ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (9,980)
  • MDPI Publishing  (9,980)
  • PANGAEA
  • Materials  (6,106)
  • Water  (3,874)
  • 115624
  • 125281
  • 1
    Publication Date: 2018-07-25
    Description: Water, Vol. 10, Pages 969: Assessment of Runoff Components Simulated by GLDAS against UNH–GRDC Dataset at Global and Hemispheric Scales Water doi: 10.3390/w10080969 Authors: Meizhao Lv Hui Lu Kun Yang Zhongfeng Xu Meixia Lv Xiaomeng Huang The current evaluations of global land data assimilation system (GLDAS) runoff were generally limited to the observation-rich areas. At the global and hemispheric scales, we assessed different runoff components performance of GLDAS (1.0 and 2.1) using the University of New Hampshire and Global Runoff Data Centre (UNH-GRDC) dataset. The results suggest that GLDAS simulations show considerable uncertainties, particularly in partition of surface and subsurface runoffs, in snowmelt runoff modeling, and in capturing the northern peak time. GLDAS1.0-CLM (common land model) produced more surface runoff almost globally; GLDAS-Noah generated more surface runoff over the northern middle-high latitudes and more subsurface runoff in the remaining areas; while the partition in GLDAS1.0-VIC (variable infiltration capacity) is almost opposite to that in Noah. Comparing to GLDAS1.0-Noah, GLDAS2.1-Noah improved the premature snow-melting tendency, but its snowmelt-runoff peak magnitude was excessively high in June and July. The discrepancies in northern primary peak times among precipitation and runoff is partly caused by the combination of rainfall and melting-snow over high-latitude, as well as the very different temporal–spatial distributions for snowmelt runoff simulated by GLDAS models. This paper can provide valuable guidance for GLDAS users, and contribute to the further improvement of hydrological parameterized schemes.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-07-26
    Description: Materials, Vol. 11, Pages 1287: Polysaccharide-Based Aerogel Bead Production via Jet Cutting Method Materials doi: 10.3390/ma11081287 Authors: Imke Preibisch Philipp Niemeyer Yusuf Yusufoglu Pavel Gurikov Barbara Milow Irina Smirnova The aim of this work is to develop a method to produce spherical biopolymer-based aerogel particles, which is capable for scale-up in the future. Therefore, the jet cutting method is suggested. Amidated pectin, sodium alginate, and chitosan are used as a precursor (a 1–3 wt. % solution) for particle production via jet cutting. Gelation is realized via two methods: the internal setting method (using calcium carbonate particles as cross-linkers and citric and acidic acid for pH adjustment) and the diffusion method (in calcium chloride solutions). Gel particles are subjected to solvent exchange to ethanol and consequent supercritical drying with CO2. Spherical aerogel particles with narrow particle size distributions in the range of 400 to 1500 µm and a specific surface area of around 500 m2/g are produced. Overall, it can be concluded that the jet cutting method is suitable for aerogel particle production, although the shape of the particles is not perfectly spherical in all cases. However, parameter adjustment might lead to even better shaped particles in further work. Moreover, the biopolymer-based aerogel particles synthesized in this study are tested as humidity absorbers in drying units for home appliances, particularly for dishwashers. It has been shown that for several cycles of absorption and desorption of humidity, aerogel particles are stable with an absorption capacity of around 20 wt. %.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-07-26
    Description: Materials, Vol. 11, Pages 1279: Computational Predictions and Microwave Plasma Synthesis of Superhard Boron-Carbon Materials Materials doi: 10.3390/ma11081279 Authors: Paul A. Baker Shane A. Catledge Sumner B. Harris Kathryn J. Ham Wei-Chih Chen Cheng-Chien Chen Yogesh K. Vohra Superhard boron-carbon materials are of prime interest due to their non-oxidizing properties at high temperatures compared to diamond-based materials and their non-reactivity with ferrous metals under extreme conditions. In this work, evolutionary algorithms combined with density functional theory have been utilized to predict stable structures and properties for the boron-carbon system, including the elusive superhard BC5 compound. We report on the microwave plasma chemical vapor deposition on a silicon substrate of a series of composite materials containing amorphous boron-doped graphitic carbon, boron-doped diamond, and a cubic hard-phase with a boron-content as high as 7.7 at%. The nanoindentation hardness of these composite materials can be tailored from 8 GPa to as high as 62 GPa depending on the growth conditions. These materials have been characterized by electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, X-ray diffraction, and nanoindentation hardness, and the experimental results are compared with theoretical predictions. Our studies show that a significant amount of boron up to 7.7 at% can be accommodated in the cubic phase of diamond and its phonon modes and mechanical properties can be accurately modeled by theory. This cubic hard-phase can be incorporated into amorphous boron-carbon matrices to yield superhard materials with tunable hardness values.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-07-26
    Description: Materials, Vol. 11, Pages 1290: Compositional Dependence of Phase Selection in CoCrCu0.1FeMoNi-Based High-Entropy Alloys Materials doi: 10.3390/ma11081290 Authors: Ning Liu Chen Chen Isaac Chang Pengjie Zhou Xiaojing Wang To study the effect of alloy composition on phase selection in the CoCrCu0.1FeMoNi high-entropy alloy (HEA), Mo was partially replaced by Co, Cr, Fe, and Ni. The microstructures and phase selection behaviors of the CoCrCu0.1FeMoNi HEA system were investigated. Dendritic, inter-dendritic, and eutectic microstructures were observed in the as-solidified HEAs. A simple face centered cubic (FCC) single-phase solid solution was obtained when the molar ratio of Fe, Co, and Ni was increased to 1.7 at the expense of Mo, indicating that Fe, Co, and Ni stabilized the FCC structure. The FCC structure was favored at the atomic radius ratio δ ≤ 2.8, valence electron concentration (VEC) ≥ 8.27, mixing entropy ΔS ≤ 13.037, local lattice distortion parameter α2 ≤ 0.0051, and ΔS/δ2 > 1.7. Mixed FCC + body centered cubic (BCC) structures occurred for 4.1 ≤ δ ≤ 4.3 and 7.71 ≤ VEC ≤ 7.86; FCC or/and BCC + intermetallic (IM) mixtures were favored at 2.8 ≤ δ ≤ 4.1 or δ > 4.3 and 7.39 < VEC ≤ 8.27. The IM phase is favored at electronegativity differences greater than 0.133. However, ΔS, α2, and ΔS/δ2 were inefficient in identifying the (FCC or/and BCC + IM)/(FCC + BCC) transition. Moreover, the mixing enthalpy cannot predict phase structures in this system.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-07-26
    Description: Materials, Vol. 11, Pages 1286: An Evaluation of Wetting and Adhesion of Three Bioceramic Root Canal Sealers to Intraradicular Human Dentin Materials doi: 10.3390/ma11081286 Authors: Jung-Hong Ha Hyeon-Cheol Kim Young Kyung Kim Tae-Yub Kwon Root canal sealers should have good wetting and adhesion with intraradicular dentin. This study evaluated the wetting and adhesion properties of three bioceramic root canal sealers on dentin using contact angle (CA) measurements and calculations based on the Owens–Wendt–Rabel–Kälble (OWRK) model and compared the properties with those of a resin sealer. Three bioceramic sealers (EndoSequence BC Sealer (BC); Endoseal MTA (EM); and MTA Fillapex (MF)) were tested, together with one epoxy resin-based sealer (AH Plus (AP)). Disc-shaped sealer specimens and human premolar teeth with flat and polished intraradicular dentin surfaces were prepared (n = 12). The CAs of two liquids (water and methylene iodide) were measured on the surfaces using the sessile drop method. The wetting and adhesion properties of the four sealers were calculated using the wetting envelope and isogram diagram, respectively. Group BC showed the best wettability among the four sealer groups. The best adhesion was achieved for group EM, followed by group BC, with a significant difference being present between the two groups (p < 0.05). The OWRK-based calculation indicated that the bioceramic BC and EM sealers showed superior wetting and adhesion properties to the AP sealers.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-07-26
    Description: Materials, Vol. 11, Pages 1281: Investigation of Cutting Temperature during Turning Inconel 718 with (Ti,Al)N PVD Coated Cemented Carbide Tools Materials doi: 10.3390/ma11081281 Authors: Jinfu Zhao Zhanqiang Liu Qi Shen Bing Wang Qingqing Wang Physical Vapor Deposition (PVD) Ti1−xAlxN coated cemented carbide tools are commonly used to cut difficult-to-machine super alloy of Inconel 718. The Al concentration x of Ti1−xAlxN coating can affect the coating microstructure, mechanical and thermo-physical properties of Ti1−xAlxN coating, which affects the cutting temperature in the machining process. Cutting temperature has great influence on the tool life and the machined surface quality. In this study, the influences of PVD (Ti,Al)N coated cemented carbide tools on the cutting temperature were analyzed. Firstly, the microstructures of PVD Ti0.41Al0.59N and Ti0.55Al0.45N coatings were inspected. The increase of Al concentration x enhanced the crystallinity of PVD Ti1−xAlxN coatings without epitaxy growth of TiAlN crystals. Secondly, the mechanical and thermo-physical properties of PVD Ti0.41Al0.59N and Ti0.55Al0.45N coated tools were analyzed. The pinning effects of coating increased with the increasing of Al concentration x, which can decrease the friction coefficient between the PVD Ti1−xAlxN coated cemented carbide tools and the Inconel 718 material. The coating hardness and thermal conductivity of Ti1−xAlxN coatings increased with the increase of Al concentration x. Thirdly, the influences of PVD Ti1−xAlxN coated tools on the cutting temperature in turning Inconel 718 were analyzed by mathematical analysis modelling and Lagrange simulation methods. Compared with the uncoated tools, PVD Ti0.41Al0.59N coated tools decreased the heat generation as well as the tool temperature to reduce the thermal stress generated within the tools. Lastly, the influences of Ti1−xAlxN coatings on surface morphologies of the tool rake faces were analyzed. The conclusions can reveal the influences of PVD Ti1−xAlxN coatings on cutting temperature, which can provide guidance in the proper choice of Al concentration x for PVD Ti1−xAlxN coated tools in turning Inconel 718.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-07-26
    Description: Materials, Vol. 11, Pages 1278: Study on Near-Net Forming Technology for Stepped Shaft by Cross-Wedge Rolling Based on Variable Cone Angle Billets Materials doi: 10.3390/ma11081278 Authors: Sutao Han Xuedao Shu Chang Shu Considering problems about concaves at the stepped shaft ends, this paper established the plastic flow kinetic theories about metal deforming during the cross-wedge rolling (CWR) process. By means of the DEFORM-3D finite element software and the point tracing method, the forming process of stepped shafts and the forming mechanism of concaves at shaft ends were studied. Based on the forming features of stepped shafts, rolling pieces were designed using variable cone angle billets. Single-factor tests were conducted to analyze the influence law of the shape parameters of billet with variable cone angle on end concaves, and rolling experiments were performed for verification. According to the results, during the rolling process of stepped shafts, concaves will come into being in stages, and the increasing tendency of its depth is due to the wave mode, the parameters of cone angle α, the first cone section length n. Furthermore, the total cone section length m has an increasingly weaker influence on the end concaves. Specifically, cone angle α has the most significant influence on the quality of shaft ends, which is about twice the influence of the total cone section length m. The concave depth will decrease at the beginning, and then increase with the increasing of the cone angle α and the first cone section length n, and it will decrease with the increasing of the total cone section length m. Finite element numerical analysis results are perfectly consistent with experimental results, with the error ratio being lower than 5%. The results provide a reliable theoretical basis for effectively disposing of end concave problems during CWR, rationally confirming the shape parameters of billets with a variable cone angle, improving the quality of stepped shaft ends, and realizing the near-net forming process of cross-wedge rolling without a stub bar.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-07-26
    Description: Materials, Vol. 11, Pages 1276: Tool Wear Mechanism in Cutting of Stack CFRP/UNS A97075 Materials doi: 10.3390/ma11081276 Authors: Severo Raul Fernandez-Vidal Sergio Fernandez-Vidal Moises Batista Jorge Salguero The aeronautics industry’s competitiveness has led to the need to increase productivity with one shot drilling (OSD) systems capable of drilling stacks of dissimilar materials (fibre/metal laminates, FML) in order to reduce riveting times. Among the materials that constitute the current aeronautical models, composite materials and aluminium (Al) and titanium (Ti) alloys stand out. These one-pass machining techniques produce high-quality holes, especially when all the elements that have to be joined are made of the same material. This work has followed a conventional OSD strategy and the same cutting conditions applied to CFRP (carbo-fibre-reinforced polymer), Al and CFRP/Al stacked sheets to know the wear mechanisms produced. With this purpose, results were obtained by using current specific techniques, such as microstructural analysis, monitoring of the shear forces and analysis of macrogeometric deviations. It has been determined that when these drilling techniques are applied under the same cutting conditions to stacks of materials of a different nature, the results of the wear mechanisms acting on the tool differ from those obtained when machining each material separately. This article presents a comparison between the effects of tool wear during dry drilling of CFRP and UNS A97075 plates separately and when machined as stacks.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-07-26
    Description: Water, Vol. 10, Pages 981: Scenario-Based Economic Impact Analysis for Bridge Closures Due to Flooding: A Case Study of North Gyeongsang Province, South Korea Water doi: 10.3390/w10080981 Authors: Byungil Kim Sha Chul Shin Du Yon Kim Flooding has the ability to severely reduce the capacity of a transportation network. The closure of even a single bridge, which often acts as a critical link in transportation networks, can have a severe impact on the entire network. This impact can lead to significant economic costs resulting from increased travel distances for drivers. Despite the significance of these costs, however, notably few studies have been conducted to determine the societal economic cost that would be incurred due to bridge closures. One possible reason for the lack of studies investigating bridge closures due to flooding could stem from the difficultly in collecting data. To address this issue, the methodology presented in this paper uses modeling and data resources that are available for major cities in most developed countries, including those in South Korea. We evaluate the economic impact of the bridge closures using the new administrative capital of North Gyeongsang Province, South Korea as a case study. Scenarios for the closure of bridges are derived from channel surveys and hydraulic analyses. These methods are used to overcome a lack of adequate data on historical floods in the new city. Traffic is forecasted to estimate the number of road users that would be forced to take detours due to inundated bridges. Contrasting travel distances when bridges are and are not operational, economic costs incurred by bridge closures due to flooding are estimated. The results indicated that bridge closures would result in an economic cost of 1563 USD to 44,180 USD per day, depending on how many bridges are closed and how many people are living in the new city. The estimates from this study will act as guidelines for identifying cost-effective mitigation and preparedness strategies aimed at reducing the frequency and impact of bridge closures due to flooding.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-07-26
    Description: Water, Vol. 10, Pages 972: Microbial Function and Hydrochemistry within a Stratified Anchialine Sinkhole: A Window into Coastal Aquifer Interactions Water doi: 10.3390/w10080972 Authors: Madison C. Davis James R. Garey Anchialine sinkholes provide insight into coastal aquifer systems and coastal mixing processes. Aquifer microbial community function is usually inferred from hydrochemical information, but there are few direct studies of microbial communities in the Floridan Aquifer. Hospital Hole is a 43 m-deep stratified sinkhole under the Weeki Wachee River, FL, with three distinct brackish layers: a hypoxic layer, a chemocline and a sulfidic anoxic layer. Illumina sequencing and bioinformatic tools were used to reconstruct metabolic functions and interactions of microbial communities in each layer. Each layer appears to originate from different parts of the coastal mixing zone and has a distinct microbial community with unique functions, which are influenced by the respective hydrochemistry. Sulfide oxidation and nitrate reduction are the most abundant functions. Syntrophy between methane oxidizers, methanogens and sulfate reducers is present. Similarities between the hydrochemistry and potential connectivity of Hospital Hole and the Floridan Aquifer coastal mixing zone suggest that microbial communities of Hospital Hole could be a surrogate for the coastal mixing zone of the aquifer in the absence of direct studies. Understanding how groundwater microbial communities react to saltwater intrusion and nutrient flux will be useful in predicting how coastal aquifer regions might react to anthropogenic change.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2018-07-27
    Description: Materials, Vol. 11, Pages 1294: High Capacity and High Efficiency Maple Tree-Biomass-Derived Hard Carbon as an Anode Material for Sodium-Ion Batteries Materials doi: 10.3390/ma11081294 Authors: Yuesheng Wang Zimin Feng Wen Zhu Vincent Gariépy Catherine Gagnon Manon Provencher Dharminder Laul René Veillette Michel L. Trudeau Abdelbast Guerfi Karim Zaghib Sodium-ion batteries (SIBs) are in the spotlight because of their potential use in large-scale energy storage devices due to the abundance and low cost of sodium-based materials. There are many SIB cathode materials under investigation but only a few candidate materials such as carbon, oxides and alloys were proposed as anodes. Among these anode materials, hard carbon shows promising performances with low operating potential and relatively high specific capacity. Unfortunately, its low initial coulombic efficiency and high cost limit its commercial applications. In this study, low-cost maple tree-biomass-derived hard carbon is tested as the anode for sodium-ion batteries. The capacity of hard carbon prepared at 1400 °C (HC-1400) reaches 337 mAh/g at 0.1 C. The initial coulombic efficiency is up to 88.03% in Sodium trifluoromethanesulfonimide (NaTFSI)/Ethylene carbonate (EC): Diethyl carbonate (DEC) electrolyte. The capacity was maintained at 92.3% after 100 cycles at 0.5 C rates. The in situ X-ray diffraction (XRD) analysis showed that no peak shift occurred during charge/discharge, supporting a finding of no sodium ion intercalates in the nano-graphite layer. Its low cost, high capacity and high coulombic efficiency indicate that hard carbon is a promising anode material for sodium-ion batteries.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018-07-27
    Description: Materials, Vol. 11, Pages 1291: Synthesis and Plasmonic Chiroptical Studies of Sodium Deoxycholate Modified Silver Nanoparticles Materials doi: 10.3390/ma11081291 Authors: Jing Wang Kai-Xuan Fei Xin Yang Shuai-Shuai Zhang Yin-Xian Peng Sodium deoxycholate modified silver nanoparticles prepared in the presence of sodium deoxycholate as a chiral inducer exhibit plasmonic circular dichroism (CD) signals. The plasmon-induced chirality arises from the presence of chiral molecules (sodium deoxycholate) on the surface of Ag nanoparticles, which transfer their chiral properties to the visible wavelength range due to the Coulomb interactions between the chiral molecules and plasmonic nanoparticles. The prepared Ag nanoparticles (NPs) exhibit distinct line shapes of plasmonic CD, which can be tailored by varying the pH values of the solutions. A mechanism was proposed to explain the generation of the distinct plasmonic CD shapes, which indicated that the arrangements of chiral molecules in the plasmonic hot spots between Ag NPs are crucial for the induced plasmonic CD.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2018-07-27
