor and volcanism is limited to localized volcanic centers widely spaced along the ridge axis. Some slow-spreading ridges adopt an ultraslow morphology when their axis is oblique to the spreading direction. We present an analytical solution for mantle flow beneath an oblique ridge and demonstrate that the thermal structure and crustal thickness are controlled by the effective spreading rate (product of the plate separation velocity and the cosine of obliquity). A global compilation of oblique ridges reveals that ultraslow morphology corresponds to effective half rates less than 6.5 mm/yr, resulting in lithosphere that is thicker than ~30 km. We conclude that the transition from slow to ultraslow spreading is not related to a change of melt productivity but rather in the efficiency of vertical melt extraction.
    Description: This work was supported by NSF grants OCE-0327588, OCE-0548672, and OCE-0623188, OCE-0649103, the J. Lamar Worzel Assistant Scientist fund to LGJM and the Jessie B. Cox Endowed Fund to MDB.
    Keywords: Mid-ocean ridge ; Mantle flow ; Melting
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: text/plain
    Format: application/pdf
    Format: application/postscript
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 114 (2009): C00A08, doi:10.1029/2008JC005162.
    Description: The BG Observational program has been jointly supported by the USA National Science Foundation, Division of Polar Programs (Arctic Science) since 2003 (ARC-0424864); by Fisheries and Oceans Canada; and partially by the Japan Agency for Marine-Earth Science and Technology.
    Keywords: Beaufort Gyre ; Climate ; Atmosphere ; Ice and ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 11 (2010): Q03007, doi:10.1029/2009GC002667.
    Description: Gas hydrate formation and dissociation in sediments are accompanied by changes in the bulk volume of the sediment and can lead to changes in sediment properties, loss of integrity for boreholes, and possibly regional subsidence of the ground surface over areas where methane might be produced from gas hydrate in the future. Experiments on sand, silts, and clay subject to different effective stress and containing different saturations of hydrate formed from dissolved phase tetrahydrofuran are used to systematically investigate the impact of gas hydrate formation and dissociation on bulk sediment volume. Volume changes in low specific surface sediments (i.e., having a rigid sediment skeleton like sand) are much lower than those measured in high specific surface sediments (e.g., clay). Early hydrate formation is accompanied by contraction for all soils and most stress states in part because growing gas hydrate crystals buckle skeletal force chains. Dilation can occur at high hydrate saturations. Hydrate dissociation under drained, zero lateral strain conditions is always associated with some contraction, regardless of soil type, effective stress level, or hydrate saturation. Changes in void ratio during formation-dissociation decrease at high effective stress levels. The volumetric strain during dissociation under zero lateral strain scales with hydrate saturation and sediment compressibility. The volumetric strain during dissociation under high shear is a function of the initial volume average void ratio and the stress-dependent critical state void ratio of the sediment. Other contributions to volume reduction upon hydrate dissociation are related to segregated hydrate in lenses and nodules. For natural gas hydrates, some conditions (e.g., gas production driven by depressurization) might contribute to additional volume reduction by increasing the effective stress.
    Description: This research was initially supported by the Chevron Joint Industry Project on Methane Hydrates under contract DE‐FC26‐01NT41330 from the U.S. Department of Energy to Georgia Tech. Additional support was provided to J. Y. Lee by KIGAM, GHDO, and MKE and J. C. Santamarina by the Goizueta Foundation.
    Keywords: Gas hydrate ; Hydrate-bearing sediment ; Phase transformation ; Strain
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    American Geophysical Union
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): C04S06, doi:10.1029/2006JC003643.
    Description: A three-dimensional coupled ocean/ice model, intended for long-term Arctic climate studies, is extended to include tidal effects. From saved output of an Arctic tides model, we introduce parameterizations for (1) enhanced ocean mixing associated with tides and (2) the role of tides fracturing and mobilizing sea ice. Results show tides enhancing loss of heat from Atlantic waters. The impact of tides on sea ice is more subtle as thinning due to enhanced ocean heat flux competes with net ice growth during rapid openings and closings of tidal leads. Present model results are compared with an ensemble of nine models under the Arctic Ocean Model Intercomparison Project (AOMIP). Among results from AOMIP is a tendency for models to accumulate excessive Arctic Ocean heat throughout the intercomparison period 1950 to 2000 which is contrary to observations. Tidally induced ventilation of ocean heat reduces this discrepancy.
