ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3,326)
  • Other Sources
  • Oxford University Press  (3,326)
  • American Chemical Society
  • Mutagenesis  (432)
  • 3644
  • 1
    Publication Date: 2021-03-23
    Description: DNA damage and repair activity are often assessed in blood s#38les from humans in different types of molecular epidemiology studies. However, it is not always feasible to analyse the s#38les on the day of collection without any type of storage. For instance, certain studies use repeated s#38ling of cells from the same subject or s#38les from different subjects collected at different time-points, and it is desirable to analyse all these s#38les in the same comet assay experiment. In addition, flawless comet assay analyses on frozen s#38les opens up for the possibility of using this technique on biobank material. In this article we discuss the use of cryopreserved peripheral blood mononuclear cells (PBMCs), buffy coat (BC) and whole blood (WB) for analysis of DNA damage and repair using the comet assay. The published literature and the authors’ experiences indicate that various types of blood s#38les can be cryopreserved with only minor effect on the basal level of DNA damage. There is evidence to suggest that WB and PBMCs can be cryopreserved for several years without much effect on the level of DNA damage. However, care should be taken when cryopreserving WB and BCs. It is possible to use either fresh or frozen s#38les of blood cells, but results from fresh and frozen cells should not be used in the same dataset. The article outlines detailed protocols for the cryopreservation of PBMCs, BCs and WB s#38les.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-20
    Description: Since the mid-1970s there have been many reports that purport to implicate aluminium in the etiology of neurodegenerative disease. After several decades of research, the role of aluminium in such disease remains controversial and is not the subject of this review. However, if aluminium is implicated in such disease then it follows that there must be a toxicological mechanism, or mode of action, and many researchers have investigated various potential mechanisms including the involvement of oxidative damage, cytotoxicity, and genotoxicity. This paper reviews many of the publications of studies using various salts of aluminium and various genotoxicity endpoints, both in vitro and in vivo, with a focus on oxidative damage. The conclusion of this review is that the majority, if not all, of the publications that report positive results have serious technical flaws and/or implausible findings, and consequently should contribute little or no weight to a weight of evidence (WoE) argument. There are many high quality, GLP compliant genotoxicity studies, that follow relevant OECD test guidelines and the ECHA integrated mutagenicity testing strategy, on several salts of aluminium; all demonstrate clear negative results for both in vitro and in vivo genotoxicity. In addition, the claim for an oxidative mode of action for aluminium can be shown to be spurious. This review concludes that there are no reliable studies that demonstrate a potential for genotoxicity, or oxidative mode of action, for aluminium.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-03-19
    Description: Previous studies have indicated important roles for NIMA-related kinase 1 (NEK1) in modulating DNA damage checkpoints and DNA repair capacity. To broadly assess the contributions of NEK1 to genotoxic stress and mitochondrial functions, we characterized several relevant phenotypes of NEK1 CRISPR knockout (KO) and WT HAP1 cells. Our studies revealed that NEK1 KO cells resulted in increased apoptosis and hypersensitivity to the alkylator methyl methanesulfonate, the radiomimetic bleomycin, and UVC light, yet increased resistance to the crosslinker cisplatin. Mitochondrial functionalities were also altered in NEK1 KO cells, with phenotypes of reduced mitophagy, increased total mitochondria, elevated levels of reactive oxygen species, impaired complex I activity, and higher amounts of mitochondrial DNA damage. RNA-seq transcriptome analysis coupled with qRT-PCR studies comparing NEK1 KO cells with NEK1 overexpressing cells revealed that the expression of genes involved in DNA repair pathways, such as base excision repair, nucleotide excision repair, and double-strand break repair, are altered in a way that might influence genotoxin resistance. Together, our studies underline and further support that NEK1 serves as a hub signaling kinase in response to DNA damage, modulating DNA repair capacity, mitochondrial activity and cell fate determination.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-03-19
    Description: DNA mismatch repair (MMR) proteins play an important role in maintaining genome stability, both in somatic and in germline cells. Loss of MLH1, a central MMR protein, leads to infertility and to microsatellite instability (MSI) in spermatocytes, however, the effect of Mlh1 heterozygosity in germline genome stability remains unexplored. To test the effect of Mlh1 heterozygosity on MSI in mature sperm, we combined mouse genetics with single-molecule PCR that detects allelic changes at unstable microsatellites. We discovered 4.5% and 5.9% MSI in sperm of 4- and 12-month old Mlh1  +/- mice, respectively, and that Mlh1 promoter methylation in Mlh1  +/- sperm correlated with higher MSI. No such elevated MSI was seen in non-proliferating somatic cells. Additionally, we show contrasting dynamics of deletions versus insertions at unstable microsatellites (mononucleotide repeats) in sperm.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-03-06