    Description: Materials, Vol. 11, Pages 1293: The 3 R’s for Platelet-Rich Fibrin: A “Super” Tri-Dimensional Biomaterial for Contemporary Naturally-Guided Oro-Maxillo-Facial Soft and Hard Tissue Repair, Reconstruction and Regeneration Materials doi: 10.3390/ma11081293 Authors: Consuelo C. Zumarán Marcelo V. Parra Sergio A. Olate Eduardo G. Fernández Francisco T. Muñoz Ziyad S. Haidar Platelet-Rich fibrin (PRF) is a three-dimensional (3-D) autogenous biomaterial obtained via simple and rapid centrifugation from the patient’s whole blood samples, without including anti-coagulants, bovine thrombin, additives, or any gelifying agents. At the moment, it is safe to say that in oral and maxillofacial surgery, PRFs (particularly, the pure platelet-rich fibrin or P-PRF and leukocyte and platelet-rich fibrin or L-PRF sub-families) are receiving the most attention, essentially because of their simplicity, cost-effectiveness, and user-friendliness/malleability; they are a fairly new “revolutionary” step in second-generation therapies based on platelet concentration, indeed. Yet, the clinical effectiveness of such surgical adjuvants or regenerative platelet concentrate-based preparations continues to be highly debatable, primarily as a result of preparation protocol variability, limited evidence-based clinical literature, and/or poor understanding of bio-components and clinico-mechanical properties. To provide a practical update on the application of PRFs during oral surgery procedures, this critical review focuses on evidence obtained from human randomized and controlled clinical trials only. The aim is to serve the reader with current information on the clinical potential, limitations, challenges, and prospects of PRFs. Accordingly, reports often associate autologous PRFs with early bone formation and maturation; accelerated soft-tissue healing; and reduced post-surgical edema, pain, and discomfort. An advanced and original tool in regenerative dentistry, PRFs present a strong alternative and presumably cost-effective biomaterial for oro-maxillo-facial tissue (soft and hard) repair and regeneration. Yet, preparation protocols continue to be a source of confusion, thereby requiring revision and standardization. Moreover, to increase the validity, comprehension, and therapeutic potential of the reported findings or observations, a decent analysis of the mechanico-rheological properties, bio-components, and their bioactive function is eagerly needed and awaited; afterwards, the field can progress toward a brand-new era of “super” oro-dental biomaterials and bioscaffolds for use in oral and maxillofacial tissue repair and regeneration, and beyond.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2018-07-27
    Description: Water, Vol. 10, Pages 989: Computational Study of a Vertical Plunging Jet into Still Water Water doi: 10.3390/w10080989 Authors: Zegao Yin Qianqian Jia Yuan Li Yanxu Wang Dejun Yang The behavior of a vertical plunging jet was numerically investigated using the coupled Level Set and Volume of Fluid method. The computational results were in good agreement with the experimental results reported in the related literature. Vertical plunging jet characteristics, including the liquid velocity field, air void fraction, and turbulence kinetic energy, were explored by varying the distance between the nozzle exit and the still water level. It was found that the velocity at the nozzle exit plays an unimportant role in the shape and size of ascending bubbles. A modified prediction equation between the centerline velocity ratio and the axial distance ratio was developed using the data of the coupled Level Set and Volume of Fluid method, and it showed a better predicting ability than the Level Set and Mixture methods. The characteristics of turbulence kinetic energy, including its maximum value location and its radial and vertical distribution, were also compared with that of submerged jets.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2018-07-27
    Description: Water, Vol. 10, Pages 984: Vulnerability Analysis of the Venetian Littoral and Adopted Mitigation Strategy Water doi: 10.3390/w10080984 Authors: Piero Ruol Luca Martinelli Chiara Favaretto This paper discusses the key aspects of the recent Coastal Plan of the Veneto Region (IT). Its aim is to propose a single mitigation strategy for coastal erosion that is valid for the whole Veneto Region, and possibly elsewhere, as well as a method to assign a priority level to any action. The suggested mitigation action against erosion depends on urbanization level, beach width, as well as cross-shore and long-shore sediment transport. The criterion used to give a priority level to mitigation actions is based on a vulnerability index that takes into account erosive tendency, existing coastal flooding hazards, coast value, environmental relevance, tourist pressure, urbanization level, the presence of production activities, and cultural heritage. A sample case featuring the littoral of Rosolina is also provided and includes a site description, the sediment budget, critical issues and possible mitigation measures.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2018-07-27
    Description: Water, Vol. 10, Pages 982: Multivariate Chemometric Analysis of Membrane Fouling Patterns in Biofilm Ceramic Membrane Bioreactor Water doi: 10.3390/w10080982 Authors: Olga Kulesha Zakhar Maletskyi Harsha Ratnaweera Membrane fouling highly limits the development of Membrane bioreactor technology (MBR), which is among the key solutions to water scarcity. The current study deals with the determination of the fouling propensity of filtered biomass in a pilot-scale biofilm membrane bioreactor to enable the prediction of fouling intensity. The system was designed to treat domestic wastewater with the application of ceramic microfiltration membranes. Partial least squares regression analysis of the data obtained during the long-term operation of the biofilm-MBR (BF-MBR) system demonstrated that Mixed liquor suspended solids (MLSS), diluted sludge volume index (DSVI), chemical oxygen demand (COD), and their slopes are the most significant for the estimation and prediction of fouling intensity, while normalized permeability and its slope were found to be the most reliable fouling indicators. Three models were derived depending on the applied operating conditions, which enabled an accurate prediction of the fouling intensities in the system. The results will help to prevent severe membrane fouling via the change of operating conditions to prolong the effective lifetime of the membrane modules and to save energy and resources for the maintenance of the system.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018-07-27
    Description: Water, Vol. 10, Pages 983: The Mechanical Properties of High Strength Reinforced Cured-in-Place Pipe (CIPP) Liner Composites for Urban Water Infrastructure Rehabilitation Water doi: 10.3390/w10080983 Authors: Hyun Wook Ji Sung Soo Yoo Jonghoon Kim Dan Daehyun Koo Most urban areas in the world have water infrastructure systems, including the buried sewer and water pipelines, which are assessed as in need of extensive rehabilitation. Deterioration by many other factors affects structural integrity. Trenchless technologies such as Cured-in-Place Pipe (CIPP) are now applied in numerous projects while minimizing disturbance in an urban environment. The main purpose of this study is to develop a high strength CIPP material using various composite materials (e.g., glass fiber, carbon fiber, polyester felt, unsaturated polyester resin, and others). Composite samples were made of the materials and tested using three-point bend apparatus to find mechanical properties, which include the flexural modulus, strength, and deflection. A composite combination with glass fibers with thin felt layers shows the best results in mechanical properties. Flexural modulus is a key factor for CIPP liner thickness design. Glass fiber composite yields between four and nine times higher values than the minimum value specified in the American Society for Testing and Materials (ASTM) F1216. This study provides a fundamental baseline for high strength CIPP liners that are capable of using conventional curing technologies.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2018-07-28
    Description: Materials, Vol. 11, Pages 1301: Spiral Bevel Gears Face Roughness Prediction Produced by CNC End Milling Centers Materials doi: 10.3390/ma11081301 Authors: Álvaro Álvarez Amaia Calleja Mikel Arizmendi Haizea González Luis Norberto Lopez de Lacalle The emergence of multitasking machines in the machine tool sector presents new opportunities for the machining of large size gears and short production series in these machines. However, the possibility of using standard tools in conventional machines for gears machining represents a technological challenge from the point of view of workpiece quality. Machining conditions in order to achieve both dimensional and surface quality requirements need to be determined. With these considerations in mind, computer numerical control (CNC) methods to provide useful tools for gear processing are studied. Thus, a model for the prediction of surface roughness obtained on the teeth surface of a machined spiral bevel gear in a multiprocess machine is presented. Machining strategies and optimal machining parameters were studied, and the roughness model is validated for 3 + 2 axes and 5 continuous axes machining strategies.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2018-07-28
    Description: Materials, Vol. 11, Pages 1302: Enhanced Cycling Stability of LiCuxMn1.95−xSi0.05O4 Cathode Material Obtained by Solid-State Method Materials doi: 10.3390/ma11081302 Authors: Hongyuan Zhao Fang Li Xiuzhi Bai Tingting Wu Zhankui Wang Yongfeng Li Jianxiu Su The LiCuxMn1.95−xSi0.05O4 (x = 0, 0.02, 0.05, 0.08) samples have been obtained by a simple solid-state method. XRD and SEM characterization results indicate that the Cu-Si co-doped spinels retain the inherent structure of LiMn2O4 and possess uniform particle size distribution. Electrochemical tests show that the optimal Cu-doping amount produces an obvious improvement effect on the cycling stability of LiMn1.95Si0.05O4. When cycled at 0.5 C, the optimal LiCu0.05Mn1.90Si0.05O4 sample exhibits an initial capacity of 127.3 mAh g−1 with excellent retention of 95.7% after 200 cycles. Moreover, when the cycling rate climbs to 10 C, the LiCu0.05Mn1.90Si0.05O4 sample exhibits 82.3 mAh g−1 with satisfactory cycling performance. In particular, when cycled at 55 °C, this co-doped sample can show an outstanding retention of 94.0% after 100 cycles, whiles the LiMn1.95Si0.05O4 only exhibits low retention of 79.1%. Such impressive performance shows that the addition of copper ions in the Si-doped spinel effectively remedy the shortcomings of the single Si-doping strategy and the Cu-Si co-doped spinel can show excellent cycling stability.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2018-07-28
    Description: Materials, Vol. 11, Pages 1297: A Straightforward Substitution Strategy to Tune BODIPY Dyes Spanning the Near-Infrared Region via Suzuki–Miyaura Cross-Coupling Materials doi: 10.3390/ma11081297 Authors: Guanglei Li Yu Otsuka Takuya Matsumiya Toshiyuki Suzuki Jianye Li Masashi Takahashi Koji Yamada In this study, a series of new red and near-infrared (NIR) dyes derived from 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) were developed by introducing thiophene and its derivatives to the 3- and 5- positions of the dichloroBODIPY core. For the first time, cyclictriol boronates and N-methyliminodiacetic acid (MIDA) boronate were used as organoboron species to couple with 3,5-dichloroBODIPY via the one-step Suzuki–Miyaura cross-coupling. Six kinds of thieno-expended BODIPY dyes were synthesized in acceptable yields ranging from 31% to 79%. All six dyes showed different absorption and emission wavelengths spanning a wide range (c.a. 600–850 nm) in the red and NIR regions with relatively high quantum yields (19–85%). Cellular imaging of 8-(2,6-dimethylphenyl)-re3,5-di(2-thienyl)-BODIPY (dye 1) was conducted using bovine cumulus cells, and the fluorescence microscopy images indicated that the chromophore efficiently accumulated and was exclusively localized in the cytoplasm, suggesting it could be utilized as a subcellular probe. All six dyes were characterized using 1H-NMR and mass spectrometry.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2018-07-28
    Description: Water, Vol. 10, Pages 993: Understanding Fundamental Phenomena Affecting the Water Conservation Technology Adoption of Residential Consumers Using Agent-Based Modeling Water doi: 10.3390/w10080993 Authors: Kambiz Rasoulkhani Brianne Logasa Maria Presa Reyes Ali Mostafavi More than one billion people will face water scarcity within the next ten years due to climate change and unsustainable water usage, and this number is only expected to grow exponentially in the future. At current water use rates, supply-side demand management is no longer an effective way to combat water scarcity. Instead, many municipalities and water agencies are looking to demand-side solutions to prevent major water loss. While changing conservation behavior is one demand-based strategy, there is a growing movement toward the adoption of water conservation technology as a way to solve water resource depletion. Installing technology into one’s household requires additional costs and motivation, creating a gap between the overall potential households that could adopt this technology, and how many actually do. This study identified and modeled a variety of demographic and household characteristics, social network influence, and external factors such as water price and rebate policy to see their effect on residential water conservation technology adoption. Using Agent-based Modeling and data obtained from the City of Miami Beach, the coupled effects of these factors were evaluated to examine the effectiveness of different pathways towards the adoption of more water conservation technologies. The results showed that income growth and water pricing structure, more so than any of the demographic or building characteristics, impacted household adoption of water conservation technologies. The results also revealed that the effectiveness of rebate programs depends on conservation technology cost and the affluence of the community. Rebate allocation did influence expensive technology adoption, with the potential to increase the adoption rate by 50%. Additionally, social network connections were shown to have an impact on the rate of adoption independent of price strategy or rebate status. These findings will lead the way for municipalities and other water agencies to more strategically implement interventions to encourage household technology adoption based on the characteristics of their communities.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2018-07-28
    Description: Water, Vol. 10, Pages 994: Predicting Lake Eutrophication Responses to Multiple Scenarios of Lake Restoration: A Three-Dimensional Modeling Approach Water doi: 10.3390/w10080994 Authors: Yanping Wang Weiping Hu Zhaoliang Peng Ye Zeng Karsten Rinke To improve the water quality and alleviate the eutrophication of Lake Yangchenghu, the third largest freshwater body within the Lake Taihu basin in China and an important source of drinking water, nutrient reduction strategies should be urgently addressed by decision makers, since virtually no improvement of water quality has taken place since the mid-1990s. Due to the lack of sufficient observation data and simulation results, a vertically compressed three-dimensional numerical model, the EcoTaihu model, was used to study the impact of three restoration measures on the water quality—namely, total nitrogen (TN), total phosphorus (TP) and biomass of phytoplankton (BP)—of Lake Yangchenghu: (i) total nutrient reduction, (ii) intensification of flushing by water transfer, and (iii) spatial adjustment of inflow channels. In particular, the spatial effects of the three restoration measures on the water quality were investigated. The results showed that the EcoTaihu model is applicable to other shallow lakes in China. The water quality responses to the different restoration scenarios showed significant spatio-temporal differences. The reduction of nutrient loads from inflows appeared to be the most effective measure for controlling the eutrophication and algal blooms in Lake Yangchenghu. The effectiveness of water transfer on the improvement of water quality for TN and TP was more influenced by the differences of nutrient concentrations between the transferred water and lake water, rather than flow rate, since no proportionate increase of improvement was observable in the case of larger transferred rates (60 m3 s−1). The spatial narrowing of inflowing rivers in the southwestern lake could preferentially improve the water quality in the southern bay of the western lake, but would also result in a deterioration trend of water quality in the total lake and drinking water abstraction areas.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2018-07-29
    Description: Materials, Vol. 11, Pages 1308: Observation of Morphology Changes of Fine Eutectic Si Phase in Al-10%Si Cast Alloy during Heat Treatment by Synchrotron Radiation Nanotomography Materials doi: 10.3390/ma11081308 Authors: Shougo Furuta Masakazu Kobayashi Kentaro Uesugi Akihisa Takeuchi Tomoya Aoba Hiromi Miura A series of three-dimensional morphology changes of fine eutectic Si-particles during heat treatment have been investigated in Self-modified and Sr-modified Al-10%Si cast alloys by means of synchrotron radiation nanotomography utilizing a Fresnel zone plate and a Zernike phase plate in this study. The coral-like shape particles observed in Sr-modified cast alloy fragmented at branch and neck during heat treatment at 773 K. The fragmentation occurred up to 900 s. After that, the fragmented particles grew and spheroidized by Ostwald ripening. On the other hand, rod-like shaped eutectic Si-particles observed in self-modified cast alloy were larger in size compared with the particle size in Sr-modified cast alloy. Separation of eutectic Si-particles in Self-modified cast alloy occurred up to approximately 900 s, which was similar tendency to that in Sr-modified cast alloy. However, it was found that the morphology change behavior was very complex in rod-like shape Si-particles. The three-dimensional morphology changes of fine eutectic Si-particles in both cast alloys, specifically fragmentation and spheroidizing, can be connected to changes in mechanical properties.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2018-07-29
    Description: Materials, Vol. 11, Pages 1306: Pattern-Dependent Mammalian Cell (Vero) Morphology on Tantalum/Silicon Oxide 3D Nanocomposites Materials doi: 10.3390/ma11081306 Authors: Hassan I. Moussa Megan Logan Wing Y. Chan Kingsley Wong Zheng Rao Marc G. Aucoin Ting Y. Tsui The primary goal of this work was to investigate the resulting morphology of a mammalian cell deposited on three-dimensional nanocomposites constructed of tantalum and silicon oxide. Vero cells were used as a model. The nanocomposite materials contained comb structures with equal-width trenches and lines. High-resolution scanning electron microscopy and fluorescence microscopy were used to image the alignment and elongation of cells. Cells were sensitive to the trench widths, and their observed behavior could be separated into three different regimes corresponding to different spreading mechanism. Cells on fine structures (trench widths of 0.21 to 0.5 μm) formed bridges across trench openings. On larger trenches (from 1 to 10 μm), cells formed a conformal layer matching the surface topographical features. When the trenches were larger than 10 μm, the majority of cells spread like those on blanket tantalum films; however, a significant proportion adhered to the trench sidewalls or bottom corner junctions. Pseudopodia extending from the bulk of the cell were readily observed in this work and a minimum effective diameter of ~50 nm was determined for stable adhesion to a tantalum surface. This sized structure is consistent with the ability of pseudopodia to accommodate ~4–6 integrin molecules.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2018-07-29