    Description: This research is supported by the National Science Foundation Office of Polar Programs under cooperative agreements OPP-0002239 and OPP-0327664 with the International Arctic Research Center, University of Alaska Fairbanks.
    Keywords: Tide ; Arctic ; Climate
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 36 (2009): L11703, doi:10.1029/2009GL038677.
    Description: Proxy reconstructions and model simulations suggest that steeper interhemispheric sea surface temperature (SST) gradients lead to southerly Intertropical Convergence Zone (ITCZ) migrations during periods of North Atlantic cooling, the most recent of which was the Little Ice Age (LIA; ∼100–450 yBP). Evidence suggesting low-latitude Atlantic cooling during the LIA was relatively small (〈1°C) raises the possibility that the ITCZ may have responded to a hemispheric SST gradient originating in the extratropics. We use an atmospheric general circulation model (AGCM) to investigate the relative influence of low-latitude and extratropical SSTs on the meridional position of the ITCZ. Our results suggest that the ITCZ responds primarily to local, low-latitude SST anomalies and that small cool anomalies (〈0.5°C) can reproduce the LIA precipitation pattern suggested by paleoclimate proxies. Conversely, even large extratropical cooling does not significantly impact low-latitude hydrology in the absence of ocean-atmosphere interaction.
    Description: This work was supported by NSF grants OCE 0623364 and ATM 033746 as well as the student research fund of MIT’s Department of Earth, Atmospheric and Planetary Science.
    Keywords: Climate ; ITCZ ; Little Ice Age
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2003. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Reviews of Geophysics 41 (2003): 1017, doi:10.1029/2002RG000117.
    Description: Hot spot–mid-ocean ridge interactions cause many of the largest structural and chemical anomalies in Earth's ocean basins. Correlated geophysical and geochemical anomalies are widely explained by mantle plumes that deliver hot and compositionally distinct material toward and along mid-ocean ridges. Compositional anomalies are seen in trace element and isotope ratios, while elevated mantle temperatures are suggested by anomalously thick crust, low-density mantle, low mantle seismic velocities, and elevated degrees and pressures of melting. Several geodynamic laboratory and modeling studies predict that the width over which plumes expand along the ridge axis increases with plume flux and excess buoyancy and decreases with plate spreading rate, plume viscosity, and plume-ridge separation. Key aspects of the theoretical predictions are supported by observations at several prominent hot spot–ridge systems. Still, many basic aspects of plume-ridge interaction remain enigmatic. Outstanding problems pertain to whether plumes flow toward and along mid-ocean ridges in narrow pipe-like channels or as broad expanding gravity currents, the origin of geochemical mixing trends observed along ridges, and how mantle plumes alter the geometry of the mid-ocean ridge plate boundary, as well as the origin of other ridge axis anomalies not obviously related to mantle plumes.
    Description: G. Ito was funded by NSF grants OCE-0002189 and OCE-0221889 and new faculty start-up funds contributed by SOEST. J. Lin was supported by NSF grant OCE-0129741 and the Andrew W. Mellon Foundation Endowed Fund for Innovative Research at WHOI.
    Keywords: Hot spot ; Mid-ocean ridge ; Mantle plume ; Mantle convection ; MORB ; OIB
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 114 (2009): B11102, doi:10.1029/2008JB006100.
    Description: We examine mantle melting, fractional crystallization, and melt extraction beneath fast slipping, segmented oceanic transform fault systems. Three-dimensional mantle flow and thermal structures are calculated using a temperature-dependent rheology that incorporates a viscoplastic approximation for brittle deformation in the lithosphere. Thermal solutions are combined with the near-fractional, polybaric melting model of Kinzler and Grove (1992a, 1992b, 1993) to determine extents of melting, the shape of the melting regime, and major element melt composition. We investigate the mantle source region of intratransform spreading centers (ITSCs) using the melt migration approach of Sparks and Parmentier (1991) for two end-member pooling models: (1) a wide pooling region that incorporates all of the melt focused to the ITSC and (2) a narrow pooling region that assumes melt will not migrate across a transform fault or fracture zone. Assuming wide melt pooling, our model predictions can explain both the systematic crustal thickness excesses observed at intermediate and fast slipping transform faults as well as the deeper and lower extents of melting observed in the vicinity of several transform systems. Applying these techniques to the Siqueiros transform on the East Pacific Rise we find that both the viscoplastic rheology and wide melt pooling are required to explain the observed variations in gravity inferred crustal thickness. Finally, we show that mantle potential temperature Tp = 1350°C and fractional crystallization at depths of 9–15.5 km fit the majority of the major element geochemical data from the Siqueiros transform fault system.