    Description: Potentilla fulgens is a medicinal plant in North-East India whose root is reported to have anti-diabetic, anticarcinogenic and antioxidant properties. The potential of hydro-alcoholic extract of P. fulgens root (PRE) for providing protection to mammalian cells exposed to ionizing radiation was investigated in this study. The methanolic extract of PRE shows an enhanced radical scavenging ability in a concentration dependent manner. PRE-pretreatment to stimulated human blood lymphocytes (HBL) reduced the frequency of deletion and exchange aberrations induced by X-irradiation. Similar protection of chromosome aberrations was also observed in mouse bone marrow cells (BMC) where mice were given PRE extract (1 mg extract/day/mice) ad libitum in the drinking water for 45 days before whole-body X-irradiation. Of the various extracts prepared by partitioning of the methanol extract, the ethyl-acetate (EA) fraction was found to possess better antioxidant, radical scavenging and DNA-damage reduction activities. PRE-pretreatment also reduced the radiation-induced cell-cycle delay effectively in HBL. In HEK-293 cells, PRE reduced radiation induced G2-block in cell kinetics. Interestingly, PRE-treatment alone increased the concentration of endogenous glutathione in mouse BMC and in stimulated HBL along with the elevated expression of γ-glutamyl-cysteine synthetase heavy/catalytic subunit, a key determinant of GSH-synthesis. Studies on expression of two DNA-repair genes revealed that there was a marked increase in the expression of GADD45 and H2AX genes after X-irradiation in stimulated HBL, and such expression was reduced significantly if PRE-treatment was given prior to radiation. The present findings show the ability of PRE to reduce radiation induced DNA damages probably by free radical scavenging whereas modulation of expression of DNA-repair genes’ and endogenous GSH-increment emerge as effective strategies. The present study is the first report on the selected medicinal plant species that suggests it to be a potential natural radioprotector when used as root extract or its EA-fraction for mitigating radiation toxicity.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-02-05
    Description: DNA polymerase zeta (Polζ) is a heterotetramer composed of the catalytic subunit Rev3l, Rev7 and two subunits of Polδ (PolD2/Pol31 and PolD3/Pol32), and this polymerase exerts translesion DNA synthesis (TLS) in yeast. Because Rev3l knockout results in embryonic lethality in mice, the functions of Polζ need further investigation in vivo. Then, we noted the two facts that substitution of leucine 979 of yeast Rev3l with methionine reduces Polζ replication fidelity and that reporter gene transgenic rodents are able to provide the detailed mutation status. Here, we established gpt delta mouse knocked in the constructed gene encoding methionine instead of leucine at residue 2610 of Rev3l (Rev3l L2610M gpt delta mice), to clarify the role of Polζ in TLS of chemical-induced bulky DNA adducts in vivo. Eight-week-old gpt delta mice and Rev3l L2610M gpt delta mice were treated with benzo[a]pyrene (BaP) at 0, 40, 80, or 160 mg/kg via single intraperitoneal injection. At necropsy 31 days after treatment, lungs were collected for reporter gene mutation assays. Although the gpt mutant frequency (MF) was significantly increased by BaP in both mouse genotypes, it was three times higher in Rev3l L2610M gpt delta than gpt delta mice after treatment with 160 mg/kg BaP. The frequencies of G:C base substitutions and characteristic complex mutations were significantly increased in Rev3l L2610M gpt delta mice compared with gpt delta mice. The BaP dose–response relationship suggested that Polζ plays a central role in TLS when protective mechanisms against BaP mutagenesis, such as error-free TLS, are saturated. Overall, Polζ may incorporate incorrect nucleotides at the sites opposite to BaP-modified guanines and extend short DNA sequences from the resultant terminal mismatches only when DNA is heavily damaged.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-06-03
    Description: The classical in vitro genotoxicity test battery is known to be sensitive for indicating genotoxicity. However, a high rate of ‘misleading positives’ was reported when three assays were combined as required by several legislations. Despite the recent optimisations of the standard in vitro tests, two gaps could hardly be addressed with assays based on 2D monolayer cell cultures: the route of exposure and a relevant intrinsic metabolic capacity to transform pro-mutagens into reactive metabolites. Following these considerations, fertilised chicken eggs have been introduced into genotoxicity testing and were combined with a classical read-out parameter, the micronucleus frequency in circulating erythrocytes, to develop the hen’s egg test for micronucleus induction (HET-MN). As a major advantage, the test mirrors the systemic availability of compounds after oral exposure by reflecting certain steps of Absorption, Distribution, Metabolism, Excretion (ADME) without being considered as an animal experiment. The assay is supposed to add to a toolbox of assays to follow up on positive findings from initial testing with classical in vitro assays. We here report on a validation exercise, in which 〉30 chemicals were tested double-blinded in three laboratories. The specificity and sensitivity of the HET-MN were calculated to be 98 and 84%, respectively, corresponding to an overall accuracy of 91%. A detailed protocol, which includes a picture atlas detailing the cell and micronuclei analysis, is published in parallel (Maul et al. Validation of the hen’s egg test for micronucleus induction (HET-MN): detailed protocol including scoring atlas, historical control data and statistical analysis).