    Description: Materials, Vol. 11, Pages 1307: In Situ DRIFTS Studies of NH3-SCR Mechanism over V2O5-CeO2/TiO2-ZrO2 Catalysts for Selective Catalytic Reduction of NOx Materials doi: 10.3390/ma11081307 Authors: Yaping Zhang Xiupeng Yue Tianjiao Huang Kai Shen Bin Lu TiO2-ZrO2 (Ti-Zr) carrier was prepared by a co-precipitation method and 1 wt. % V2O5 and 0.2 CeO2 (the Mole ratio of Ce to Ti-Zr) was impregnated to obtain the V2O5-CeO2/TiO2-ZrO2 catalyst for the selective catalytic reduction of NOx by NH3. The transient activity tests and the in situ DRIFTS (diffuse reflectance infrared Fourier transform spectroscopy) analyses were employed to explore the NH3-SCR (selective catalytic reduction) mechanism systematically, and by designing various conditions of single or mixing feeding gas and pre-treatment ways, a possible pathway of NOx reduction was proposed. It was found that NH3 exhibited a competitive advantage over NO in its adsorption on the catalyst surface, and could form an active intermediate substance of -NH2. More acid sites and intermediate reaction species (-NH2), at lower temperatures, significantly promoted the SCR activity of the V2O5-0.2CeO2/TiO2-ZrO2 catalyst. The presence of O2 could promote the conversion of NO to NO2, while NO2 was easier to reduce. The co-existence of NH3 and O2 resulted in the NH3 adsorption strength being lower, as compared to tests without O2, since O2 could occupy a part of the active site. Due to CeO2’s excellent oxygen storage-release capacity, NH3 adsorption was weakened, in comparison to the 1 wt. % V2O5-0.2CeO2/TiO2-ZrO2 catalyst. If NOx were to be pre-adsorbed in the catalyst, the formation of nitrate and nitro species would be difficult to desorb, which would greatly hinder the SCR reaction. All the findings concluded that NH3-SCR worked mainly through the Eley-Rideal (E-R) mechanism.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2018-07-31
    Description: Water, Vol. 10, Pages 1008: Inherent Relationship between Flow Duration Curves at Different Time Scales: A Perspective on Monthly Flow Data Utilization in Daily Flow Duration Curve Estimation Water doi: 10.3390/w10081008 Authors: Lei Ye Wei Ding Xiaofan Zeng Zhuohang Xin Jian Wu Chi Zhang Modelling flow duration curves (FDCs) has long been a topic of interest since it is widely used in various hydrological applications. Most studies related to the estimation of FDCs in ungauged or partial gauged basins focus primarily on using climate and catchment characteristics to regionalize FDC at some single time scale. However, the relationship of FDCs at various time scales are rarely analyzed or studied. Here, we propose two methods, which are Modelled FDC Parameter comparison (M-FDC-P) and Empirical FDC Ratio comparison (E-FDC-R), to study the quantitative relationship between daily and monthly FDCs. One method M-FDC-P, selects a Kappa (KAP) distribution to represent the characteristics of the FDCs and then analyzes the relationship between KAP parameters of modelled FDCs at different time scales. Results indicate that three out of four parameters have strong correlations between FDCs at daily and monthly time scales. The other method, E-FDC-R, compares the quantitative relationship between daily and monthly empirical FDCs with given exceedance probabilities. The Power function is used for fitting the ratio-exceedance probability curves. In addition, the simulated daily FDC derived from monthly FDC can be very consistent with the observed daily flow records when the two parameters of power function are quantified precisely. These results clearly indicate that there are strong connections between daily and monthly FDCs, and monthly FDC can provide valuable information for daily FDC estimation. Since flow records at a large time scale are easier to obtain, daily FDC could be derived from monthly FDC by considering the inherent relationships between FDCs at different time scales, which is not sufficiently realized in previous studies.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2018-07-31
    Description: Water, Vol. 10, Pages 1006: Validation of TRMM 3B42V7 Rainfall Product under Complex Topographic and Climatic Conditions over Hexi Region in the Northwest Arid Region of China Water doi: 10.3390/w10081006 Authors: Xiuna Wang Yongjian Ding Chuancheng Zhao Jian Wang Continuous and accurate spatiotemporal precipitation data plays an important role in regional climate and hydrology research, particularly in the arid inland regions where rain gauges are sparse and unevenly distributed. The main objective of this study is to evaluate and bias-correct the Tropical Rainfall Measuring Mission (TRMM) 3B42V7 rainfall product under complex topographic and climatic conditions over the Hexi region in the northwest arid region of China with the reference of rain gauge observation data during 2009–2015. A series of statistical indicators were adopted to quantitatively evaluate the error of 3B42V7 and its ability in detecting precipitation events. Overall, the 3B42V7 overestimates the precipitation with Bias of 11.16%, and its performance generally becomes better with the increasing of time scale. The agreements between the rain gauge data and 3B42V7 are very low in cold season, and moderate in warm season. The 3B42V7 shows better correlation with rain gauges located in the southern mountainous and central oasis areas than in the northern extreme arid regions, and is more likely to underestimate the precipitation in high-altitude mountainous areas and overestimate the precipitation in low-elevation regions. The distribution of the error on the daily scale is more related to the elevation and rainfall than in monthly and annual scale. The 3B42V7 significantly overestimates the precipitation events, and the overestimation mainly focuses on tiny amounts of rainfall (0–1 mm/d), which is also the range of false alarm concentration. Bias correction for 3B42V7 was carried out based on the deviation of the average monthly precipitation data during 2009–2015. The bias-corrected 3B42V7 was significantly improved compared with the original product. Results suggest that regional assessment and bias correction of 3B42V7 rainfall product are of vital importance and will provide substantive reference for regional hydrological studies.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2018-07-26
    Description: Materials, Vol. 11, Pages 1284: Microstructures and Compressive Properties of Al Matrix Composites Reinforced with Bimodal Hybrid In-Situ Nano-/Micro-Sized TiC Particles Materials doi: 10.3390/ma11081284 Authors: Feng Qiu Hao-Tian Tong Yu-Yang Gao Qian Zou Bai-Xin Dong Qiang Li Jian-Ge Chu Fang Chang Shi-Li Shu Qi-Chuan Jiang Bimodal hybrid in-situ nano-/micro-size TiC/Al composites were prepared with combustion synthesis of Al-Ti-C system and hot press consolidation. Attempt was made to obtain in-situ bimodal-size TiC particle reinforced dense Al matrix composites by using different carbon sources in the reaction process of hot pressing forming. Microstructure showed that the obtained composites exhibited reasonable bimodal-sized TiC distribution in the matrix and low porosity. With the increasing of the carbon nano tube (CNT) content from 0 to 100 wt. %, the average size of the TiC particles decreases and the compressive strength of the composite increase; while the fracture strain increases first and then decreases. The compressive properties of the bimodal-sized TiC/Al composites, especially the bimodal-sized composite synthesized by Al-Ti-C with 50 wt. % CNTs as carbon source, were improved compared with the composites reinforced with single sized TiC. The strengthening mechanism of the in-situ bimodal-sized particle reinforced aluminum matrix composites was revealed.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2018-07-26
    Description: Materials, Vol. 11, Pages 1283: Biocompatible and Implantable Optical Fibers and Waveguides for Biomedicine Materials doi: 10.3390/ma11081283 Authors: Roya Nazempour Qianyi Zhang Ruxing Fu Xing Sheng Optical fibers and waveguides in general effectively control and modulate light propagation, and these tools have been extensively used in communication, lighting and sensing. Recently, they have received increasing attention in biomedical applications. By delivering light into deep tissue via these devices, novel applications including biological sensing, stimulation and therapy can be realized. Therefore, implantable fibers and waveguides in biocompatible formats with versatile functionalities are highly desirable. In this review, we provide an overview of recent progress in the exploration of advanced optical fibers and waveguides for biomedical applications. Specifically, we highlight novel materials design and fabrication strategies to form implantable fibers and waveguides. Furthermore, their applications in various biomedical fields such as light therapy, optogenetics, fluorescence sensing and imaging are discussed. We believe that these newly developed fiber and waveguide based devices play a crucial role in advanced optical biointerfaces.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2018-07-26
    Description: Materials, Vol. 11, Pages 1282: Development of a Novel in Silico Model to Investigate the Influence of Radial Clearance on the Acetabular Cup Contact Pressure in Hip Implants Materials doi: 10.3390/ma11081282 Authors: Saverio Affatato Massimiliano Merola Alessandro Ruggiero A hip joint replacement is considered one of the most successful orthopedic surgical procedures although it involves challenges that must be overcome. The patient group undergoing total hip arthroplasty now includes younger and more active patients who require a broad range of motion and a longer service lifetime of the implant. The current replacement joint results are not fully satisfactory for these patients’ demands. As particle release is one of the main issues, pre-clinical experimental wear testing of total hip replacement components is an invaluable tool for evaluating new implant designs and materials. The aim of the study was to investigate the cup tensional state by varying the clearance between head and cup. For doing this we use a novel hard-on-soft finite element model with kinematic and dynamic conditions calculated from a musculoskeletal multibody model during the gait. Four different usual radial clearances were considered, ranging from 0 to 0.5 mm. The results showed that radial clearance plays a key role in acetabular cup stress-strain during the gait, showing from the 0 value to the highest, 0.5, a difference of 44% and 35% in terms of maximum pressure and deformation, respectively. Moreover, the presented model could be usefully exploited for complete elastohydrodynamic synovial lubrication modelling of the joint, with the aim of moving towards an increasingly realistic total hip arthroplasty in silico wear assessment accounting for differences in radial clearances.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2018-07-26
    Description: Materials, Vol. 11, Pages 1277: Filtration of Sub-3.3 nm Tungsten Oxide Particles Using Nanofibrous Filters Materials doi: 10.3390/ma11081277 Authors: Raheleh Givehchi Qinghai Li Zhongchao Tan This work aims to understand the effects of particle concentration on the filtration of nanoparticles using nanofibrous filters. The filtration efficiencies of triple modal tungsten oxide (WOx) nanoparticles were experimentally determined at three different concentrations for the size range of 0.82–3.3 nm in diameter. All tests were conducted using polyvinyl alcohol (PVA) nano-fibrous filters at an air relative humidity of 2.9%. Results showed that the filtration efficiencies of sub-3.3 nm nanoparticles depended on the upstream particle concentration. The lower the particle concentration was, the higher the filtration efficiency was.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2018-07-26
    Description: Materials, Vol. 11, Pages 1280: Porous Silk Fibroin Microspheres Sustainably Releasing Bioactive Basic Fibroblast Growth Factor Materials doi: 10.3390/ma11081280 Authors: Jing Qu Lu Wang Longxing Niu Jiaming Lin Qian Huang Xuefeng Jiang Mingzhong Li Basic fibroblast growth factor (bFGF) plays a significant role in stimulating cell proliferation. It remains a challenge in the field of biomaterials to develop a carrier with the capacity of continuously releasing bioactive bFGF. In this study, porous bFGF-loaded silk fibroin (SF) microspheres, with inside-out channels, were fabricated by high-voltage electrostatic differentiation, and followed by lyophilization. The embedded bFGF exhibited a slow release mode for over 13 days without suffering burst release. SEM observations showed that incubated L929 cells could fully spread and produce collagen-like fibrous matrix on the surface of SF microspheres. CLSM observations and the results of cell viability assay indicated that bFGF-loaded microspheres could significantly promote cell proliferation during five to nine days of culture, compared to bFGF-unloaded microspheres. This reveals that the bFGF released from SF microspheres retained obvious bioactivity to stimulate cell growth. Such microspheres sustainably releasing bioactive bFGF might be applied to massive cell culture and tissue engineering as a matrix directly, or after being combined with three-dimensional scaffolds.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2018-08-02
    Description: Materials, Vol. 11, Pages 1332: Biocompatible/Biodegradable Electrowetting on Dielectric Microfluidic Chips with Fluorinated CTA/PLGA Materials doi: 10.3390/ma11081332 Authors: Kaidi Zhang Lei Chao Jia Zhou One of the major hurdles in the development of biocompatible/biodegradable EWOD (Electrowetting-on-dielectric) devices is the biocompatibility of the dielectric and hydrophobic layers. In this study, we address this problem by using reactive ion etching (RIE) to prepare a super-hydrophobic film combining fluorinated cellulose triacetate (CTA) and poly (lactic-co-glycolic acid) (PLGA). The contact angle (CA) of water droplets on the proposed material is about 160°. X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) characterizations indicate that a slight increase in the surface roughness and the formation of CFx (C-F or CF2) bonds are responsible for the super-hydrophobic nature of the film. Alternating Current (AC) static electrowetting and droplet transportation experiments evidence that contact angle hysteresis and contact line pinning are greatly reduced by impregnating the CTA/PLGA film with silicon oil. Therefore, this improved film could provide a biocompatible alternative to the typical Teflon® or Cytop® films as a dielectric and hydrophobic layer.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2018-08-03
    Description: Materials, Vol. 11, Pages 1336: Fatigue Crack Growth Behavior of the MIG Welded Joint of 06Cr19Ni10 Stainless Steel Materials doi: 10.3390/ma11081336 Authors: Lanqing Tang Caifu Qian Ayhan Ince Jing Zheng Huifang Li Zhichao Han In this paper, the fatigue crack growth behavior of the base metal (BM), the weld metal (WM) and the heat-affected zone (HAZ) in the metal-inert gas (MIG) welded joints of the 06Cr19Ni10 stainless steel are analyzed and studied. Results of the fatigue crack propagation tests show that a new fatigue crack initiates at the crack tip of a pre-existing crack, then propagates perpendicular to the direction of cyclic fatigue loads. This observation indicates that the original mixed-mode crack transforms into the mode I crack. The WM specimen has the largest fatigue crack growth rate, followed by the HAZ specimen and the BM specimen. To illustrate the differences in fatigue crack growth behavior of the three different types of specimens, metallographic structure, fracture morphology and residual stresses of the BM, HAZ and WM are investigated and discussed. The metallographic observations indicate that the mean grain size of the HAZ is relatively larger than that of the BM. The fractographic analysis shows that the WM has the largest fatigue striation width, followed by the HAZ and the BM. It is also found that the depth of dimple in the WM is relatively shallower than the one in the HAZ and BM, implying the poor plasticity behavior of the material. Analysis results of the residual stress analysis demonstrate a high level of tensile residual stress appearance in the WM and HAZ.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2018-08-03
    Description: Materials, Vol. 11, Pages 1337: Variations of the Elastic Properties of the CoCrFeMnNi High Entropy Alloy Deformed by Groove Cold Rolling Materials doi: 10.3390/ma11081337 Authors: Paul Lohmuller Laurent Peltier Alain Hazotte Julien Zollinger Pascal Laheurte Eric Fleury The variations of the mechanical properties of the CoCrFeMnNi high entropy alloy (HEA) during groove cold rolling process were investigated with the aim of understanding their correlation relationships with the crystallographic texture. Our study revealed divergences in the variations of the microhardness and yield strength measured from samples deformed by groove cold rolling and conventional cold rolling processes. The crystallographic texture analyzed by electron back scattered diffraction (EBSD) revealed a hybrid texture between those obtained by conventional rolling and drawing processes. Though the groove cold rolling process induced a marked strengthening effect in the CoCrFeMnNi HEA, the mechanical properties were also characterized by an unusual decrease of the Young’s modulus as the applied groove cold rolled deformation increased up to about 0.5 before reaching a stabilized value. This decrease of the Young’s modulus was attributed to the increased density of mobile dislocations induced by work hardening during groove cold rolling processing.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2018-08-03
    Description: Water, Vol. 10, Pages 1025: Monitoring the Chloride Concentration in International Scheldt River Basin District Water Using a Low-Cost Multifunction Data Acquisition Board Water doi: 10.3390/w10081025 Authors: Wanda J. Guedens Monique Reynders Koen Van Vinckenroye Jan Yperman Robert Carleer In analytical chemistry laboratories, to gather in the shortest time as many data as possible with the utmost accuracy and precision, high throughput automated setups are indispensable. In the present study, to determine the chloride concentration in the international Scheldt river basin district, experiments are carried out utilizing a thermostatically controlled semi-automated setup. A novel ICT-based method is developed using a low-cost multifunction Data Acquisition Board (DAQ) controlled by a homebuilt LabVIEW™ program. Specifically, this approach enables a correlation between different parameters i.e., droplet volume, temperature, A/D voltage conversions. Here, processing experimental data of a potentiometric precipitation titration utilizing a silver nitrate standard solution as titrant in a manual burette equipped with a controllable electronic valve allows for a preliminary indication of the titration end point via the Virtual Instrument (VI) numerical first derivative tool in the LabVIEW software. The LabVIEW tool is compared with the well-known Gran method implemented in the LabVIEW program, emphasizing an accurate performance of the setup to determine the chloride concentration in fresh river water. We are confident that our findings are evidence of the versatile and powerful features of the LabVIEW controlled DAQ in the analytical chemistry laboratory.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2018-08-04
    Description: Materials, Vol. 11, Pages 1350: Removal of Zinc Ions Using Hydroxyapatite and Study of Ultrasound Behavior of Aqueous Media Materials doi: 10.3390/ma11081350 Authors: Simona Liliana Iconaru Mikael Motelica-Heino Régis Guegan Mihai Valentin Predoi Alina Mihaela Prodan Daniela Predoi The present study demonstrates the effectiveness of hydroxyapatite nanopowders in the adsorption of zinc in aqueous solutions. The synthesized hydroxyapatites before (HAp) and after the adsorption of zinc (at a concentration of 50 mg/L) in solution (HApD) were characterized using X-ray diffraction (XRD), and scanning and transmission electron microscopy (SEM and TEM, respectively). The effectiveness of hydroxyapatite nanopowders in the adsorption of zinc in aqueous solutions was stressed out through ultrasonic measurements. Both Langmuir and Freundlich models properly fitted on a wide range of concentration the equilibrium adsorption isotherms, allowing us to precisely quantify the affinity of zinc to hydroxyapatite nanopowders and to probe the efficacy of hydroxyapatite in removal of zinc ions from aqueous solutions in ultrasonic conditions.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2018-08-04