    Description: This research was supported by WHOI Academic Programs Office (PMG), NSF grants OCE-0649103 and OCE-0623188 (MDB), and the Charles D. Hollister Endowed Fund for Support of Innovative Research at WHOI (J.L.).
    Keywords: Mid-ocean ridge ; Oceanic transform fault ; Siqueiros transform
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 21 (2007): GB2001, doi:10.1029/2006GB002762.
    Description: Recent upward revisions in key sink/source terms for fixed nitrogen (N) in the oceans imply a short residence time and strong negative feedbacks involving denitrification and N fixation to prevent large swings in the ocean N inventory over timescales of a few centuries. We tested the strength of these feedbacks in a global biogeochemical elemental cycling (BEC) ocean model that includes water column denitrification and an explicit N fixing phytoplankton group. In the northern Indian Ocean and over longer timescales in the tropical Atlantic, we find strong stabilizing feedbacks that minimize changes in marine N inventory over timescales of ∼30–200 years. In these regions high atmospheric dust/iron inputs lead to phosphorus limitation of diazotrophs, and thus a tight link between N fixation and surface water N/P ratios. Maintenance of the oxygen minimum zones in these basins depends on N fixation driven export. The stabilizing feedbacks in other regions are significant but weaker owing to iron limitation of the diazotrophs. Thus Fe limitation appears to restrict the ability of N fixation to compensate for changes in denitrification in the current climate, perhaps leading the oceans to lose fixed N. We suggest that iron is the ultimate limiting nutrient leading to nitrogen being the proximate limiting nutrient over wide regions today. Iron stress was at least partially alleviated during more dusty, glacial times, leading to a higher marine N inventory, increased export production, and perhaps widespread phosphorus limitation of the phytoplankton community. The increased efficiency of the biological pump would have contributed to the glacial drawdown in atmospheric CO2.
    Description: This work was supported by grants from the U.S. National Science Foundation (OCE-0222033 and OCE-0452972). Computations supported by Earth System Modeling Facility (NSF ATM-0321380) and by the Climate Simulation Laboratory at the National Center for Atmospheric Research.
    Keywords: Climate ; Biological pump ; Ecosystem model
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/postscript
    Format: text/plain
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 9 (2008): Q09O12, doi:10.1029/2008GC001970.
    Description: We investigate the origin of mid-ocean ridge morphology with numerical models that successfully predict axial topographic highs, axial valleys, and the transition between the two. The models are time-dependent, simulating alternating tectonic and magmatic periods where far-field extension is accommodated by faulting and by magmatism, respectively. During tectonic phases, models predict faults to grow on either side of the ridge axis and axial height to decrease. During magmatic phases, models simulate magmatic extension by allowing the axial lithosphere to open freely in response to extension. Results show that fault size and spacing decreases with increasing time fraction spent in the magmatic phase F M . Magmatic phases also simulate the growth of topography in response to local buoyancy forces. The fundamental variable that controls the transition between axial highs and valleys is the “rise-sink ratio,” (F M /F T )(τ T /τ M ), where F M /F T is the ratio of the time spent in the magmatic and tectonic periods and τ T /τ M is the ratio of the characteristic rates for growing topography during magmatic phases (1/τ M ) and for reducing topography during tectonic phases (1/τ T ). Models predict the tallest axial highs when (F M /F T )(τ T /τ M ) ≫ 1, faulted topography without a high or valley when (F M /F T )(τ T /τ M ) ∼ 1, and the deepest median valleys when (F M /F T )(τ M /τ T ) 〈 1. New scaling laws explain a global negative correlation between axial topography and lithosphere thickness as measured by the depths of axial magma lenses and microearthquakes. Exceptions to this trend reveal the importance of other behaviors such as a predicted inverse relation between axial topography and spreading rate as evident along the Lau Spreading Center. Still other factors related to the frequency and spatial pervasiveness of magmatic intrusions and eruptions, as evident at the Mid-Atlantic and Juan de Fuca ridges, influence the rise-sink-ratio (F M /F T )(τ T /τ M ) and thus axial morphology.