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-07-27
    Description: A validation exercise of the hen’s egg test for micronucleus induction was finalised with a very good predictivity based on the analysis of micronuclei in peripheral erythrocytes of fertilised chicken eggs (Reisinger et al. The hen’s egg test for micronucleus-induction (HET-MN): validation data set. Mutagenesis, this issue). For transparency reasons this complementary publication provides further details on the assay especially as it was the first validation study in the field of genotoxicity testing involving the use of chicken eggs. Thus, the experimental protocol is described in detail and is complemented by a scoring atlas for microscopic analysis in blood cells. In addition, general characteristics of the test system, which is able to mirror the systemic availability of test compounds, are delineated: the test compound passes the egg membrane and is taken up by the blood vessels of the underlying chorioallantoic membrane. Subsequently, it is distributed by the circulating blood, metabolised by the developing liver and the yolk sac membrane and finally excreted into the allantois, a bladder equivalent. In specific, the suitability of the test system for genotoxicity testing is shown by, inter alia, a low background DNA damage in a comprehensive historical control database. In addition, the state-of-the-art statistical method used to evaluate obtained data is delineated. It combines laboratory-specific effect threshold with the Umbrella–Williams test, a statistical model also of interest for other genotoxicity test methods.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-06-07
    Description: Breast cancer (BC) is the most frequent malignancy in women accounting for approximately 2 million new cases worldwide annually. Several genetic, epigenetic and environmental factors are known to be involved in BC development and progression, including alterations in post-transcriptional gene regulation mediated by microRNAs (miRNAs). Single nucleotide polymorphisms (SNPs) located in miRNA binding sites (miRSNPs) in 3′-untranslated regions of target genes may affect miRNA-binding affinity and consequently modulate gene expression. We have previously reported a significant association of miRSNPs in the SMUG1 and NEIL2 genes with overall survival in colorectal cancer patients. SMUG1 and NEIL2 are DNA glycosylases involved in base excision DNA repair. Assuming that certain genetic traits are common for solid tumours, we have investigated wherever variations in SMUG1 and NEIL2 genes display an association with BC risk, prognosis, and therapy response in a group of 673 BC patients and 675 healthy female controls. Patients with TC genotype of NEIL2 rs6997097 and receiving only hormonal therapy displayed markedly shorter overall survival (HR = 4.15, 95% CI = 1.7–10.16, P = 0.002) and disease-free survival (HR = 2.56, 95% CI = 1.5–5.7, P = 0.02). Our results suggest that regulation of base excision repair glycosylases operated by miRNAs may modulate the prognosis of hormonally treated BC.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-06-10
    Description: Genetic toxicology is an essential component of compound safety assessment. In the face of a barrage of new compounds, higher throughput, less ethically divisive in vitro approaches capable of effective, human-relevant hazard identification and prioritisation are increasingly important. One such approach is the ToxTracker assay, which utilises murine stem cell lines equipped with green fluorescent protein (GFP)-reporter gene constructs that each inform on distinct aspects of cellular perturbation. Encouragingly, ToxTracker has shown improved sensitivity and specificity for the detection of known in vivo genotoxicants when compared to existing ‘standard battery’ in vitro tests. At the current time however, quantitative genotoxic potency correlations between ToxTracker and well-recognised in vivo tests are not yet available. Here we use dose–response data from the three DNA-damage-focused ToxTracker endpoints and from the in vivo micronucleus assay to carry out quantitative, genotoxic potency estimations for a range of aromatic amine and alkylating agents using the benchmark dose (BMD) approach. This strategy, using both the exponential and the Hill BMD model families, was found to produce robust, visually intuitive and similarly ordered genotoxic potency rankings for 17 compounds across the BSCL2-GFP, RTKN-GFP and BTG2-GFP ToxTracker endpoints. Eleven compounds were similarly assessed using data from the in vivo micronucleus assay. Cross-systems genotoxic potency correlations for the eight matched compounds demonstrated in vitro–in vivo correlation, albeit with marked scatter across compounds. No evidence for distinct differences in the sensitivity of the three ToxTracker endpoints was found. The presented analyses show that quantitative potency determinations from in vitro data enable more than just qualitative screening and hazard identification in genetic toxicology.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2021-06-04