    Description: Materials, Vol. 11, Pages 1344: Reducing Porosity and Refining Grains for Arc Additive Manufacturing Aluminum Alloy by Adjusting Arc Pulse Frequency and Current Materials doi: 10.3390/ma11081344 Authors: Donghai Wang Jiping Lu Shuiyuan Tang Lu Yu Hongli Fan Lei Ji Changmeng Liu Coarse grains and gas pores are two main problems that limit the application of additive manufacturing aluminum alloys. To reduce porosity and refine grains, this paper presents a quantitative investigation into the effect of pulse frequency and arc current on the porosity and grains of arc additive manufacturing Al–5Si alloy. The experiment results show that pulse frequency and arc current have a significant impact on the macrostructure, microstructure, porosity, and tensile properties of the samples. Fine grains and a uniform microstructure can be obtained with low pulse frequency and low arc current as a result of the rapid cooling of the molten pool. With the increase of pulse frequency, density shows a trend that firstly escalates and attains the maximum value at 50 Hz, but later declines as a result of the relation between pores formation and gas escape. Moreover, better tensile properties can be obtained at low pulse frequency and low arc current because of the finer grains.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2018-08-04
    Description: Materials, Vol. 11, Pages 1345: Development of a Photo-Crosslinking, Biodegradable GelMA/PEGDA Hydrogel for Guided Bone Regeneration Materials Materials doi: 10.3390/ma11081345 Authors: Yihu Wang Ming Ma Jianing Wang Weijie Zhang Weipeng Lu Yunhua Gao Bing Zhang Yanchuan Guo Gelatin-based hydrogel, which mimics the natural dermal extracellular matrix, is a promising tissue engineering material. However, insufficient and uncontrollable mechanical and degradation properties remain the major obstacles for its application in medical bone regeneration material. Herein, we develop a facile but efficient strategy for a novel hydrogel as guided bone regeneration (GBR) material. In this study, methacrylic anhydride (MA) has been used to modify gelatin to obtain photo-crosslinkable methacrylated gelatin (GelMA). Moreover, the GelMA/PEGDA hydrogel was prepared by photo-crosslinking GelMA and PEGDA with photoinitiator I2959 under UV treatment. Compared with the GelMA hydrogel, the GelMA/PEGDA hydrogel exhibits several times stronger mechanical properties than pure GelMA hydrogel. The GelMA/PEGDA hydrogel shows a suitable degradation rate of more than 4 weeks, which is beneficial to implant in body. In vitro cell culture showed that osteoblast can adhere and proliferate on the surface of the hydrogel, indicating that the GelMA/PEGDA hydrogel had good cell viability and biocompatibility. Furthermore, by changing the quantities of GelMA, I2959, and PEGDA, the gelation time can be controlled easily to meet the requirement of its applications. In short, this study demonstrated that PEGDA enhanced the performance and extended the applications of GelMA hydrogels, turning the GelMA/PEGDA hydrogel into an excellent GBR material.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2018-08-04
    Description: Materials, Vol. 11, Pages 1352: Study on Upconversion and Thermal Properties of Tm3+/Yb3+ Co-Doped La2O3-Nb2O5-Ta2O5 Glasses Materials doi: 10.3390/ma11081352 Authors: Minghui Zhang Haiqin Wen Xiuhong Pan Jianding Yu Hui Shao Fei Ai Huimei Yu Meibo Tang Lijun Gai The effect of Yb3+ ions on upconversion luminescence and thermal properties of Tm3+/Yb3+ co-doped La2O3-Nb2O5-Ta2O5 glasses has been studied. Glass transition temperature is around 740 °C, indicating high thermal stability. The effect of Yb3+ ions on the thermal stability is not obvious. Both the glass forming ability and the upconversion luminescence first increase and then decrease with the increase of Yb3+ ions. The glasses perform low glass forming ability with ΔT around 55 °C. Blue and red emissions centered around 477, 651, and 706 nm are obtained at the excitation of 976 nm laser. The upconversion luminescence mechanism is energy transfer from Yb3+ to Tm3+ mixed with two- and three- photon processes. The thermal kinetic Differential Thermal Analysis (DTA)-analysis indicates that the average activation energy first increases and then decreases with the increase of Yb3+ ions. This result can be introduced in order to improve upconversion luminescence of glasses by crystallization in the future. Tm3+/Yb3+ co-doped La2O3-Nb2O5-Ta2O5 glasses with good upconversion and thermal properties show promising applications in solid-state laser, optical temperature sensing.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2018-08-07
    Description: Water, Vol. 10, Pages 1040: Storm Water Management and Flood Control in Sponge City Construction of Beijing Water doi: 10.3390/w10081040 Authors: Shuhan Zhang Yongkun Li Meihong Ma Ting Song Ruining Song To solve the problems of increasing local flooding, water shortage, and water pollution caused by the traditional model of urban development, the Chinese government proposed a new model of urban development—the Sponge City. In Beijing, the capital of China, research on storm water management in urban areas has been carried out since 1989 and has put forward the concept of urban storm water harvesting and flood control. The further research and demonstration application started in 2000. So far, a series of policies and technology standards on storm water management have been formulated, which promote the application of technologies on comprehensive urban storm water harvesting and flood control. A significant number of storm water harvesting and flood control projects have been built in Beijing, which are now playing important roles in runoff reduction, local flood control, non-point source pollution reduction, and storm water utilization. However, it does not solve the above problem completely. Storm water management and flood control needs to be further strengthened. The “Sponge City” is based on natural and ecological laws, which allows storm water to be managed with natural infiltration, natural retention and detention, and natural cleaning facilities. Through in-depth analysis of the connotation, characteristics, and construction path of “Sponge City”, this paper summarizes the status quo of urban rainwater flooding, flood control technology development and application, and Beijing policy and engineering to introduce the overall ideas and methods of Sponge City construction. All the above will provide a reference for cities with similar problems in the construction of sponge cities.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2018-08-06
    Description: Water, Vol. 10, Pages 1037: Multivariate and Spatial Analysis of Physicochemical Parameters in an Irrigation District, Chihuahua, Mexico Water doi: 10.3390/w10081037 Authors: Jesús Alejandro Prieto-Amparán Beatriz Adriana Rocha-Gutiérrez María de Lourdes Ballinas-Casarrubias María Cecilia Valles-Aragón María del Rosario Peralta-Pérez Alfredo Pinedo-Alvarez Water quality is relevant due to the complexity of the interaction of physicochemical and biological parameters. The Irrigation District 005 (ID005) is one of the most important agricultural region in Chihuahua, México; for that reason, it was proposed to investigate the water quality of the site. Water samples were collected in two periods: Summer (S1) and Fall (S2). The samples were taken from 65 wells in S1, and 54 wells in S2. Physicochemical parameters (PhP) such as Arsenic (As), Temperature, Electrical Conductivity (EC), Oxide Reduction Potential (ORP), Hardness, pH, Total Dissolved Solids (TDS), and Turbidity were analyzed. The data were subjected to statistical principal component analysis (PCA), cluster analysis (CA) and spatial variability tests. In both seasons, the TDS exceeded the Mexican maximum permissible level (MPL) (35% S1, 39% S2). Turbidity exceeded the MPL in S1 (29%) and in S2 (12%). Arsenic was above the MPL for water of agricultural use in 9% (S1) and 13% (S2) of the wells. The PCA results suggested that most variations in water quality in S1 were due to As, pH and Temperature, followed by EC, TDS and Hardness; while in S2 to EC, TDS and Hardness, followed by As and pH.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2018-08-06
    Description: Water, Vol. 10, Pages 1036: Hydraulic Conductivity Characteristics of Desert Plant Organs: Coping with Drought Tolerance Strategy Water doi: 10.3390/w10081036 Authors: Shanjia Li Peixi Su Haina Zhang Zijuan Zhou Rui Shi Wei Gou Plant hydraulic conductivity (K) refers to the rate of water flow (kg s−1) per unit pressure drop (MPa), which drives flow through the plant organ system. It is an important eco-physiology index for measuring plant water absorption and transport capacity. A field study was conducted in the arid region of the Heihe River Basin in northwestern China, plant hydraulic conductivity was measured by high-pressure flowmeter (HPFM) to investigate the characteristics of hydraulic conductivity of typical dominant desert plants (Reaumuria soongarica M., Nitraria sphaerocarpa M., and Sympegma regelii B.) and their relationship with functional traits of leaves, stems, and roots, and explaining their adaptation strategies to desert environment from the perspective of plant organs hydraulic conductivity. The results showed that the hydraulic conductivity of the leaves and stems of R. soongarica and N. sphaerocarpa (KLA, leaf hydraulic conductivity per unit leaf area; KLW, leaf hydraulic conductivity per unit leaf weight; KSLA, stem hydraulic conductivity per unit leaf area; KSLW, stem hydraulic conductivity per unit leaf weight) were significantly lower than those of S. regelii, while their fine root (KRL, root hydraulic conductivity per unit leaf length; KRSA, root hydraulic conductivity per unit root surface area) and whole root (KTRW, whole root hydraulic conductivity per unit root weight) of hydraulic conductivity were significantly higher than those of S. regelii. In addition, KLA and KLW, KSLA and KSLW, and KRL and KRSA in three desert plants all exhibited consistent trends. Correlation analysis illustrated that the hydraulic conductivity of leaves and stems had a significantly positive correlation, but they had no significant negative correlation with the specific leaf weight (SLW, specific leaf weight). The hydraulic conductivity of fine root weight (KRW, root hydraulic conductivity per unit root weight) and specific root surface area (SRSA, specific root surface area) showed significantly positive correlation (r = 0.727, P < 0.05). The results demonstrated that the R. soongarica and N. sphaerocarpa preserved their water content through the strong leaf absorption capacity of soil water and the low water dispersion rates of leaves to adapt to the harsher arid habitat, which is more drought tolerant than S. regelii.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2018-08-06
    Description: Water, Vol. 10, Pages 1038: Simple and Low-Cost Procedure for Monthly and Yearly Streamflow Forecasts during the Current Hydrological Year Water doi: 10.3390/w10081038 Authors: Fernando Delgado-Ramos Carmen Hervás-Gámez Accurately forecasting streamflow values is essential to achieve an efficient, integrated water resources management strategy and to provide consistent support to water decision-makers. We present a simple, low-cost, and robust approach for forecasting monthly and yearly streamflows during the current hydrological year, which is applicable to headwater catchments. The procedure innovatively combines the use of well-known regression analysis techniques, the two-parameter Gamma continuous cumulative probability distribution function and the Monte Carlo method. Several model performance statistics metrics (including the Coefficient of Determination R2; the Root-Mean-Square Error RMSE; the Mean Absolute Error MAE; the Index of Agreement IOA; the Mean Absolute Percent Error MAPE; the Coefficient of Nash-Sutcliffe Efficiency NSE; and the Inclusion Coefficient IC) were used and the results showed good levels of accuracy (improving as the number of observed months increases). The model forecast outputs are the mean monthly and yearly streamflows along with the 10th and 90th percentiles. The methodology has been successfully applied to two headwater reservoirs within the Guadalquivir River Basin in southern Spain, achieving an accuracy of 92% and 80% in March 2017. These risk-based predictions are of great value, especially before the intensive irrigation campaign starts in the middle of the hydrological year, when Water Authorities have to ensure that the right decision is made on how to best allocate the available water volume between the different water users and environmental needs.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2018-08-08
    Description: Materials, Vol. 11, Pages 1372: The Effect of the Morphology of Coarse Aggregate on the Properties of Self-Compacting High-Performance Fibre-Reinforced Concrete Materials doi: 10.3390/ma11081372 Authors: Krzysztof Ostrowski Łukasz Sadowski Damian Stefaniuk Daniel Wałach Tomasz Gawenda Konrad Oleksik Ireneusz Usydus When understanding the effect of the morphology of coarse aggregate on the properties of a fresh concrete mixture, the strength and deformability of self-compacting high-performance fibre-reinforced concrete (SCHPFRC) can be seen to be critical for its performance. In this research, regular and irregular grains were separated from granite coarse aggregate. The morphology of these grains was described while using digital image analysis. As a result, the aspect ratio, roundness and area ratio were determined in order to better understand this phenomenon. Then, the principal rheological, physical, and mechanical properties of SCHPFRC were determined. The obtained results indicated that the morphology of the grains of coarse aggregate has an impact on the strength and stiffness properties of SCHPFRC. Moreover, significant differences in the transverse strain of concretes were observed. The morphology of the coarse aggregate also has an impact on the rheological parameters of a fresh concrete mixture. To better understand this phenomenon, the hypothesized mechanism of the formation of SCHPFRC caused by different morphology of coarse aggregate was proposed at the end of the article.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2018-08-07
    Description: Materials, Vol. 11, Pages 1364: Recent Developments in Spectroscopic Techniques for the Detection of Explosives Materials doi: 10.3390/ma11081364 Authors: Wei Zhang Yue Tang Anran Shi Lirong Bao Yun Shen Ruiqi Shen Yinghua Ye Trace detection of explosives has been an ongoing challenge for decades and has become one of several critical problems in defense science; public safety; and global counter-terrorism. As a result, there is a growing interest in employing a wide variety of approaches to detect trace explosive residues. Spectroscopy-based techniques play an irreplaceable role for the detection of energetic substances due to the advantages of rapid, automatic, and non-contact. The present work provides a comprehensive review of the advances made over the past few years in the fields of the applications of terahertz (THz) spectroscopy; laser-induced breakdown spectroscopy (LIBS), Raman spectroscopy; and ion mobility spectrometry (IMS) for trace explosives detection. Furthermore, the advantages and limitations of various spectroscopy-based detection techniques are summarized. Finally, the future development for the detection of explosives is discussed.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2018-08-07
    Description: Materials, Vol. 11, Pages 1362: Numerical Modelling of the Effect of Filler/Matrix Interfacial Strength on the Fracture of Cementitious Composites Materials doi: 10.3390/ma11081362 Authors: Xiaowei Ouyang Zichao Pan Zhiwei Qian Yuwei Ma Guang Ye Klaas van Breugel The interface between filler and hydration products can have a significant effect on the mechanical properties of the cement paste system. With different adhesion properties between filler and hydration products, the effect of microstructural features (size, shape, surface roughness), particle distribution and area fraction of filler on the fracture behavior of a blended cement paste system is supposed to be different, as well. In order to understand the effect of the microstructural features, particle distribution and area fraction of filler on the fracture behavior of a blended cement paste system with either strong or weak filler-matrix interface, microscale simulations with a lattice model are carried out. The results show that the strength of the filler-matrix interface plays a more important role than the microstructural features, particle distribution and area fraction of filler in the crack propagation and the strength of blended cement paste. The knowledge acquired here provides a clue, or direction, for improving the performance of existing fillers. To improve the performance of fillers in cement paste in terms of strength, priority should be given to improving the bond strength between filler particles and matrix, not to modifying the microstructural features (i.e., shape and surface roughness) of the filler.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2018-08-07
    Description: Materials, Vol. 11, Pages 1361: Phase Stability and Properties of Ti-Nb-Zr Thin Films and Their Dependence on Zr Addition Materials doi: 10.3390/ma11081361 Authors: Jeonghyeon Yang Munkhbayar Baatarsukh Joohyeon Bae Sunchul Huh Hyomin Jeong Byeongkeun Choi Taehyun Nam Jungpil Noh Ternary Ti-Nb-Zr alloys were prepared by a magnetron sputtering method with porous structures observed in some of them. In bulk, in order to control the porous structure, a space holder (NH4HCO3) is used in the sintering method. However, in the present work, we show that the porous structure is also dependent on alloy composition. The results from Young’s modulus tests confirm that these alloys obey d-electrons alloy theory. However, the Young’s modulus of ternary thin films (≈80–95 GPa) is lower than that for binary alloys (≈108–123 GPa). The depth recovery ratio of ternary Ti-Nb-Zr thin films is also higher than that for binary β-Ti-(25.9–34.2)Nb thin film alloys.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2018-08-07
    Description: Materials, Vol. 11, Pages 1358: POSS Nanofiller-Induced Enhancement of the Thermomechanical Properties in a Fluoroelastomer Terpolymer Materials doi: 10.3390/ma11081358 Authors: Daphné Berthier Marie-Pierre Deffarges Nicolas Berton Mathieu Venin Florian Lacroix Bruno Schmaltz Yohan Tendron Eric Pestel François Tran-Van Stéphane Méo The present study reports on the use of three types of polyhedral oligomeric silsesquioxanes (POSS) nanoparticles with various organic substituents as fillers in a fluoroelastomer (FKM). A series of/POSS elastomer composite thin films is prepared. Microstructural SEM/TEM (scanning electron microscopy/transmission electron microscopy) imaging reveals a dispersion state allowing the presence of micron-sized domains. The influence of POSS content is studied in order to optimize thermal stability and mechanical properties of the composite thin films. Both POSS-A (with an acryloyl functional group and seven isobutyl substituents) and POSS-P (with eight phenyl substituents) lead to higher thermal stability and modulus of the composites, with respect to the unfilled FKM terpolymer matrix. covalent grafting of POSS-A onto the FKM network is found to play a critical role. Enhanced storage modulus in the rubbery plateau region (+210% at 200 °C for 20 phr) suggests that POSS-A is particularly suitable for high temperature applications.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2018-08-07