    Description: Funding for this research was provided by NSF grants OCE-0327018 (MDB), OCE-0548672 (MDB), OCE-0327051 (GI), and OCE-0351234 (GI).
    Keywords: Mid-ocean ridge ; Magmatism ; Seafloor spreading ; Faulting ; Rifting
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 9 (2008):Q11T04, doi:10.1029/2008GC002070.
    Description: Four seafloor benchmarks were deployed with ROV Jason2 at frequently visited areas along the northern East Pacific Rise (NEPR) ridge crest near 9°50′N, within the Ridge2000 EPR integrated study site (ISS) bull's eye. When used in concert with established deep-ocean acoustic positioning techniques, these benchmarks provide navigational infrastructure to facilitate the integration of near-bottom data at this site by allowing efficient and quantitative coregistration of data and observations collected on multiple dives and over multiple cruises. High-resolution, near-bottom multibeam bathymetric surveys also were conducted along and across the ridge crest to provide a morphological and geological context for the benchmark areas. We describe the navigation and data processing techniques used to constrain the benchmark positions and outline operational details to effectively use benchmarks at this and other deep-ocean sites where multidisciplinary time series studies are conducted. The well-constrained positions of the benchmarks provide a consistent geospatial framework that can be used to limit navigational uncertainties during seafloor sampling and mapping programs and enable accurate spatial coregistration and integration of observations. These data are important to test a range of multidisciplinary hypotheses that seek to link geological, chemical, and biological processes associated with crustal accretion and energy transfer from the mantle to the hydrosphere at mid-ocean ridges.
    Keywords: Mid-ocean ridge ; Bathymetry ; Navigation ; Acoustic ; Hydrothermal vent
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 9 (2008): Q12009, doi:10.1029/2008GC002204.
    Description: We present a georeferenced photomosaic of the Lucky Strike hydrothermal vent field (Mid-Atlantic Ridge, 37°18′N). The photomosaic was generated from digital photographs acquired using the ARGO II seafloor imaging system during the 1996 LUSTRE cruise, which surveyed a ∼1 km2 zone and provided a coverage of ∼20% of the seafloor. The photomosaic has a pixel resolution of 15 mm and encloses the areas with known active hydrothermal venting. The final mosaic is generated after an optimization that includes the automatic detection of the same benthic features across different images (feature-matching), followed by a global alignment of images based on the vehicle navigation. We also provide software to construct mosaics from large sets of images for which georeferencing information exists (location, attitude, and altitude per image), to visualize them, and to extract data. Georeferencing information can be provided by the raw navigation data (collected during the survey) or result from the optimization obtained from image matching. Mosaics based solely on navigation can be readily generated by any user but the optimization and global alignment of the mosaic requires a case-by-case approach for which no universally software is available. The Lucky Strike photomosaics (optimized and navigated-only) are publicly available through the Marine Geoscience Data System (MGDS, http://www.marine-geo.org). The mosaic-generating and viewing software is available through the Computer Vision and Robotics Group Web page at the University of Girona (http://eia.udg.es/∼rafa/mosaicviewer.html).
    Description: This work has been supported by the EU Marie Curie RTNs MOMARNet (OD, RG, JE, LN, JF, NG) and FREESUBNet (RG, NG, XC), the Spanish Ministry of Science and Innovation (grant CTM2007–64751; RG, JE), CNRS and ANR (grant ANR NT05–3_42212, JE), ICREA (LN), and by the Generalitat de Catalunya (JE, RG). JF has been funded by MICINN under FPI grant BES-2006-12733 and NG has been supported by MICINN under the ‘‘Ramon y Cajal’’ program.
    Keywords: Mid-ocean ridge ; Photomosaic ; MoMAR ; Lucky Strike ; Hydrothermal field
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 114 (2009): B11103, doi:10.1029/2008JB006235.