    Description: Radiation exposure in utero is known to lead to serious concerns to both the mother and children, including developmental anomalies in the children. In the recent past, trichostatin A, an HDAC (histone deacetylase) inhibitor and epigenetic modifier, has been shown to mitigate radiation-induced anomalies in the male reproductive system of C57BL/6 mice. Therefore, the current study was undertaken to evaluate the mitigating effects of trichostatin A (TSA) against radiation-induced developmental anomalies in mice. Foetuses of in utero whole-body gamma-irradiated mice during the active organogenesis period were examined for developmental anomalies at 8.5 and 18.5 days of gestation. In utero radiation exposure caused developmental anomalies like microcephaly, microphthalmia, gastroschisis and kinky tail besides prenatal mortality. TSA administration post-irradiation was observed to reduce 50% of prenatal mortality at E18.5 by reducing congenital and developmental anomalies. Observation of such results could be corroborated with the HDAC inhibitory potential of TSA knowing that developmental anomalies may have epigenetic origin. TSA, therefore, can be considered as a potential radiomitigator.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
  • 13
    Publication Date: 2021-08-27
    Description: In vitro assessment of mutagenicity is an essential component in the chemical risk assessment. Given the diverse modes of action by which chemicals can induce DNA damage, it is essential that these in vitro assays are carefully evaluated for their possibilities and limitations. In this study, we used a fluorescent protein HepG2 reporter test system in combination with high content imaging. To measure induction of the DNA damage response (DDR), we used three different green fluorescent protein (GFP) reporters for p53 pathway activation. These allowed for accurate quantification of p53, p21 and BTG2 (BTG anti-proliferation factor 2) protein expression and cell viability parameters at a single cell or spheroid resolution. The reporter lines were cultured as 2D monolayers and as 3D spheroids. Furthermore, liver maturity and cytochrome P450 enzyme expression were increased by culturing in an amino acid rich (AAGLY) medium. We found that culture conditions that support a sustained proliferative state (2D culturing with DMEM medium) give superior sensitivity when genotoxic compounds are tested that do not require metabolization and of which the mutagenic mode of action is dependent on replication. For compounds, which are metabolically converted to mutagenic metabolites, more differentiated HepG2 DDR reporters (e.g., 3D cultures) showed a higher sensitivity. This study stratifies how different culture methods of HepG2 DDR reporter cells can influence the sensitivity towards diverse genotoxicants and how this provides opportunities for a tiered genotoxicity testing strategy.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2021-06-16
    Description: Short-term in vitro genotoxicity assays are useful tools to assess whether new and emerging tobacco products potentially have reduced toxicity. We previously demonstrated that potency ranking by benchmark dose (BMD) analysis quantitatively identifies differences among several known carcinogens and toxic chemicals representing different chemical classes found in cigarette smoke. In this study, six whole smoke solution (WSS) samples containing both the particulate and gas phases of tobacco smoke were generated from two commercial cigarette brands under different smoking-machine regimens. Sixty test cigarettes of each brand were machine-smoked according to the International Organization for Standardization (ISO) puffing protocol. In addition, either 60 or 20 test cigarettes of each brand were machine-smoked with the Canadian Intense (CI) puffing protocol. All six WSSs were evaluated in the bacterial reverse mutation (Ames) test using Salmonella typhimurium strains, in the presence or absence of S9 metabolic activation. The resulting S9-mediated mutagenic concentration–responses for the four WSSs from 60 cigarettes were then compared using BMD modelling analysis and the mutagenic potency expressed as number of revertants per μl of the WSS. The quantitative approaches resulted in a similar rank order of mutagenic potency for the Ames test in both TA98 and TA100. Under the conditions of this study, these results indicate that quantitative analysis of the Ames test data can discriminate between the mutagenic potencies of WSSs on the basis of smoking-machine regimen (ISO vs. CI), and cigarette product (differences in smoke chemistry).