    Description: Materials, Vol. 11, Pages 1363: Synthesis of Gold Functionalised Nanoparticles with the Eranthis hyemalis Lectin and Preliminary Toxicological Studies on Caenorhabditis elegans Materials doi: 10.3390/ma11081363 Authors: Jamila Djafari Marie T. McConnell Hugo M. Santos José Luis Capelo Emilia Bertolo Simon C. Harvey Carlos Lodeiro Javier Fernández-Lodeiro The lectin found in the tubers of the Winter Aconite (Eranthis hyemalis) plant (EHL) is a Type II Ribosome Inactivating Protein (RIP). Type II RIPs have shown anti-cancer properties and have great potential as therapeutic agents. Similarly, colloidal gold nanoparticles are successfully used in biomedical applications as they can be functionalised with ligands with high affinity and specificity for target cells to create therapeutic and imaging agents. Here we present the synthesis and characterization of gold nanoparticles conjugated with EHL and the results of a set of initial assays to establish whether the biological effect of EHL is altered by the conjugation. Gold nanoparticles functionalised with EHL (AuNPs@EHL) were successfully synthesised by bioconjugation with citrate gold nanoparticles (AuNPs@Citrate). The conjugates were analysed by UV-Vis spectroscopy, Dynamic Light Scattering (DLS), Zeta Potential analysis, and Transmission Electron Microscopy (TEM). Results indicate that an optimal functionalisation was achieved with the addition of 100 µL of EHL (concentration 1090 ± 40 µg/mL) over 5 mL of AuNPs (concentration [Au0] = 0.8 mM). Biological assays on the effect of AuNPs@EHL were undertaken on Caenorhabditis elegans, a free-living nematode commonly used for toxicological studies, that has previously been shown to be strongly affected by EHL. Citrate gold nanoparticles did not have any obvious effect on the nematodes. For first larval stage (L1) nematodes, AuNPs@EHL showed a lower biological effect than EHL. For L4 stage, pre-adult nematodes, both EHL alone and AuNPs@EHL delayed the onset of reproduction and reduced fecundity. These assays indicate that EHL can be conjugated to gold nanoparticles and retain elements of biocidal activity.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2018-08-07
    Description: Materials, Vol. 11, Pages 1359: Facile Fabrication of Dumbbell-Like β-Bi2O3/Graphene Nanocomposites and Their Highly Efficient Photocatalytic Activity Materials doi: 10.3390/ma11081359 Authors: Jun Yang Taiping Xie Chenglun Liu Longjun Xu β-Bi2O3 decorated graphene nanosheets (β-Bi2O3/GN) were prepared by a facile solution mixing method. The crystal structure, surface morphology, and photo absorbance properties of the products were characterized by XRD, SEM, and UV-VIS diffuse reflection, respectively. Moreover, the effect of graphene content on photocatalytic activity was systematically investigated, and the results indicated that these composites possessed a high degradation rate of Rhodamine B (RhB), which was three times higher than that of bare β-Bi2O3 when graphene content was 1 wt %. This high photocatalytic activity was attributed predominantly to the presence of graphene, which served as an electron collector and transporter to efficiently lengthen the lifetime of the photogenerated charge carriers from β-Bi2O3.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2018-08-07
    Description: Materials, Vol. 11, Pages 1357: Radial Compressive Property and the Proof-of-Concept Study for Realizing Self-expansion of 3D Printing Polylactic Acid Vascular Stents with Negative Poisson’s Ratio Structure Materials doi: 10.3390/ma11081357 Authors: Zichao Wu Ji Zhao Wenzheng Wu Peipei Wang Bofan Wang Guiwei Li Shuo Zhang Biodegradable stents offer the potential to reduce the in-stent restenosis by providing support long enough for the vessel to heal. The polylactic acid (PLA) vascular stents with negative Poisson’s ratio (NPR) structure were manufactured by fused deposition modeling (FDM) 3D printing in this study. The effects of stent diameter, wall thickness and geometric parameters of arrowhead NPR structure on radial compressive property of 3D-printed PLA vascular stent were studied. The results showed that the decrease of stent diameter, the increase of wall thickness and the increase of the surface coverage could enhance the radial force (per unit length) of PLA stent. The radial and longitudinal size of PLA stent with NPR structure decreased simultaneously when the stent was crimped under deformation temperature. The PLA stent could expand in both radial and longitudinal direction under recovery temperature. When the deformation temperature and recovery temperature were both 65 °C, the diameter recovery ratio of stent was more than 95% and the maximum could reach 98%. The length recovery ratio was above 97%. This indicated the feasibility of utilizing the shape memory effect (SME) of PLA to realize the expansion of 3D-printed PLA vascular stent under temperature excitation.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2018-08-07
    Description: Materials, Vol. 11, Pages 1360: Effect of Annealing Temperature on ECD Grown Hexagonal-Plane Zinc Oxide Materials doi: 10.3390/ma11081360 Authors: Sukrit Sucharitakul Rangsan Panyathip Supab Choopun Zinc oxide (ZnO) offers a great potential in several applications from sensors to Photovoltaic cells thanks to the material’s dependency, to its optical and electrical properties and crystalline structure architypes. Typically, ZnO powder tends to be grown in the form of a wurtzite structure allowing versatility in the phase of material growths; albeit, whereas in this work we introduce an alternative in scalable yet relatively simple 2D hexagonal planed ZnO nanoflakes via the electrochemical deposition of commercially purchased Zn(NO3)2 and KCl salts in an electrochemical process. The resulting grown materials were analyzed and characterized via a series of techniques prior to thermal annealing to increase the grain size and improve the crystal quality. Through observation via scanning electron microscope (SEM) images, we have analyzed the statistics of the grown flakes’ hexagonal plane’s size showing a non-monotonal strong dependency of the average flake’s hexagonal flakes’ on the annealing temperature, whereas at 300 °C annealing temperature, average flake size was found to be in the order of 300 μm2. The flakes were further analyzed via transmission electron microscopy (TEM) to confirm its hexagonal planes and spectroscopy techniques, such as Raman Spectroscopy and photo luminescence were applied to analyze and confirm the ZnO crystal signatures. The grown materials also underwent further characterization to gain insights on the material, electrical, and optical properties and, hence, verify the quality of the material for Photovoltaic cells’ electron collection layer application. The role of KCl in aiding the growth of the less preferable (0001) ZnO is also investigated via various prospects discussed in our work. Our method offers a relatively simple and mass-producible method for synthesizing a high quality 2D form of ZnO that is, otherwise, technically difficult to grow or control.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2018-08-07
    Description: Materials, Vol. 11, Pages 1365: Composites of Laponite and Cu–Mn Hopcalite-Related Mixed Oxides Prepared from Inverse Microemulsions as Catalysts for Total Oxidation of Toluene Materials doi: 10.3390/ma11081365 Authors: Bogna D. Napruszewska Alicja Michalik Anna Walczyk Dorota Duraczyńska Roman Dula Wojciech Rojek Lidia Lityńska-Dobrzyńska Krzysztof Bahranowski Ewa M. Serwicka Composites of Laponite and Cu–Mn hopcalite-related mixed oxides, prepared from hydrotalcite-like (Htlc) precursors obtained in inverse microemulsions, were synthesized and characterized with XRF, XRD, SEM, TEM, H2 temperature-programmed reduction (TPR), and N2 adsorption/desorption at −196 °C. The Htlc precursors were precipitated either with NaOH or tetrabutylammonium hydroxide (TBAOH). Al was used as an element facilitating Htlc structure formation, and Ce and/or Zr were added as promoters. The composites calcined at 600 °C are mesoporous structures with similar textural characteristics. The copper–manganite spinel phases formed from the TBAOH-precipitated precursors are less crystalline and more susceptible to reduction than the counterparts obtained from the precursors synthesized with NaOH. The Cu–Mn-based composites are active in the combustion of toluene, and their performance improves further upon the addition of promoters in the following order: Ce < Zr < Zr + Ce. The composites whose active phases are prepared with TBAOH are more active than their counterparts obtained with the use of the precursors precipitated with NaOH, due to the better reducibility of the less crystalline mixed oxide active phase.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2018-08-08
    Description: Water, Vol. 10, Pages 1046: Comparing Bias Correction Methods Used in Downscaling Precipitation and Temperature from Regional Climate Models: A Case Study from the Kaidu River Basin in Western China Water doi: 10.3390/w10081046 Authors: Min Luo Tie Liu Fanhao Meng Yongchao Duan Amaury Frankl Anming Bao Philippe De Maeyer The systemic biases of Regional Climate Models (RCMs) impede their application in regional hydrological climate-change effects analysis and lead to errors. As a consequence, bias correction has become a necessary prerequisite for the study of climate change. This paper compares the performance of available bias correction methods that focus on the performance of precipitation and temperature projections. The hydrological effects of these correction methods are evaluated by the modelled discharges of the Kaidu River Basin. The results show that all used methods improve the performance of the original RCM precipitation and temperature simulations across a number of levels. The corrected results obtained by precipitation correction methods demonstrate larger diversities than those produced by the temperature correction methods. The performance of hydrological modelling is highly influenced by the choice of precipitation correction methods. Furthermore, no substantial differences can be identified from the results of the temperature-corrected methods. The biases from input data are often greater from the works of hydrological modelling. The suitability of these approaches depends upon the regional context and the RCM model, while their application procedure and a number of results can be adapted from region to region.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2018-08-08
    Description: Water, Vol. 10, Pages 1047: Assessing Decadal Trends of a Nitrate-Contaminated Shallow Aquifer in Western Nebraska Using Groundwater Isotopes, Age-Dating, and Monitoring Water doi: 10.3390/w10081047 Authors: Martin J. Wells Troy E. Gilmore Aaron R. Mittelstet Daniel Snow Steven S. Sibray Shallow aquifers are prone to nitrate contamination worldwide. In western Nebraska, high groundwater nitrate concentrations ([NO3−]) have resulted in the exploration of new groundwater and nitrogen management regulations in the North Platte Natural Resources District (NPNRD). A small region of NPNRD (“Dutch Flats”) was the focus of intensive groundwater sampling by the United States Geological Survey from 1995 to 1999. Nearly two decades later, notable shifts have occurred in variables related to groundwater recharge and [NO3−], including irrigation methods. The objective of this study was to evaluate how changes in these variables, in part due to regulatory changes, have impacted nitrate-contaminated groundwater in the Dutch Flats area. Groundwater samples were collected to assess changes in: (1) recharge rates; (2) biogeochemical processes; and (3) [NO3−]. Groundwater age increased in 63% of wells and estimated recharge rates were lower for 88% of wells sampled (n = 8). However, mean age and recharge rate estimated in 2016 (19.3 years; R = 0.35 m/year) did not differ significantly from mean values determined in 1998 (15.6 years; R = 0.50 m/year). δ15N-NO3− (n = 14) and dissolved oxygen data indicate no major changes in biogeochemical processes. Available long-term data suggest a downward trend in normalized [NO3−] from 1998 to 2016, and lower [NO3−] was observed in 60% of wells sampled in both years (n = 87), but median values were not significantly different. Collectively, results suggest the groundwater system is responding to environmental variables to a degree that is detectable (e.g., trends in [NO3−]), although more time and/or substantial changes may be required before it is possible to detect significantly different mean recharge.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2018-06-12
    Description: Materials, Vol. 11, Pages 991: Cononsolvency Transition of Polymer Brushes: A Combined Experimental and Theoretical Study Materials doi: 10.3390/ma11060991 Authors: Huaisong Yong Sebastian Rauch Klaus-Jochen Eichhorn Petra Uhlmann Andreas Fery Jens-Uwe Sommer In this study, the cononsolvency transition of poly(N-isopropylacrylamide) (PNiPAAm) brushes in aqueous ethanol mixtures was studied by using Vis-spectroscopic ellipsometry (SE) discussed in conjunction with the adsorption-attraction model. We proved that the cononsolvency transition of PNiPAAm brushes showed features of a volume phase transition, such as a sharp collapse, reaching a maximum decrease in thickness for a very narrow ethanol volume composition range of 15% to 17%. These observations are in agreement with the recently published preferential adsorption model of the cononsolvency effect.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2018-06-12
    Description: Materials, Vol. 11, Pages 989: Wheat Straw-Derived N-, O-, and S-Tri-doped Porous Carbon with Ultrahigh Specific Surface Area for Lithium-Sulfur Batteries Materials doi: 10.3390/ma11060989 Authors: Feng Chen Lulu Ma Jiangang Ren Mou Zhang Xinyu Luo Bing Li Zhiming Song Xiangyang Zhou Recently, lithium-sulfur (Li-S) batteries have been greeted by a huge ovation owing to their very high theoretical specific capacity (1675 mAh·g−1) and theoretical energy density (2600 Wh·kg−1). However, the full commercialization of Li-S batteries is still hindered by dramatic capacity fading resulting from the notorious “shuttle effect” of polysulfides. Herein, we first describe the development of a facile, inexpensive, and high-producing strategy for the fabrication of N-, O-, and S-tri-doped porous carbon (NOSPC) via pyrolysis of natural wheat straw, followed by KOH activation. The as-obtained NOSPC shows characteristic features of a highly porous carbon frame, ultrahigh specific surface area (3101.8 m2·g−1), large pore volume (1.92 cm3·g−1), good electrical conductivity, and in situ nitrogen (1.36 at %), oxygen (7.43 at %), and sulfur (0.7 at %) tri-doping. The NOSPC is afterwards selected to fabricate the NOSPC-sulfur (NOSPC/S) composite for the Li-S batteries cathode material. The as-prepared NOSPC/S cathode delivers a large initial discharge capacity (1049.2 mAh·g−1 at 0.2 C), good cycling stability (retains a reversible capacity of 454.7 mAh·g−1 over 500 cycles at 1 C with a low capacity decay of 0.088% per cycle), and superior rate performance (619.2 mAh·g−1 at 2 C). The excellent electrochemical performance is mainly attributed to the synergistic effects of structural restriction and multidimensional chemical adsorptions for cooperatively repressing the polysulfides shuttle.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2018-06-12
    Description: Materials, Vol. 11, Pages 987: Rapid Sintering of Li2O-Nb2O5-TiO2 Solid Solution by Air Pressure Control and Clarification of Its Mechanism Materials doi: 10.3390/ma11060987 Authors: Hiromi Nakano Konatsu Kamimoto Takahisa Yamamoto Yoshio Furuta We first successfully synthesized Li1+x−yNb1−x−3yTix+4yO3 (LNT) solid solutions (0.13 ≤ x ≤ 0.18, 0 ≤ y ≤ 0.06) rapidly at 1373 K for one hour under 0.35 MPa by the controlling of air pressure using an air-pressure control atmosphere furnace. The composition is a formation area of a superstructure for LNT, in which the periodical intergrowth layer was formed in the matrix, and where it can be controlled by Ti content. Therefore, the sintering time depended on Ti content, and annealing was repeated for over 24 h until a homogeneous structure was formed using a conventional electric furnace. We clarified the mechanism of the rapid sintering using various microscale to nanoscale characterization techniques: X-ray diffraction, a scanning electron microscope, a transmission electron microscope (TEM), a Cs-corrected scanning TEM equipped with electron energy-loss spectroscopy, and X-ray absorption fine structure spectroscopy.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2018-06-13
    Description: Materials, Vol. 11, Pages 998: Versatile Poly(Diallyl Dimethyl Ammonium Chloride)-Layered Nanocomposites for Removal of Cesium in Water Purification Materials doi: 10.3390/ma11060998 Authors: Sung-Chan Jang Sung-Min Kang Gi Yong Kim Muruganantham Rethinasabapathy Yuvaraj Haldorai Ilsong Lee Young-Kyu Han Joanna C. Renshaw Changhyun Roh Yun Suk Huh In this work, we elucidate polymer-layered hollow Prussian blue-coated magnetic nanocomposites as an adsorbent to remove radioactive cesium from environmentally contaminated water. To do this, Fe3O4 nanoparticles prepared using a coprecipitation method were thickly covered with a layer of cationic polymer to attach hollow Prussian blue through a self-assembly process. The as-synthesized adsorbent was confirmed through various analytical techniques. The adsorbent showed a high surface area (166.16 m2/g) with an excellent cesium adsorbent capacity and removal efficiency of 32.8 mg/g and 99.69%, respectively. Moreover, the superparamagnetism allows effective recovery of the adsorbent using an external magnetic field after the adsorption process. Therefore, the magnetic adsorbent with a high adsorption efficiency and convenient recovery is expected to be effectively used for rapid remediation of radioactive contamination.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2018-06-13
    Description: Materials, Vol. 11, Pages 993: Investigation of Tensile Creep of a Normal Strength Overlay Concrete Materials doi: 10.3390/ma11060993 Authors: Martin Drexel Yvonne Theiner Günter Hofstetter The present contribution deals with the experimental investigation of the time-dependent behavior of a typical overlay concrete subjected to tensile stresses. The latter develop in concrete overlays, which are placed on existing concrete structures as a strengthening measure, due to the shrinkage of the young overlay concrete, which is restrained by the substrate concrete. Since the tensile stresses are reduced by creep, creep in tension is investigated on sealed and unsealed specimens, loaded at different concrete ages. The creep tests as well as the companion shrinkage tests are performed in a climatic chamber at constant temperature and constant relative humidity. Since shrinkage depends on the change of moisture content, the evolution of the mass water content is determined at the center of each specimen by means of an electrolytic resistivity-based system. Together with the experimental results for compressive creep from a previous study, a consistent set of time-dependent material data, determined for the same composition of the concrete mixture and on identical specimens, is now available. It consists of the hygral and mechanical properties, creep and shrinkage strains for both sealed and drying conditions, the respective compliance functions, and the mass water contents in sealed and unsealed, loaded and load-free specimens.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2018-06-13
    Description: Materials, Vol. 11, Pages 992: Damping Analysis of Some Inorganic Particles on Poly(butyl-methacrylate) Materials doi: 10.3390/ma11060992 Authors: Saisai Zhou Chunhua Yang Jia Hu Xianru He Rui Zhang Viscoelastic polymers can be used as damping materials to control unexpected vibration and noise through energy dissipation. To investigate the effect of an inorganic filler on damping property, a series of inorganic particles, Ferriferous oxide(Fe3O4), Graphene/Fe3O4(GF), and Fe3O4 of demagnetization(α-Fe2O3) were incorporated into poly(butyl-methacrylate) (PBMA). The effects of the dispersion of particles, as well as the interaction between particles and the PBMA matrix on the damping property of composites, were systematically studied. Results revealed that the addition of three types of particles can effectively improve the damping properties and broaden the effective damping temperature range. Dispersion of α-Fe2O3 in the PBMA matrix is better than that of Fe3O4. As a result, the damping peak can be increased more. The interaction between GF and the PBMA matrix is stronger than that between Fe3O4 and the PBMA. The damping peak of the composites can be suppressed by GF, which is opposite to Fe3O4 and α-Fe2O3. In addition, glass transition temperature (Tg) of all composites in the study shifted to low temperatures.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2018-06-13