    Description: A thorough understanding of the thermal conductivity of hydrate-bearing sediments is necessary for evaluating phase transformation processes that would accompany energy production from gas hydrate deposits and for estimating regional heat flow based on the observed depth to the base of the gas hydrate stability zone. The coexistence of multiple phases (gas hydrate, liquid and gas pore fill, and solid sediment grains) and their complex spatial arrangement hinder the a priori prediction of the thermal conductivity of hydrate-bearing sediments. Previous studies have been unable to capture the full parameter space covered by variations in grain size, specific surface, degree of saturation, nature of pore filling material, and effective stress for hydrate-bearing samples. Here we report on systematic measurements of the thermal conductivity of air dry, water- and tetrohydrofuran (THF)-saturated, and THF hydrate–saturated sand and clay samples at vertical effective stress of 0.05 to 1 MPa (corresponding to depths as great as 100 m below seafloor). Results reveal that the bulk thermal conductivity of the samples in every case reflects a complex interplay among particle size, effective stress, porosity, and fluid-versus-hydrate filled pore spaces. The thermal conductivity of THF hydrate–bearing soils increases upon hydrate formation although the thermal conductivities of THF solution and THF hydrate are almost the same. Several mechanisms can contribute to this effect including cryogenic suction during hydrate crystal growth and the ensuing porosity reduction in the surrounding sediment, increased mean effective stress due to hydrate formation under zero lateral strain conditions, and decreased interface thermal impedance as grain-liquid interfaces are transformed into grain-hydrate interfaces.
    Description: This work was supported by the Chevron Joint Industry Project on Methane Hydrates under contract DE-FC26- 01NT41330 to Georgia Institute of Technology from the U.S. Department of Energy’s National Energy Technology Laboratory. J.C.S. received additional support from the Goizueta Foundation. C.R. thanks the Petroleum Research Fund of the American Chemical Society under AC8–31351 for early support of thermal conductivity research on hydrate-bearing sediments at Georgia Institute of Technology.
    Keywords: Gas hydrate
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 114 (2009): B02212, doi:10.1029/2008JB006132.
    Description: We used ultrasonic pulse transmission to measure compressional, P, and shear, S, wave speeds in laboratory-formed polycrystalline ice Ih, sI methane hydrate, and sII methane-ethane hydrate. From the wave speed's linear dependence on temperature and pressure and from the sample's calculated density, we derived expressions for bulk, shear, and compressional wave moduli and Poisson's ratio from −20 to −5°C and 22.4 to 32.8 MPa for ice Ih, −20 to 15°C and 30.5 to 97.7 MPa for sI methane hydrate, and −20 to 10°C and 30.5 to 91.6 MPa for sII methane-ethane hydrate. All three materials had comparable P and S wave speeds and decreasing shear wave speeds with increasing applied pressure. Each material also showed evidence of rapid intergranular bonding, with a corresponding increase in wave speed, in response to pauses in sample deformation. There were also key differences. Resistance to uniaxial compaction, indicated by the pressure required to compact initially porous samples, was significantly lower for ice Ih than for either hydrate. The ice Ih shear modulus decreased with increasing pressure, in contrast to the increase measured in both hydrates.
    Description: This work was supported by NSF grant OCE-97-10506, DOE grants DE-FG0386ER 13601 and DE-FG07-96ER 14723, DOE/LLNL contract W-7405-ENG-48, GRI grant 5094-210-3235- 1, NEDO, as well as by the U.S. Geological Survey’s Coastal and Marine Geology and Eastern Region Gas Hydrate Programs.
    Keywords: Wave speed ; Elastic moduli ; Gas hydrate
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): C12005, doi:10.1029/2007JC004145.