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2021-06-16
    Description: Poly (ADP-ribose) polymerase-1 (PARP1), a DNA repair gene, is the crucial player in the maintenance of genome integrity. T2285C polymorphism in coding region of PARP1 has been reported to be associated with susceptibility to tumours. We explored the relationship and mechanism of T2285C polymorphism of PARP1 to its expression and activity along with risk and prognosis in non-small cell lung cancer (NSCLC). mRNA expression was measured using quantitative RT–PCR assay or collected from TCGA dataset. Protein expression was examined with immunoblotting assay. Genotypes were determined by PCR-RFLP and sequencing approaches. PARP1 activity was determined with enzyme activity assay. Regulation of SIRT7 to PARP1 was determined by overexpression and small interference experiment. Association of PARP1 T2285C polymorphism with NSCLC risk was evaluated via multiple logistic regression analysis. Comparison of treatment response and progression-free survival (PFS) of NSCLC patients among different genotypes or regimens was made by chi-square test. Results indicated that mRNA and protein expression of PARP1 dramatically increased in NSCLC tissues in comparison with paired para-carcinoma tissues (P 〈 0.05). TC/CC mutant genotypes were associated with markedly enhanced PARP1 mRNA level compared with TT genotype (P = 0.011). No significant difference was discovered in PARP1 protein expression among TT, TC or CC genotypes (P 〉 0.05). Subjects with variant allele C had higher risk of NSCLC in comparison with allele T carriers [odds ratio = 1.560; P = 0.000]. NSCLC patients carrying mutational TC or CC genotypes were correlated with unfavourable response to platinum-based chemotherapy (TT vs. TC vs. CC, P = 0.010), and shorter PFS compared with TT genotype (TT vs. TC vs. CC, P = 0.009). T2285C mutation of PARP1 resulted in the enhancement of its mRNA, but the decrease of enzyme activity in tumour cell. Overexpression of SIRT7 attenuated PARP1 expression and activity. These findings suggest the variant allele C of T2285C polymorphism of PARP1 linked to an increase of NSCLC risk, and unfavourable efficacy and prognosis of NSCLC patients with platinum-based chemotherapy, which might be associated with enhancement of its mRNA expression and the diminishment of activity. Identification of PARP1 T2285C polymorphism and mRNA expression may be the promising way for the individualised treatment of NSCLC.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2021-06-04
    Description: Mycotoxin fumonisin B1 (FB1) is a secondary metabolite that is produced by certain Fusarium species. Although numerous studies demonstrate toxic and carcinogenic effects of FB1, the underlying mechanisms have not been fully elucidated. In this study, we evaluated the epigenetic effects of FB1 for the first time using FLO assays, which detect epigenetic changes that affect the flocculation gene (FLO1) promoter activity in budding yeast. FLO assays showed increased reporter activities of the FLO1 promoter in the presence of 10 and 20 µM FB1. FB1 (20 µM) treatments also promoted flocculation. In subsequent in vitro methylation assays of a bacterial DNA methyltransferase (DNMT), FB1 treatments increased DNMT activities. Moreover, global DNA methylation was significantly increased in HEK293 cells treated with 100 µM FB1. Taken together, these results suggest that FB1 exposure leads to unique epigenetic alterations due to increased DNMT activities and demonstrate that FB1 may be an important risk factor for epigenetic dysfunction-associated human diseases including cancer.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2021-09-10
    Description: Tumour microenvironments are hallmarked in many cancer types. In haematological malignancies, bone marrow (BM) mesenchymal stromal cells (MSC) protect malignant cells from drug-induced cytotoxicity. However, less is known about malignant impact on supportive stroma. Notably, it is unknown whether these interactions alter long-term genotoxic damage in either direction. The nucleoside analogue cytarabine (ara-C), common in haematological therapies, remains the most effective agent for acute myeloid leukaemia, yet one third of patients develop resistance. This study aimed to evaluate the bidirectional effect of MSC and malignant cell co-culture on ara-C genotoxicity modulation. Primary MSC, isolated from patient BM aspirates for haematological investigations, and malignant haematopoietic cells (leukaemic HL-60) were co-cultured using trans-well inserts, prior to treatment with physiological dose ara-C. Co-culture genotoxic effects