    Description: Materials, Vol. 11, Pages 997: Preparation and Properties of C/C Hollow Spheres and the Energy Absorption Capacity of the Corresponding Aluminum Syntactic Foams Materials doi: 10.3390/ma11060997 Authors: Qiyong Yu Yan Zhao Anqi Dong Ye Li The present study focuses on the preparation and characterization of lab-scale aluminum syntactic foams (ASFs) filled with hollow carbon spheres (HCSs). A new and original process for the fabrication of HCSs was explored. Firstly, expanded polystyrene beads with an average diameter of 6 mm and coated with carbon fibers/thermoset phenolic resin were produced by the “rolling ball” method. In the next step, the spheres were cured and post-cured, and then carbonized at 1050 °C under vacuum to form the HCSs. The porosity in the shell of the HCSs was decreased by increasing the number of impregnation–carbonization cycles. The aluminum syntactic foams were fabricated by casting the molten aluminum into a crucible filled with HCSs. The morphology of the hollow spheres before and after carbonization was investigated by scanning electron microscope (SEM). The compressive properties of the ASF were tested and the energy absorption capacities were calculated according to stress–strain curves. The results showed that the ASF filled with HCSs which had been treated by more cycles of impregnation–carbonization had higher energy absorption capacity. The aluminum syntactic foam absorbed 34.9 MJ/m3 (28.8 KJ/Kg) at 60% strain, which was much higher than traditional closed cell aluminum foams without particles. The HCSs have a promising future in producing a novel family of metal matrix syntactic foams.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2018-06-13
    Description: Materials, Vol. 11, Pages 995: Synthesis of Various TiO2 Micro-/Nano-Structures and Their Photocatalytic Performance Materials doi: 10.3390/ma11060995 Authors: Anquan Deng Yufu Zhu Xin Guo Lei Zhou Qingsong Jiang TiO2 micro-/nano-structures with different morphologies have been successfully synthesized via a hydrothermal method. The effects of the solvents on the morphology and structure of the obtained products have been studied. The objective of the present paper is to compare the photocatalytic properties of the obtained TiO2 products. During the synthesis process, the tetrabutyl titanate and titanium (IV) fluoride were used as the titanium source. The obtained micro-/nano-structures were characterized by field-emission scanning electron microscopy, X-ray diffraction analysis, and nitrogen adsorption-desorption isotherms. The photocatalytic activity of the samples was evaluated by the degradation of Rhodamine B solution under simulated solar irradiation. It is found that the morphologies and structures of TiO2 have a great influence on its photocatalytic activity. Compared with other samples, TiO2 flower clusters assembled with nanorods exhibited a superior photocatalytic activity in the degradation of Rhodamine B.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2018-06-12
    Description: Water, Vol. 10, Pages 759: Effects of Water Diversion from Yangtze River to Lake Taihu on the Phytoplankton Habitat of the Wangyu River Channel Water doi: 10.3390/w10060759 Authors: Jiangyu Dai Shiqiang Wu Xiufeng Wu Wanyun Xue Qianqian Yang Senlin Zhu Fangfang Wang Dan Chen To reveal the effects of water diversion from the Yangtze River to Lake Taihu on the phytoplankton habitat of the main water transfer channel of the Wangyu River, we investigated the water’s physicochemical parameters and phytoplankton communities during the water diversion and non-diversion periods over the winters between 2014–2016, respectively. During the water diversion periods in the winter of 2014 and 2015, the nutrients and organic pollutant contents of the Wangyu River channel were significantly lower than those during the non-diversion period in 2016. Moreover, the phytoplankton diversities and relative proportions of Bacillariophyta during the diversion periods evidently increased during the water diversion periods in winter. The increase in the water turbidity content, the decrease in the contents of the permanganate index, and the total phosphorus explained only 21.4% of the variations in the phytoplankton communities between the diversion and non-diversion periods in winter, which revealed significant contributions of the allochthonous species from the Yangtze River and tributaries of the Wangyu River to phytoplankton communities in the Wangyu River. The increasing gradient in the contents of nutrients and organic pollutants from the Yangtze River to Lake Taihu indicated the potential allochthonous pollutant inputs along with the Wangyu River. Further controlling the pollutants from the tributaries of the Wangyu River is critical in order to improve the phytoplankton habitats in river channels and Lake Taihu.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2018-06-05
    Description: Water, Vol. 10, Pages 731: What Germany’s University Beginners Think about Water Reuse Water doi: 10.3390/w10060731 Authors: Sarah Schmid Franz X. Bogner Water reuse is a new technology, not yet implemented, but discussed for use in Germany. Public opinion plays a major role in the success of the introduction of this new technology and was not yet analyzed for Germany. When monitoring 340 university beginners’ conceptions regarding water reuse, a variety of conceptions appeared. While usage of tap water is accepted for drinking purposes, acceptance of recycled water for oral consumption was low. When asked for reasons for (not) using recycled water, three groups of respondents were extracted: (a) The acceptors (convinced of quality, or naming sustainability as a reason); (b) the undecided (doubts about quality, rejection of its use for consumption, and psychological conflicts of logic and disgust); (c) the non-acceptors (unconvinced of quality and preference for bottled water). When asked about factors that would lead to accepting the use of recycled water, insights into treatment processes were identified as the most convincing, followed by educational films and guided tours. Participants showed high conviction about currently existing tap-water qualities. Having water that is cleaned before it reaches the consumer was reported to have high priority. To increase acceptance of water reuse, recommendations for appropriate outreach programs are discussed.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2018-06-05
    Description: Water, Vol. 10, Pages 730: A Comparative Study of Groundwater Level Forecasting Using Data-Driven Models Based on Ensemble Empirical Mode Decomposition Water doi: 10.3390/w10060730 Authors: Yicheng Gong Zhongjing Wang Guoyin Xu Zixiong Zhang The reliable and accurate prediction of groundwater levels is important to improve water-use efficiency in the development and management of water resources. Three nonlinear time-series intelligence hybrid models were proposed to predict groundwater level fluctuations through a combination of ensemble empirical mode decomposition (EEMD) and data-driven models (i.e., artificial neural networks (ANN), support vector machines (SVM) and adaptive neuro fuzzy inference systems (ANFIS)), respectively. The prediction capability of EEMD-ANN, EEMD-SVM, and EEMD-ANFIS hybrid models was investigated using a monthly groundwater level time series collected from two observation wells near Lake Okeechobee in Florida. The statistical parameters correlation coefficient (R), normalized mean square error (NMSE), root mean square error (RMSE), Nash–Sutcliffe efficiency coefficient (NS), and Akaike information criteria (AIC) were used to assess the performance of the EEMD-ANN, EEMD-SVM and EEMD-ANFIS models. The results achieved from the EEMD-ANN, EEMD-SVM and EEMD-ANFIS models were compared with those from the ANN, SVM and ANFIS models. The three hybrid models (i.e., EEMD-ANN, EEMD-SVM, and EEMD-ANFIS) proved to be applicable to forecast the groundwater level fluctuations. The values of the statistical parameters indicated that the EEMD-ANFIS and EEMD-SVM models achieved better prediction results than the EEMD-ANN model. Meanwhile, the three models coupled with EEMD were found have better prediction results than the models that were not. The findings from this study indicate that the proposed nonlinear time-series intelligence hybrid models could improve the prediction capability in forecasting groundwater level fluctuations, and serve as useful and helpful guidelines for the management of sustainable water resources.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2018-06-05
    Description: Water, Vol. 10, Pages 729: Geothermometry and Isotope Geochemistry of CO2-Rich Thermal Waters in Choygan, East Tuva, Russia Water doi: 10.3390/w10060729 Authors: Anastasia Shestakova Natalia Guseva Yulia Kopylova Albina Khvaschevskaya David A. Polya Igor Tokarev The Choygan area of southern Siberia, Russia hosts a variety of CO2-rich thermal mineral and other waters emerging from springs at temperatures between 7 °C and 39 °C. Chemical analyses of the spring waters (n = 33) were carried out to characterise the waters and determine their origin. A continuum of compositions was observed between relatively lower temperature (7 °C) HCO3-Ca-Na dominated waters with relatively low amount of total dissolved solids (TDS) and high Eh, and higher temperature (39 °C) HCO3-Na-Ca dominated waters with higher TDS and lower Eh—this reflects largely conservative mixing of these components between near surface low temperature, oxidising groundwaters and higher temperature, more reducing thermal waters derived from a deeper geothermal reservoir. Stable isotopic data are consistent with all the water ultimately being derived from meteoric water that has undergone varying degrees of isotopic fractionation following evaporation. The inferred δ18O and δ2H isotopic composition of the unfractionationed meteoric waters is lighter than that expected that of mean annual local precipitation, which together with a strong negative correlation between δ18O and the elevation of the sampled discharging springs, suggests recharge at higher elevations (1600 m to 3000 m; average 2600 m). Reservoir temperature, calculated using geothermometers and an analysis of saturation indices of plausible reservoir minerals, ranged from 70 °C to 100 °C at an inferred depth of 2 to 3 km. Not all chemical components were found to follow conservative mixing behaviour. In particular, (i) the CO2 contents of the waters were highly variable, suggesting either varying degrees of degassing and/or near discharge admixture with air, and (ii) SO4 concentrations in the lower temperature thermal CO2-rich waters were highly variable, suggesting a role of near surface oxidation processes, for example of pyrite, in modifying the concentration of redox sensitive components. Limited δ13C data are consistent with the CO2 predominately being derived from dissolution of metamorphic/igneous carbonate minerals in the reservoir. Based on geological conditions, isotope and chemical data, a conceptual circulation model of the Choygan hydrothermal system is proposed.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2018-06-05
    Description: Water, Vol. 10, Pages 728: An Integration Approach for Mapping Field Capacity of China Based on Multi-Source Soil Datasets Water doi: 10.3390/w10060728 Authors: Xiaotao Wu Guihua Lu Zhiyong Wu Hai He Jianhong Zhou Zhenchen Liu Field capacity is one of the most important soil hydraulic properties in water cycle, agricultural irrigation, and drought monitoring. It is difficult to obtain the distribution of field capacity on a large scale using manual measurements that are both time-consuming and labor-intensive. In this study, the field capacity ensemble members were established using existing pedotransfer functions (PTFs) and multiple linear regression (MLR) based on three soil datasets and 2388 in situ field capacity measurements in China. After evaluating the accuracy of each ensemble member, an integration approach was proposed for estimating the field capacity distribution and development of a 250 m gridded field capacity dataset in China. The spatial correlation coefficient (R) and root mean square error (RMSE) between the in situ field capacity and ensemble field capacity were 0.73 and 0.048 m3·m−3 in region scale, respectively. The ensemble field capacity shows great consistency with practical distribution of field capacity, and the deviation is revised when compared with field capacity datasets provided by previous researchers. It is a potential product for estimating field capacity in hydrological and agricultural practices on both large and fine scales, especially in ungauged regions.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2018-06-14
    Description: Water, Vol. 10, Pages 779: Study of the Scale Effect on Permeability in the Interlayer Shear Weakness Zone Using Sequential Indicator Simulation and Sequential Gaussian Simulation Water doi: 10.3390/w10060779 Authors: Meng Chen Zhifang Zhou Lei Zhao Mu Lin Qiaona Guo Mingwei Li The interlayer shear weakness zone (ISWZ) is a deformation zone in stratified rock masses, with different width and spacing, due to tectonic stresses. It represents the main flow path in rocks due to higher permeability compared with massive rocks. The permeability values of an ISWZ can vary significantly depending on the scale. This study focuses on the correlations between the permeability properties of ISWZs and their geometry properties. A range of realistic 3-D numerical models of ISWZs is developed using geostatistical modeling, with fine-scale geometry and permeability information taken into consideration. These ISWZs represent a set of mud content and width distributions that are typical for ISWZs. Horizontal and vertical permeability values for all ISWZs are found to change in small-scale samples, whereas these fluctuations decrease with increasing sample size. For different types of ISWZs, the results show that ISWZs with variable width will show a significantly larger scale effect on the permeability than that of ISWZs with constant width. Furthermore, ISWZs with a higher mud content display greater variation in horizontal permeability, while the opposite is true for vertical permeability. Based on the coefficient of permeability variation, a criterion is proposed to identify the calculated permeability of a sample is locally homogeneous. The size for this sample relies on the properties estimated (horizontal and vertical permeability) and geometry features. These findings could provide a basis for the selection of permeability values of an ISWZ in hydraulic engineering. Additionally, the procedures used in this article can be applied to any type of ISWZs.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2018-06-14
    Description: Water, Vol. 10, Pages 774: Development of an Integrated Modelling System for Evaluating Water Quantity and Quality Effects of Individual Wetlands in an Agricultural Watershed Water doi: 10.3390/w10060774 Authors: Yongbo Liu Wanhong Yang Hui Shao Zhiqiang Yu John Lindsay A GIS-based fully-distributed model, IMWEBs-Wetland (Integrated Modelling for Watershed Evaluation of BMPs—Wetland), is developed to simulate hydrologic processes of site-specific wetlands in an agricultural watershed. This model, powered by the open-source GIS Whitebox Geospatial Analysis Tools (GAT) and advanced database technologies, allows users to simulate and assess water quantity and quality effects of individual wetlands at site and watershed scales. A case study of the modelling system is conducted in a subbasin of the Broughton’s Creek Watershed in southern Manitoba of Canada. Modelling results show that the model is capable of simulating wetland processes in a complex watershed with various land management practices. The IMWEBs-Wetland model is unique in simulating the water quantity and quality effects of individual wetlands, which can be used to examine location-specific targeting of wetland retention and restoration at a watershed scale.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2018-06-06
    Description: Materials, Vol. 11, Pages 955: E-Textile Embroidered Metamaterial Transmission Line for Signal Propagation Control Materials doi: 10.3390/ma11060955 Authors: Bahareh Moradi Raul Fernández-García Ignacio Gil In this paper, the utilization of common fabrics for the manufacturing of e-textile metamaterial transmission lines is investigated. In order to filter and control the signal propagation in the ultra-high frequency (UHF) range along the e-textile, a conventional metamaterial transmission line was compared with embroidered metamaterial particles. The proposed design was based on a transmission line loaded with one or several split-ring resonators (SRR) on a felt substrate. To explore the relations between physical parameters and filter performance characteristics, theoretical models based on transmission matrices’ description of the filter constituent components were proposed. Excellent agreement between theoretical prediction, electromagnetic simulations, and measurement were found. Experimental results showed stop-band levels higher than −30 dB for compact embroidered metamaterial e-textiles. The validated results confirmed embroidery as a useful technique to obtain customized electromagnetic properties, such as filtering, on wearable applications.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2018-06-15
    Description: Materials, Vol. 11, Pages 1015: Effects of Cutting Edge Microgeometry on Residual Stress in Orthogonal Cutting of Inconel 718 by FEM Materials doi: 10.3390/ma11061015 Authors: Qi Shen Zhanqiang Liu Yang Hua Jinfu Zhao Woyun Lv Aziz Ul Hassan Mohsan Service performance of components such as fatigue life are dramatically influenced by the machined surface and subsurface residual stresses. This paper aims at achieving a better understanding of the influence of cutting edge microgeometry on machined surface residual stresses during orthogonal dry cutting of Inconel 718. Numerical and experimental investigations have been conducted in this research. The cutting edge microgeometry factors of average cutting edge radius S¯, form-factor K, and chamfer were investigated. An increasing trend for the magnitudes of both tensile and compressive residual stresses was observed by using larger S¯ or introducing a chamfer on the cutting edges. The ploughing depth has been predicted based on the stagnation zone. The increase of ploughing depth means that more material was ironed on the workpiece subsurface, which resulted in an increase in the compressive residual stress. The thermal loads were leading factors that affected the surface tensile residual stress. For the unsymmetrical honed cutting edge with K = 2, the friction between tool and workpiece and tensile residual stress tended to be high, while for the unsymmetrical honed cutting edge with K = 0.5, the high ploughing depth led to a higher compressive residual stress. This paper provides guidance for regulating machine-induced residual stress by edge preparation.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2018-06-15
    Description: Materials, Vol. 11, Pages 1009: Health Degradation Monitoring and Early Fault Diagnosis of a Rolling Bearing Based on CEEMDAN and Improved MMSE Materials doi: 10.3390/ma11061009 Authors: Yong Lv Rui Yuan Tao Wang Hewenxuan Li Gangbing Song Rolling bearings play a crucial role in rotary machinery systems, and their operating state affects the entire mechanical system. In most cases, the fault of a rolling bearing can only be identified when it has developed to a certain degree. At that moment, there is already not much time for maintenance, and could cause serious damage to the entire mechanical system. This paper proposes a novel approach to health degradation monitoring and early fault diagnosis of rolling bearings based on a complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and improved multivariate multiscale sample entropy (MMSE). The smoothed coarse graining process was proposed to improve the conventional MMSE. Numerical simulation results indicate that CEEMDAN can alleviate the mode mixing problem and enable accurate intrinsic mode functions (IMFs), and improved MMSE can reflect intrinsic dynamic characteristics of the rolling bearing more accurately. During application studies, rolling bearing signals are decomposed by CEEMDAN to obtain IMFs. Then improved MMSE values of effective IMFs are computed to accomplish health degradation monitoring of rolling bearings, aiming at identifying the early weak fault phase. Afterwards, CEEMDAN is performed to extract the fault characteristic frequency during the early weak fault phase. The experimental results indicate the proposed method can obtain a better performance than other techniques in objective analysis, which demonstrates the effectiveness of the proposed method in practical application. The theoretical derivations, numerical simulations, and application studies all confirmed that the proposed health degradation monitoring and early fault diagnosis approach is promising in the field of prognostic and fault diagnosis of rolling bearings.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2018-06-16