    Description: We have evaluated a regional-scale simulation of the Mediterranean outflow by comparison with field data obtained in the 1988 Gulf of Cádiz Expedition. Our ocean model is based upon the Hybrid Coordinate Ocean Model (HYCOM) and includes the Richardson number–dependent entrainment parameterization of Xu et al. (2006). Given realistic topography and sufficient resolution, the model reproduces naturally the major, observed features of the Mediterranean outflow in the Gulf of Cádiz: the downstream evolution of temperature, salinity, and velocity profiles, the mean path and the spreading of the outflow plume, and most importantly, the localized, strong entrainment that has been observed to occur just west of the Strait of Gibraltar. As in all numerical solutions, there is some sensitivity to horizontal and vertical resolution. When the resolution is made coarser, the simulated currents are less vigorous and there is consequently less entrainment. Our Richardson number–dependent entrainment parameterization is therefore not recommended for direct application in coarse-resolution climate models. We have used the high-resolution regional model to investigate the response of the Mediterranean outflow to a change in the freshwater balance over the Mediterranean basin. The results are found in close agreement with the marginal sea boundary condition (MSBC): A more saline and dense Mediterranean deep water generates a significantly greater volume transport of the Mediterranean product water having only very slightly greater salinity.
    Description: National Science Foundation via grant OCE0336799 and the National Ocean Partnership Program (NOPP) via award N000140410676.
    Keywords: Mediterranean outflow ; Entrainment parameterization ; Climate
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2017-04-04
    Description: Flank instability is common at volcanoes, even though the subsurface structures, including the depth to a detachment fault, remain poorly constrained. Here, we use a multidisciplinary approach, applicable to most volcanoes, to evaluate the detachment depth of the unstable NE flank of Mt. Etna. InSAR observations of Mount Etna during 1995–2008 show a trapdoor subsidence of the upper NE flank, with a maximum deformation against the NE Rift. The trapdoor tilt was highest in magnitude in 2002–2004, contemporaneous with the maximum rates of eastward slip along the east flank. We explain this deformation as due to a general eastward displacement of the flank, activating a rotational detachment and forming a rollover anticline, the head of which is against the NE Rift. Established 2D rollover construction models, constrained by morphological and structural data, suggest that the east‐dipping detachment below the upper NE flank lies at around 4 km below the surface. This depth is consistent with seismicity that clusters above 2–3 km below sea level. Therefore, the episodically unstable NE flank lies above an east‐dipping rotational detachment confined by the NE Rift and Pernicana Fault. Our approach, which combines short‐term (InSAR) and long‐term (geological) observations, constrains the 3D geometry and kinematics of part of the unstable flank of Etna and may be applicable and effective to understand the deeper structure of volcanoes undergoing flank instability or unrest.
    Description: This work was partially funded by INGV and the DPC‐INGV project “Flank”, and partially by the ASI (SRV project).
    Description: Published
    Description: L16304
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: 3.2. Tettonica attiva
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: flank instability ; fault ; InSAR ; Etna ; rollover ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 114 (2009): C12099, doi:10.1029/2009JC005835.
    Keywords: Modeling ; Climate ; Carbon
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 114 (2009): C09013, doi:10.1029/2008JC005183.
    Description: Here we use observations and ocean models to identify mechanisms driving large seasonal to interannual variations in dissolved inorganic carbon (DIC) and dissolved oxygen (O2) in the upper ocean. We begin with observations linking variations in upper ocean DIC and O2 inventories with changes in the physical state of the ocean. Models are subsequently used to address the extent to which the relationships derived from short-timescale (6 months to 2 years) repeat measurements are representative of variations over larger spatial and temporal scales. The main new result is that convergence and divergence (column stretching) attributed to baroclinic Rossby waves can make a first-order contribution to DIC and O2 variability in the upper ocean. This results in a close correspondence between natural variations in DIC and O2 column inventory variations and sea surface height (SSH) variations over much of the ocean. Oceanic Rossby wave activity is an intrinsic part of the natural variability in the climate system and is elevated even in the absence of significant interannual variability in climate mode indices. The close correspondence between SSH and both DIC and O2 column inventories for many regions suggests that SSH changes (inferred from satellite altimetry) may prove useful in reducing uncertainty in separating natural and anthropogenic DIC signals (using measurements from Climate Variability and Predictability's CO2/Repeat Hydrography program).