    Description: Materials, Vol. 11, Pages 1021: Redox Activity of Sodium Vanadium Oxides towards Oxidation in Na Ion Batteries Materials doi: 10.3390/ma11061021 Authors: Evan Adamczyk Muthaiyan Gnanavel Valerie Pralong The search for new materials that could be used as electrode material for Na-ion batteries is one of the most challenging issues of today. Many transition metal oxide families as well as transition metal polyanionic frameworks have been proposed over the last five years. In this work, we report the sodium extraction from Na2V3O7, which is a tunnel type structure built of [V3O7]2−∞ nanotubes held by sodium ions. We report a reversible charge capacity of 80 mAh/g at 2.8 V vs. Na+/Na due to the V5+/V4+ redox activity. No oxygen redox activity has been observed for this material nor for the vanadium (5+) oxide Na4V2O7.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2018-06-13
    Description: Water, Vol. 10, Pages 770: Electrochemical Degradation of Phenol and Resorcinol Molecules through the Dissolution of Sacrificial Anodes of Macro-Corrosion Galvanic Cells Water doi: 10.3390/w10060770 Authors: Boguslaw Pierozynski Grazyna Piotrowska This paper reports on the processes of phenol and resorcinol electrodegradation carried-out through continuous anodic dissolution of aluminum alloy and carbon steel sacrificial anodes for artificially aerated Cu-Al alloy and Cu-Fe-based galvanic (macro-corrosion) cells and synthetically prepared wastewater solutions. Electrochemical experiments were carried-out by means of a laboratory size, PMMA (Poly-methyl methacrylate)-made electrolyser unit, where significant degrees of phenol (10–89%) and resorcinol (13–37%) decomposition were obtained and visualized through the respective chemical/spectroscopy analyses. In addition, quantitative determination of phenol, as well as resorcinol (and possible electrodegradation products) for the selected experimental conditions was performed by means of instrumental high-performance liquid chromatography/mass spectrometry analysis.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2018-06-13
    Description: Water, Vol. 10, Pages 766: The Influences of Sponge City on Property Values in Wuhan, China Water doi: 10.3390/w10060766 Authors: Shiying Zhang Chris Zevenbergen Paul Rabé Yong Jiang Rapid urbanization in China and global climate change have increased urban flood exposure in Wuhan, and the increased flood risk has reduced property values in flood-prone areas. The central government of China is promoting the application of the sponge city concept to reduce urban flood risk and improve the environment in cities. Wuhan is one of the pilot cities of this initiative. A shortage of funds is one of the main obstacles to sponge city construction, as is the lack of a suitable business model. To test residents’ willingness to pay for sponge city construction, this research analyzed the impact of sponge city construction on the housing values of areas covered by sponge city interventions. The authors conducted interviews and analyzed secondary data to gauge residents’ awareness and perceptions of sponge city interventions. The results show that more than half of residents in Wuhan are willing to pay for sponge city measures, but the amount they are willing to pay is limited. Residents are more willing to pay for improvements of their living environment than for flood reduction measures.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2018-06-16
    Description: Water, Vol. 10, Pages 794: Navigating the Water-Energy Governance Landscape and Climate Change Adaptation Strategies in the Northern Patagonia Region of Argentina Water doi: 10.3390/w10060794 Authors: Laura Forni Marisa Escobar Pablo Cello Marta Marizza Gustavo Nadal Leonidas Girardin Fernando Losano Lisandro Bucciarelli Charles Young David Purkey Water scientists often find themselves interacting with decision-makers with varying levels of technical background. The sustainable management of water resources is complex by nature, and future conditions are highly uncertain, requiring modeling approaches capable of accommodating a variety of parameters and scenarios. Technical findings from these analyses need to be positioned and conducted within the governance institutions to ensure decision-makers utilize them. This paper examines the water resource challenges for a large basin in northern Patagonia, Argentina and utilizes the Robust Decision Support (RDS) framework to evaluate trade-offs and strategies in a participatory process that included researchers and decision-makers. Integrated water resources models using simulation modeling and decision space visualization show significant climate change impacts, which are augmented with irrigated agriculture expansion and increasing hydropower production.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2018-06-16
    Description: Water, Vol. 10, Pages 789: Spatio-Temporal Analysis of Meteorological Elements in the North China District of China during 1960–2015 Water doi: 10.3390/w10060789 Authors: Jinsong Ti Yuhao Yang Xiaogang Yin Jing Liang Liangliang Pu Yulin Jiang Xinya Wen Fu Chen The North China District (NCD) is one of the main grain production regions in China. The double cropping system of irrigation has been leading to the groundwater table decline at the speed of 1–2 m per year. Climate change leads to uncertainty surrounding the future of the NCD agricultural system, which will have great effects on crop yields and crop water demands. In this research, the Meteorological dataset from 54 weather station sites over the period 1960–2015 were collected to quantify the long-term spatial and temporal trends of meteorological data, including daily minimum temperature (Tmin), maximum temperature (Tmax), precipitation, solar radiation, reference evapotranspiration (ET0), and aridity index (AI). The results show that the long-term wheat and maize growing season and annual average air temperatures (Tmin and Tmax) showed strong north to south increasing trends throughout the NCD. The average annual precipitation was 632.9 mm across the NCD, more than 70% of which was concentrated in the maize growing season. The regional average annual ET0 was 1026.1 mm, which was 531.2 and 497.4 mm for the wheat and maize growing season, respectively. The regional precipitation decreased from northwest to southeast in each growing season and annual timescale. The funnel areas have lower precipitation and higher ET0 than the regional average, which may lead to the mining of the groundwater funnel area. The regional average annual AI is 0.63, which lies in the humid class. For temporal analysis, the regional average trends in annual Tmin, Tmax, solar radiation, ET0, precipitation, and AI were 0.37 °C/10a, 0.15 °C/10a, −0.28 MJ/day/m2/10a, −2.98 mm/10a, −12.04 mm/10a, and 0.005/10a, respectively. The increasing trend of temperature and the decreasing trend of solar radiation may have a negative effect on the regional food security. The funnel area AI showed a significant increasing trend for the winter wheat growing season and a decreasing trend for maize, which indicated that more irrigation will be needed for the maize growing season and the winter fallow policy may lead to the increasing trend precipitation being wasted. Analyzing the growing season and the annual meteorological elements of the spatiotemporal trends can help us better understand the influence of climate change on the natural resources and agricultural development in both the past and the future, and will provide us with invaluable information for the modification of cropping patterns to protect the regional and national water and food security.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2018-06-17
    Description: Water, Vol. 10, Pages 797: Disinfection Methods for Swimming Pool Water: Byproduct Formation and Control Water doi: 10.3390/w10060797 Authors: Huma Ilyas Ilyas Masih Jan Peter van der Hoek This paper presents a comprehensive and critical comparison of 10 disinfection methods of swimming pool water: chlorination, electrochemically generated mixed oxidants (EGMO), ultraviolet (UV) irradiation, UV/chlorine, UV/hydrogen peroxide (H2O2), UV/H2O2/chlorine, ozone (O3)/chlorine, O3/H2O2/chlorine, O3/UV and O3/UV/chlorine for the formation, control and elimination of potentially toxic disinfection byproducts (DBPs): trihalomethanes (THMs), haloacetic acids (HAAs), haloacetonitriles (HANs), trihaloacetaldehydes (THAs) and chloramines (CAMs). The statistical comparison is carried out using data on 32 swimming pools accumulated from the reviewed studies. The results indicate that O3/UV and O3/UV/chlorine are the most promising methods, as the concentration of the studied DBPs (THMs and HANs) with these methods was reduced considerably compared with chlorination, EGMO, UV irradiation, UV/chlorine and O3/chlorine. However, the concentration of the studied DBPs including HAAs and CAMs remained much higher with O3/chlorine compared with the limits set by the WHO for drinking water quality. Moreover, the enhancement in the formation of THMs, HANs and CH with UV/chlorine compared with UV irradiation and the increase in the level of HANs with O3/UV/chlorine compared with O3/UV indicate the complexity of the combined processes, which should be optimized to control the toxicity and improve the quality of swimming pool water.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2018-06-18
    Description: Water, Vol. 10, Pages 802: The Impact of Climate on Hydrological Extremes Water doi: 10.3390/w10060802 Authors: Salvatore Manfreda Vito Iacobellis Andrea Gioia Mauro Fiorentino Krzysztof Kochanek High and low flows and associated floods and droughts are extreme hydrological phenomena mainly caused by meteorological anomalies and modified by catchment processes and human activities. They exert increasing on human, economic, and natural environmental systems around the world. In this context, global climate change along with local fluctuations may eventually trigger a disproportionate response in hydrological extremes. This special issue focuses on observed extreme events in the recent past, how these extremes are linked to a changing global/regional climate, and the manner in which they may shift in the coming years.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2018-06-18
    Description: Water, Vol. 10, Pages 800: Quantification of Seasonal Precipitation over the upper Chao Phraya River Basin in the Past Fifty Years Based on Monsoon and El Niño/Southern Oscillation Related Climate Indices Water doi: 10.3390/w10060800 Authors: Tsuyoshi Kinouchi Gakuji Yamamoto Atchara Komsai Winai Liengcharernsit For better water resources management, we proposed a method to estimate basin-scale seasonal rainfall over selected areas of the Chao Phraya River Basin, Thailand, from existing climate indices that represent variations in the Asian summer monsoon, the El Niño/Southern Oscillation, and sea surface temperatures (SST) in the Pacific Ocean. The basin-scale seasonal rainfall between 1965 and 2015 was calculated for the upper Ping River Basin (PRB) and the upper Nan River Basin (NRB) from a gridded rainfall dataset and rainfall data collected at several gauging stations. The corresponding climate indices, i.e., the Equatorial-Southern Oscillation Index (EQ-SOI), Indian Monsoon Index (IMI), and SST-related indices, were examined to quantify seasonal rainfall. Based on variations in the rainfall anomaly and each climate index, we found that IMI is the primary variable that can explain variations in seasonal rainfall when EQ-SOI is negative. Through a multiple regression analysis, we found that EQ-SOI and two SST-related indices, i.e., Pacific Decadal Oscillation Index (PDO) and SST anomalies in the tropical western Pacific (SSTNW), can quantify the seasonal rainfall for years with positive EQ-SOI. The seasonal rainfall calculated for 1975 to 2015 based on the proposed method was highly correlated with the observed rainfall, with correlation coefficients of 0.8 and 0.86 for PRB and NRB, respectively. These results suggest that the existing indices are useful for quantifying basin-scale seasonal rainfall, provided a proper classification and combination of the climate indices are introduced. The developed method could forecast seasonal rainfall over the target basins if well-forecasted climate indices are provided with sufficient leading time.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2018-06-20
    Description: Materials, Vol. 11, Pages 1040: Magnetic Particle Filled Elastomeric Hybrid Composites and Their Magnetorheological Response Materials doi: 10.3390/ma11061040 Authors: Seung Hyuk Kwon Jin Hyun Lee Hyoung Jin Choi The magnetorheological (MR) elastomer as a hard and soft hybrid functional material, a composite material consisting of magnetic hard particles embedded in elastomeric soft matrix, is a branch of MR materials that are functional smart materials rapidly responding to external magnetic fields. These tunable properties of MR elastomers facilitate a variety of applications. In this brief review paper, in addition to general information on the MR elastomers, recent research not only on a wide variety of MR elastomeric systems focusing on various magnetic particles, elastomeric matrices, additives and particle modification methods, but also on their characteristics including MR properties from dynamic oscillation tests is covered along with their mechanical properties such as the Payne effect, tensile strength and engineering applications.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2018-06-20
    Description: Materials, Vol. 11, Pages 1038: Influence of Microstructure and Shot Peening Treatment on Corrosion Resistance of AISI F55-UNS S32760 Super Duplex Stainless Steel Materials doi: 10.3390/ma11061038 Authors: Andrea Francesco Ciuffini Silvia Barella Luis Borja Peral Martínez Carlo Mapelli Inés Fernández Pariente Shot peening is a surface process commonly used in the aeronautic and automotive industries to improve fatigue resistance. Shot peening is proven to be beneficial in the fatigue behavior of components, but rarely has its influence on wear and pitting corrosion resistance been evaluated. In this work, shot peening was performed on AISI F55-UNS S32760 super-duplex stainless steel samples previously submitted to various thermal treatments, to obtain different initial microstructures and properties. Samples have been characterized in terms of microstructure morphology, local chemical composition, microhardness of each constituent phase, and energy dissipation modes. The enhanced properties provided by shot peening has been evaluated through residual stress depth profiles and Full Width at Half Maximum (FWHM) using X-ray diffraction (XRD), surface hardness, surface roughness, and corrosion resistance through salt spray fog tests. The 1400 °C solution thermal treatment was identified as the optimum initial condition, which maximizes the advantages of the shot peening treatment, even pitting corrosion resistance. These results are related to the uniformity of austenite and ferrite in terms of microstructure morphology, micromechanical properties, and alloying elements distribution.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2018-06-20
    Description: Materials, Vol. 11, Pages 1039: Giant Enhancement of Magnetostrictive Response in Directionally-Solidified Fe83Ga17Erx Compounds Materials doi: 10.3390/ma11061039 Authors: Radhika Barua Parisa Taheri Yajie Chen Anjela Koblischka-Veneva Michael R. Koblischka Liping Jiang Vincent G. Harris We report, for the first time, correlations between crystal structure, microstructure and magnetofunctional response in directionally solidified [110]-textured Fe83Ga17Erx (0 < x < 1.2) alloys. The morphology of the doped samples consists of columnar grains, mainly composed of a matrix phase and precipitates of a secondary phase deposited along the grain boundary region. An enhancement of more than ~275% from ~45 to 170 ppm is observed in the saturation magnetostriction value (λs) of Fe83Ga17Erx alloys with the introduction of small amounts of Er. Moreover, it was noted that the low field derivative of magnetostriction with respect to an applied magnetic field (i.e., dλs/dHapp for Happ up to 1000 Oe) increases by ~230% with Er doping (dλs/dHapp,FeGa= 0.045 ppm/Oe; dλs/dHapp,FeGaEr= 0.15 ppm/Oe). The enhanced magnetostrictive response of the Fe83Ga17Erx alloys is ascribed to an amalgamation of microstructural and electronic factors, namely: (i) improved grain orientation and local strain effects due to deposition of Er in the intergranular region; and (ii) strong local magnetocrystalline anisotropy, due to the highly anisotropic localized nature of the 4f electronic charge distribution of the Er atom. Overall, this work provides guidelines for further improving galfenol-based materials systems for diverse applications in the power and energy sector.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2018-06-20
    Description: Water, Vol. 10, Pages 811: Simulation of Fluid and Complex Obstacle Coupling Based on Narrow Band FLIP Method Water doi: 10.3390/w10060811 Authors: Changjun Zou Yong Yin With the continuous development of fluid simulation theory and technology, there are increasingly higher requirements for simulation of complex fluid interaction. Fluid simulation based on the Eulerian method is limited by the grid resolution, and the sawtooth phenomenon occurs near the obstacle boundary. To enhance the fluid interaction performance with complex obstacle, an advanced fluid interaction method was proposed based on NBFLIP. Improved from FLIP method, the NBFLIP method combines the advantages of Euler method and Lagrangian method. The SDF method is proposed in complex obstacle discretion, with an expectation to facilitate the processing with obstacle boundary and efficiency improvement. Compared with FLIP method, particle number in NBFLIP method is reduced by 86.2% and the average running time per frame is reduced by 36.1%.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2018-06-21
    Description: Water, Vol. 10, Pages 817: Reuse and Recycling of Livestock and Municipal Wastewater in Chilean Agriculture: A Preliminary Assessment Water doi: 10.3390/w10060817 Authors: Cristina-Alejandra Villamar Ismael Vera-Puerto Diego Rivera Felipe De la Hoz Chile is an agricultural power, but also one of the most vulnerable countries to climate change and water shortage. About 50% of the irrigated agriculture land in Chile is in the central zone, thanks to its agricultural-climatic characteristics that provide an adequate water supply (100–4000 m3/s). However, the vulnerability scenario in this zone is high due to the seasonal availability of water resources. Therefore, opportunities to use non-conventional alternative sources (e.g., wastewater) become an appealing and feasible option due to the high population and animal density (>76%) in this part of the country. Moreover, the physicochemical characteristics of the municipal and livestock wastewater suggest that there are potential opportunities to recycle nutrients for agricultural production. In Chile, wastewater reuse opportunities are noted by the wide coverage of wastewater treatment programs, with municipal and intensified livestock production taking up most of the percentage (>99%). Nevertheless, more than 70% of wastewater treatment systems reach biological secondary treatment, which suggests reuse possibilities only for non-food crops. Therefore, this paper is focused on a preliminary analysis of the potential of reusing and recycling municipal and livestock wastewater for Chilean agriculture. There is some reuse work occurring in Chile, specifically in the use of municipal and livestock wastewater for cereal crops (animal feed), forests, and grasslands. However, aspects related to the long-term effects of these practices have not yet been evaluated. Therefore, municipal and livestock wastewater in Chile could be re-valued in agriculture, but the current quality and condition of treated wastewater do not ensure its safe use in food crops. In addition, state policies are needed to provide sustainability (circular and ethic economy) to water reusing/recycling in agriculture.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2018-06-19
    Description: Water, Vol. 10, Pages 806: Water Quality Prediction Model of a Water Diversion Project Based on the Improved Artificial Bee Colony–Backpropagation Neural Network Water doi: 10.3390/w10060806 Authors: Siyu Chen Guohua Fang Xianfeng Huang Yuhong Zhang Prediction of water quality which can ensure the water supply and prevent water pollution is essential for a successful water transfer project. In recent years, with the development of artificial intelligence, the backpropagation (BP) neural network has been increasingly applied for the prediction and forecasting field. However, the BP neural network frame cannot satisfy the demand of higher accuracy. In this study, we extracted monitoring data from the water transfer channel of both the water resource and the intake area as training samples and selected some distinct indices as input factors to establish a BP neural network whose connection weight values between network layers and the threshold of each layer had already been optimized by an improved artificial bee colony (IABC) algorithm. Compared with the traditional BP and ABC-BP neural network model, it was shown that the IABC-BP neural network has a greater ability for forecasting and could achieve much better accuracy, nearly 25% more precise than the BP neural network. The new model is particularly practical for the water quality prediction of a water diversion project and could be readily applied in this field.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2018-06-23
    Description: Materials, Vol. 11, Pages 1059: Current and Emerging Approaches to Engineer Antibacterial and Antifouling Electrospun Nanofibers Materials doi: 10.3390/ma11071059 Authors: Irene S. Kurtz Jessica D. Schiffman From ship hulls to bandages, biological fouling is a ubiquitous problem that impacts a wide range of industries and requires complex engineered solutions. Eliciting materials to have antibacterial or antifouling properties describes two main approaches to delay biofouling by killing or repelling bacteria, respectively. In this review article, we discuss how electrospun nanofiber mats are blank canvases that can be tailored to have controlled interactions with biologics, which would improve the design of intelligent conformal coatings or freestanding meshes that deliver targeted antimicrobials or cause bacteria to slip off surfaces. Firstly, we will briefly discuss the established and emerging technologies for addressing biofouling through antibacterial and antifouling surface engineering, and then highlight the recent advances in incorporating these strategies into electrospun nanofibers. These strategies highlight the potential for engineering electrospun nanofibers to solicit specific microbial responses for human health and environmental applications.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2018-06-23
    Description: Water, Vol. 10, Pages 827: Optimization of Nitrogen Removal in Solid Carbon Source SND for Treatment of Low-Carbon Municipal Wastewater with RSM Method Water doi: 10.3390/w10070827 Authors: Liqiu Zhang Youwen Huang Shugeng Li Peifen He Dengmin Wang In this work, a loofah sponge was used as the solid carbon source and the carrier in a biofilm reactor. Simultaneous nitrification and denitrification (SND) technology was used to achieve nitrogen removal in low-carbon municipal wastewater in a sequencing batch biofilm reactor (SBBR). At room temperature, the effects of filling ratio, dissolved oxygen (DO), pH, C/N(CODCr/TN), and aeration time on the removal of nitrogen were systematically studied. In addition, the removal efficiency of total nitrogen (TN) was used as the evaluation index in response surface models (RSM) for optimization of nitrogen removal. The results showed that DO, pH, and aeration time affected nitrogen removal significantly. Therefore, DO, pH, and aeration time were used as the independent variables in RSM. The optimum conditions for nitrogen removal were found to be as follows in RSM: DO = 4.09 mg/L, pH = 7.58, aeration time = 10.47 h. Under the optimum conditions, the maximum TN removal efficiency reached 86.27%. The results also demonstrated that the deviation between the experimental and predicted TN removal efficiency was only 0.58%, the predicted model was reliable for future application.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2018-06-24
    Description: Materials, Vol. 11, Pages 1064: Effects of Organic Modification of Montmorillonite on the Properties of Hydroxypropyl Di-Starch Phosphate Films Prepared by Extrusion Blowing Materials doi: 10.3390/ma11071064 Authors: Yang Qin Wentao Wang Hui Zhang Yangyong Dai Hanxue Hou Haizhou Dong The knowledge gained from starch-nanocomposite-film research has not been fully applied commercially because of the lack of appropriate industrial processing techniques for nanofillers and starch films. Three organically modified montmorillonites (OMMTs) were prepared using a semidry kneading method. The effects of the OMMTs on the structures and properties of starch nanocomposite films, prepared by extrusion blowing, were investigated. The X-ray diffraction (XRD) analysis results revealed that the OMMTs with various quaternary ammonium salts possessed differing layer structures and d-space values. The results of the XRD and Fourier-transform infrared spectroscopy (FT-IR) showed that the starch–OMMT interaction resulted in a structural change, namely the starch–OMMT films possessed a balanced exfoliated and intercalated nanostructure, while the starch–MMT film possessed an exfoliated nanostructure with non-intercalated montmorillonite (MMT). The results of the solid-state nuclear magnetic resonance (NMR) analysis suggested that the starch-OMMT nanocomposite possessed comparatively large quantities of single-helix structures and micro-ordered amorphous regions. The starch–OMMT films exhibited good tensile strength (TS) (maximum of 6.09 MPa) and water barrier properties (minimum of 3.48 × 10−10 g·m·m−2·s−1·Pa−1). This study indicates that the addition of OMMTs is a promising strategy to improve the properties of starch films.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2018-06-24
    Description: Materials, Vol. 11, Pages 1066: Pair Distribution Function Analysis of ZrO2 Nanocrystals and Insights in the Formation of ZrO2-YBa2Cu3O7 Nanocomposites Materials doi: 10.3390/ma11071066 Authors: Hannes Rijckaert Jonathan De Roo Matthias Van Zele Soham Banerjee Hannu Huhtinen Petriina Paturi Jan Bennewitz Simon J. L. Billinge Michael Bäcker Klaartje De Buysser Isabel Van Driessche The formation of superconducting nanocomposites from preformed nanocrystals is still not well understood. Here, we examine the case of ZrO2 nanocrystals in a YBa2Cu3O7−x matrix. First we analyzed the preformed ZrO2 nanocrystals via atomic pair distribution function analysis and found that the nanocrystals have a distorted tetragonal crystal structure. Second, we investigated the influence of various surface ligands attached to the ZrO2 nanocrystals on the distribution of metal ions in the pyrolyzed matrix via secondary ion mass spectroscopy technique. The choice of stabilizing ligand is crucial in order to obtain good superconducting nanocomposite films with vortex pinning. Short, carboxylate based ligands lead to poor superconducting properties due to the inhomogeneity of metal content in the pyrolyzed matrix. Counter-intuitively, a phosphonate ligand with long chains does not disturb the growth of YBa2Cu3O7−x. Even more surprisingly, bisphosphonate polymeric ligands provide good colloidal stability in solution but do not prevent coagulation in the final film, resulting in poor pinning. These results thus shed light on the various stages of the superconducting nanocomposite formation.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2018-06-24
    Description: Water, Vol. 10, Pages 835: Hydrogeologic and Paleo-Geographic Characteristics of Riverside Alluvium at an Artificial Recharge Site in Korea Water doi: 10.3390/w10070835 Authors: Soo-Hyoung Lee Se-Yeong Hamm Kyoochul Ha YongCheol Kim Dong-Chan Koh Heesung Yoon Sung-Wook Kim This study showed the hydrogeological characteristics of an alluvial aquifer that is composed of sand, silt, and clay layers in a small domain. It can be classified into a lower high-salinity layer and an upper freshwater layer and contains shells and remnant paleo-seawater (average 5000 μS/cm) due to sea level fluctuation. Geological and electrical conductivity logging, a long-term pumping test, and multi-depth water quality measurements were conducted at pumping, injection, and observational wells to evaluate the hydrogeologic properties, identify the optimal recharge rate, and assess artificial recharge. Using a hydraulic test, a large difference in drawdown and salinity appeared at the radially located observational wells because of the difference in hydraulic connectivity between the wells in the small study area. It was concluded that the hydraulic anisotropy and heterogeneity of the alluvial aquifer should be carefully examined when locating an injection well and considering the efficient design of artificial recharge.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2018-06-25
    Description: Materials, Vol. 11, Pages 1069: Boron Nitride Nanosheets/PNIPAM Hydrogels with Improved Thermo-Responsive Performance Materials doi: 10.3390/ma11071069 Authors: Shishan Xue Yuanpeng Wu Jiemin Wang Meiling Guo Dan Liu Weiwei Lei Thermo-responsive hydrogel is an important smart material. However, its slow thermal response rate limits the scope of its applications. Boron nitride nanosheet-reinforced thermos-responsive hydrogels, which can be controlled by heating, were fabricated by in situ polymerization of N-isopropylacrylamide in the presence of boron nitride nanosheets. The hydrogels exhibit excellent thermo-responsiveness and much enhanced thermal response rate than that of pure poly(N-isopropylacrylamide) hydrogels. Interestingly, the hydrogels can be driven to move in aqueous solution by heating. Importantly, the composite hydrogel is hydrophilic at a temperature below lower critical solution temperature (LCST), while it is hydrophobic at a temperature above LCST. Therefore, it can be used for quick absorption and release of dyes and oils from water. All these properties demonstrate the potential of hydrogel composites for water purification and treatment.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2018-06-26
    Description: Materials, Vol. 11, Pages 1081: Effect of Polyacrylic Acid on Rheology of Cement Paste Plasticized by Polycarboxylate Superplasticizer Materials doi: 10.3390/ma11071081 Authors: Baoguo Ma Yi Peng Hongbo Tan Zhenghang Lv Xiufeng Deng Viscosity-enhancing agents (VEA) have been widely employed in high flowability cement-based materials, so as to ensure that no bleeding and segregation would occur. However, in most cases, interaction between VEA and superplasticizer would be unavoidable. In this study, the effect of polyacrylic acid (PAA), known as one of the most commonly used VEAs, on rheology performance of cement paste containing polycarboxylate superplasticizer (PCE), was studied. The initial fluidity was assessed with mini slump, and rheological behavior of cement paste was evaluated with rotor rheometer. Adsorption amount was examined with total organic carbon (TOC) analyzer, and the zeta potential was also tested. The interaction between PAA and PCE in the presence of calcium ion (Ca2+) was analyzed with conductivity, X-ray photoelectron spectroscope (XPS), and dynamic light scattering (DLS). The results illustrate that PAA can adsorb onto the surface of cement particles to plasticize cement paste, being similar to PCE. In the presence of Ca2+, PAA can be curled and crosslinked, as a result of the combination between carboxyl groups (COO−) and Ca2+, thereby affecting the adsorption performance and conformation behavior. It is interesting that negative impact of PAA on dispersion efficiency of PCE can be demonstrated; one reason is the reduced adsorption amount of PCE by PAA competitively adsorbing onto the cement surface, and another possible reason is the invalided PCE by adsorption of PAA. Additionally, molecular weight of PAA should be considered if being used as VEA in PCE system.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2018-06-26
    Description: Materials, Vol. 11, Pages 1079: Double Feedback Control Method for Determining Early-Age Restrained Creep of Concrete Using a Temperature Stress Testing Machine Materials doi: 10.3390/ma11071079 Authors: He Zhu Qingbin Li Yu Hu Rui Ma Early-age restrained creep influences the cracking properties of concrete. However, conventional creep measurements require a large number of tests to predict the restrained creep as it is influenced by the combined effects of variable temperature, creep recovery, and varying compression and tension stresses. In this work, a double feedback control method for temperature stress testing was developed to measure the early-age restrained creep of concrete. The results demonstrate that the conventional single feedback control method neglects the effect of restrained elastic deformation, thus providing a larger-than-actual creep measurement. The tests found that the double feedback control method eliminates the influence of restrained elastic deformation. The creep results from the double feedback method match well with results from the single feedback method after compensation for the effects of restrained elastic deformation is accounted for. The difference in restrained creep between the single and double feedback methods is significant for concrete with a low modulus of elasticity but can be neglected in concrete with a high modulus of elasticity. The ratio between creep and free deformation was found to be 40–60% for low, moderate, and high strength concretes alike. The double feedback control method is therefore recommended for determining the restrained creep using a temperature stress testing machine.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2018-06-26
    Description: Materials, Vol. 11, Pages 1077: Microscopic Electron Dynamics in Metal Nanoparticles for Photovoltaic Systems Materials doi: 10.3390/ma11071077 Authors: Katarzyna Kluczyk Lucjan Jacak Witold Jacak Christin David Nanoparticles—regularly patterned or randomly dispersed—are a key ingredient for emerging technologies in photonics. Of particular interest are scattering and field enhancement effects of metal nanoparticles for energy harvesting and converting systems. An often neglected aspect in the modeling of nanoparticles are light interaction effects at the ultimate nanoscale beyond classical electrodynamics. Those arise from microscopic electron dynamics in confined systems, the accelerated motion in the plasmon oscillation and the quantum nature of the free electron gas in metals, such as Coulomb repulsion and electron diffusion. We give a detailed account on free electron phenomena in metal nanoparticles and discuss analytic expressions stemming from microscopic (Random Phase Approximation—RPA) and semi-classical (hydrodynamic) theories. These can be incorporated into standard computational schemes to produce more reliable results on the optical properties of metal nanoparticles. We combine these solutions into a single framework and study systematically their joint impact on isolated Au, Ag, and Al nanoparticles as well as dimer structures. The spectral position of the plasmon resonance and its broadening as well as local field enhancement show an intriguing dependence on the particle size due to the relevance of additional damping channels.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2018-06-26
    Description: Materials, Vol. 11, Pages 1076: Spray-Drying of Electrode Materials for Lithium- and Sodium-Ion Batteries Materials doi: 10.3390/ma11071076 Authors: Benedicte Vertruyen Nicolas Eshraghi Caroline Piffet Jerome Bodart Abdelfattah Mahmoud Frederic Boschini The performance of electrode materials in lithium-ion (Li-ion), sodium-ion (Na-ion) and related batteries depends not only on their chemical composition but also on their microstructure. The choice of a synthesis method is therefore of paramount importance. Amongst the wide variety of synthesis or shaping routes reported for an ever-increasing panel of compositions, spray-drying stands out as a versatile tool offering demonstrated potential for up-scaling to industrial quantities. In this review, we provide an overview of the rapidly increasing literature including both spray-drying of solutions and spray-drying of suspensions. We focus, in particular, on the chemical aspects of the formulation of the solution/suspension to be spray-dried. We also consider the post-processing of the spray-dried precursors and the resulting morphologies of granules. The review references more than 300 publications in tables where entries are listed based on final compound composition, starting materials, sources of carbon etc.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2018-06-22
    Description: Water, Vol. 10, Pages 819: Nonstationary Flood Frequency Analysis Using Univariate and Bivariate Time-Varying Models Based on GAMLSS Water doi: 10.3390/w10070819 Authors: Ting Zhang Yixuan Wang Bing Wang Senming Tan Ping Feng With the changing environment, a number of researches have revealed that the assumption of stationarity of flood sequences is questionable. In this paper, we established univariate and bivariate models to investigate nonstationary flood frequency with distribution parameters changing over time. Flood peak Q and one-day flood volume W1 of the Wangkuai Reservoir catchment were used as basic data. In the univariate model, the log-normal distribution performed best and tended to describe the nonstationarity in both flood peak and volume sequences reasonably well. In the bivariate model, the optimal log-normal distributions were taken as marginal distributions, and copula functions were addressed to construct the dependence structure of Q and W1. The results showed that the Gumbel-Hougaard copula offered the best joint distribution. The most likely events had an undulating behavior similar to the univariate models, and the combination values of flood peak and volume under the same OR-joint and AND-joint exceedance probability both displayed a decreasing trend. Before 1970, the most likely combination values considering the variation of distribution parameters over time were larger than fixed parameters (stationary), while it became the opposite after 1980. The results highlight the necessity of nonstationary flood frequency analysis.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2018-06-22
    Description: Water, Vol. 10, Pages 818: Efficient Low-Cost Anaerobic Treatment of Wastewater Using Biochar and Woodchip Filters Water doi: 10.3390/w10070818 Authors: Korbinian Kaetzl Manfred Lübken Tito Gehring Marc Wichern Access to improved sanitation is often lacking in many low-income countries, and approximately 90% of the sewage is discharged without treatment into receiving water bodies. The aim of this study was the development and evaluation of an efficient low-cost wastewater treatment system for developing countries. Biochar and woodchips, potential locally available and inexpensive materials, were used for anaerobic wastewater filtration and their suitability evaluated in comparison to gravel as a common reference material. Filters were fed with raw sewage from a municipal full-scale wastewater treatment plant in Germany at 22 °C room temperature with a hydraulic loading rate (HLR) of 0.05 m∙h−1. This resulted in a mean organic loading rate (OLR) of 252 gCOD∙m−3∙d−1 and a mean organic surface load of 456 gCOD∙m−2∙d−1. To determine the influence of different filter materials, the removal efficiency of chemical oxygen demand (COD), total organic carbon (TOC), turbidity, and faecal indicator bacteria (FIB) E. coli and enterococci were tested. It was found that COD (up to 90%), TOC (up to 80%), FIB (up to 1.7 log10-units), and turbidity (effluent turbidity below 35 NTU) could be significantly reduced. The findings of this study demonstrate the potential of anaerobic filters (AFs) for wastewater treatment in low-income countries to reduce water pollution and comprehensively improve water quality. The performance of biochar filters was significantly better over the entire experiment compared to woodchip and gravel filters with respect to COD, TOC, turbidity, and FIB removal, indicating the superior properties of biochar for wastewater treatment.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...