    Description: This report was prepared by K.B.R. under awards NA17RJ2612 and NA08OAR4320752, which includes support through the NOAA Office of Climate Observations (OCO). The statements, findings, conclusions, and recommendations are those of the authors and do not necessarily reflect the views of the National Oceanic and Atmospheric Administration or the U.S. Department of Commerce. Support for K.B.R. was also provided by the Carbon Mitigation Initiative (CMI) through the support of BP, Amaco, and Ford. R.M.K. was supported by NOAA grants NA17RJ2612, NA08OAR4320752, and NA08OAR4310820. F.F.P. was supported by the European Union FP6 CARBOOCEAN Integrated project (contract 51176), the French OVIDE project, and the Spanish Salvador de Madariaga program (PR2006– 0523). This work was also supported by the European NOCES project (EVK2-CT201-00134). Y.Y. and A.I. are partly supported by CREST, JST of Japan. The long-term OISO observational program in the South Indian Ocean is supported by the following three French institutes: INSU (Institut National des Sciences de l’Univers), IPSL (Institute Pierre-Simon Laplace), and IPEV (Institut Paul-Emile Victor).
    Keywords: Modeling ; Climate ; Carbon
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Reviews of Geophysics 47 (2009): RG4003, doi:10.1029/2008RG000279.
    Description: Methane gas hydrates, crystalline inclusion compounds formed from methane and water, are found in marine continental margin and permafrost sediments worldwide. This article reviews the current understanding of phenomena involved in gas hydrate formation and the physical properties of hydrate-bearing sediments. Formation phenomena include pore-scale habit, solubility, spatial variability, and host sediment aggregate properties. Physical properties include thermal properties, permeability, electrical conductivity and permittivity, small-strain elastic P and S wave velocities, shear strength, and volume changes resulting from hydrate dissociation. The magnitudes and interdependencies of these properties are critically important for predicting and quantifying macroscale responses of hydrate-bearing sediments to changes in mechanical, thermal, or chemical boundary conditions. These predictions are vital for mitigating borehole, local, and regional slope stability hazards; optimizing recovery techniques for extracting methane from hydrate-bearing sediments or sequestering carbon dioxide in gas hydrate; and evaluating the role of gas hydrate in the global carbon cycle.
    Description: This work is the product of a Department of Energy (DOE)–sponsored Physical Property workshop held in Atlanta, Georgia, 16–19 March 2008. The workshop was supported by Department of Energy contract DE-AI21-92MC29214. U.S. Geological Survey contributions were supported by the Gas Hydrate Project of the U.S. Geological Survey's Coastal and Marine Geology Program. Lawrence Berkeley National Laboratory contributions were supported by the Assistant Secretary for Fossil Energy, Office of Oil and Natural Gas, through the National Energy Technology Laboratory of the U.S. DOE under contract DE-AC02-05CH11231. Georgia Institute of Technology contributions were supported by the Goizueta Foundation, DOE DE-FC26-06NT42963, and the DOE-JIP administered by Chevron award DE-FC26-610 01NT41330. Rice University contributions were supported by the DOE under contract DE-FC26-06NT42960.
    Keywords: Physical properties ; Hydrate-bearing sediment ; Gas hydrate
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): B04106, doi:10.1029/2006JB004484.
    Description: The mechanical behavior of hydrate-bearing sediments subjected to large strains has relevance for the stability of the seafloor and submarine slopes, drilling and coring operations, and the analysis of certain small-strain properties of these sediments (for example, seismic velocities). This study reports on the results of comprehensive axial compression triaxial tests conducted at up to 1 MPa confining pressure on sand, crushed silt, precipitated silt, and clay specimens with closely controlled concentrations of synthetic hydrate. The results show that the stress-strain behavior of hydrate-bearing sediments is a complex function of particle size, confining pressure, and hydrate concentration. The mechanical properties of hydrate-bearing sediments at low hydrate concentration (probably 〈 40% of pore space) appear to be determined by stress-dependent soil stiffness and strength. At high hydrate concentrations (〉50% of pore space), the behavior becomes more independent of stress because the hydrates control both stiffness and strength and possibly the dilative tendency of sediments by effectively increasing interparticle coordination, cementing particles together, and filling the pore space. The cementation contribution to the shear strength of hydrate-bearing sediments decreases with increasing specific surface of soil minerals. The lower the effective confining stress, the greater the impact of hydrate formation on normalized strength.
    Description: This research was sponsored by a contract to C.R. and J.C.S. from the Joint Industry Project for Methane Hydrate, administered by ChevronTexaco with funding from award DE-FC26- 01NT41330 from DOE’s National Energy Technology Laboratory. The Goizueta Foundation at Georgia Tech also provided support for this work. The research was completed while C.R. was on assignment at and wholly supported by the National Science Foundation (NSF).
    Keywords: Gas hydrate ; Sediment strength ; Elasticity ; Mechanical behavior ; Stiffness
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 115 (2010): B11104, doi:10.1029/2009JB006669.
    Description: The marked decrease in bulk electrical conductivity of sediments in the presence of gas hydrates has been used to interpret borehole electrical resistivity logs and, to a lesser extent, the results of controlled source electromagnetic surveys to constrain the spatial distribution and predicted concentration of gas hydrate in natural settings. Until now, an exhaustive laboratory data set that could be used to assess the impact of gas hydrate on the electromagnetic properties of different soils (sand, silt, and clay) at different effective stress and with different saturations of hydrate has been lacking. The laboratory results reported here are obtained using a standard geotechnical cell and the hydrate-formed tetrahydrofuran (THF), a liquid that is fully miscible in water and able to produce closely controlled saturations of hydrate from dissolved phase. Both permittivity and electrical conductivity are good indicators of the volume fraction of free water in the sediment, which is in turn dependent on hydrate saturation. Permittivity in the microwave frequency range is particularly predictive of free water content since it is barely affected by ionic concentration, pore structure, and surface conduction. Electrical conductivity (or resistivity) is less reliable for constraining water content or hydrate saturation: In addition to fluid-filled porosity, other factors, such as the ionic concentration of the pore fluid and possibly other conduction effects (e.g., surface conduction in high specific surface soils having low conductivity pore fluid), also influence electrical conductivity.
    Description: This research was initially supported by the Chevron Joint Industry Project on Methane Hydrates under contract DE‐FC26‐01NT41330 from the U.S. Department of Energy. Additional support was provided to J.C.S. by the Goizueta Foundation at Georgia Tech, to J.Y.L. by KIGAM, and to C. Ruppel by the USGS.
    Keywords: Gas hydrate ; Electromagnetic properties ; Resistivity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 115 (2010): B11105, doi:10.1029/2009JB006670.
    Description: The small-strain mechanical properties (e.g., seismic velocities) of hydrate-bearing sediments measured under laboratory conditions provide reference values for calibration of logging and seismic exploration results acquired in hydrate-bearing formations. Instrumented cells were designed for measuring the compressional (P) and shear (S) velocities of sand, silts, and clay with and without hydrate and subject to vertical effective stresses of 0.01 to 2 MPa. Tetrahydrofuran (THF), which is fully miscible in water, was used as the hydrate former to permit close control over the hydrate saturation Shyd and to produce hydrate from dissolved phase, as methane hydrate forms in most natural marine settings. The results demonstrate that laboratory hydrate formation technique controls the pattern of P and S velocity changes with increasing Shyd and that the small-strain properties of hydrate-bearing sediments are governed by effective stress, σ′v and sediment specific surface. The S velocity increases with hydrate saturation owing to an increase in skeletal shear stiffness, particularly when hydrate saturation exceeds Shyd≈ 0.4. At very high hydrate saturations, the small strain shear stiffness is determined by the presence of hydrates and becomes insensitive to changes in effective stress. The P velocity increases with hydrate saturation due to the increases in both the shear modulus of the skeleton and the bulk modulus of pore-filling phases during fluid-to-hydrate conversion. Small-strain Poisson's ratio varies from 0.5 in soft sediments lacking hydrates to 0.25 in stiff sediments (i.e., subject to high vertical effective stress or having high Shyd). At Shyd ≥ 0.5, hydrate hinders expansion and the loss of sediment stiffness during reduction of vertical effective stress, meaning that hydrate-rich natural sediments obtained through pressure coring should retain their in situ fabric for some time after core retrieval if the cores are maintained within the hydrate stability field.
    Description: Initial support for this research to J.C.S. and C.R. at Georgia Tech was provided by the Chevron Joint Industry Project on Methane Hydrates under contract DE‐FC26‐01NT41330 from the U.S. Department of Energy. Additional support to J.C.S. was provided by the Goizueta Foundation at Georgia Tech and to J.Y.L. by KIGAM, GHDO, and MKE.
    Keywords: Gas hydrate ; Mechanical properties ; Seismic velocity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...