were assessed by micronucleus and alkaline comet assays. Patient BM cells from chemotherapy-treated patients had reduced ex vivo survival (P = 0.0049) and increased genotoxicity (P = 0.3172) than untreated patients. It was shown for the first time that HL-60 were protected by MSC from ara-C-induced genotoxicity, with reduced MN incidence in co-culture as compared to mono-culture (P = 0.0068). Comet tail intensity also significantly increased in ara-C-treated MSC with HL-60 influence (P = 0.0308). MSC sensitisation to ara-C genotoxicity was also demonstrated following co-culture with HL60 (P = 0.0116), which showed significantly greater sensitisation when MSC-HL-60 co-cultures were exposed to ara-C (P = 0.0409). This study shows for the first time that malignant HSC and MSC bidirectionally modulate genotoxicity, providing grounding for future research identifying mechanisms of altered genotoxicity in leukaemic microenvironments. MSC retain long-term genotoxic and functional damage following chemotherapy exposure. Understanding the interactions perpetuating such damage may inform modifications to reduce therapy-related complications, such as secondary malignancies and BM failure.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2021-09-13
    Description: The repeated-dose liver micronucleus (RDLMN) assay is a novel method for detecting genotoxic chemicals. Two carcinogens methyl carbamate (MC) and 1, 3-propane sultone (PS) were evaluated for the liver micronucleus in a 14-day repeated-dose study with Sprague Dawley rats. Additionally, micronucleated reticulocytes (MN-RET) in peripheral blood and DNA damage (alkaline comet assay) in the liver were also assessed in the same animals. Ten groups of 5 male Sprague Dawley rats were treated once daily with MC (300, 600, or 1200 mg/kg/day), PS (37.5, 75, or 150 mg/kg/day), negative control, or 3 positive controls by oral gavage for 15 days. Blood samples were collected at 3 hours after the last administration for determining MN-RET frequencies (%MN-RET), and the livers were sampled for determining the frequency of micronuclei and DNA damage. MC was negative in the comet assay, liver micronucleus assay, and reticulocyte micronucleus assay, while PS was positive in all three assays. These results are consistent with the previous genotoxic findings of MC and PS. Therefore, the liver micronucleus assay can be effectively integrated into repeated dose studies in animals. Moreover, integration of multiple genotoxicity endpoints into one study can reduce the number of animals, boost the experimental efficiency, and provides a comprehensive evaluation of the genotoxic potential of chemicals.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2021-05-01
    Description: The desire for in vitro genotoxicity assays to provide higher information content, especially regarding chemicals’ predominant genotoxic mode of action, has led to the development of a novel multiplexed assay available under the trade name MultiFlow®. We report here on an experimental design variation that provides further insight into clastogens’ genotoxic activity. First, the standard MultiFlow DNA Damage Assay—p53, γ H2AX, phospho-histone H3 was used with human TK6 lymphoblastoid cells that were exposed for 24 continuous hours to each of 50 reference clastogens. This initial analysis correctly identified 48/50 compounds as clastogenic. These 48 compounds were then evaluated using a short-term, ‘pulse’ treatment protocol whereby cells were exposed to test chemical for 4 h, a centrifugation/washout step was performed, and cells were allowed to recover for 20 h. MultiFlow analyses were accomplished at 4 and 24 h. The γ H2AX and phospho-histone H3 biomarkers were found to exhibit distinct differences in terms of their persistence across chemical classes. Unsupervised hierarchical clustering analysis identified three groups. Examination of the compounds within these groups showed one cluster primarily consisting of alkylators that directly target DNA. The other two groups were dominated by non-DNA alkylators and included anti-metabolites, oxidative stress inducers and chemicals that inhibit DNA-processing enzymes. These results are encouraging, as they suggest that a simple follow-up test for in vitro clastogens provides mechanistic insights into their genotoxic activity. This type of information will contribute to improve decision-making and help guide further testing.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2021-07-03
    Description: Genotoxicity testing plays an important role in the safety assessment of pharmaceuticals, pesticides and chemical substances. Among the guidelines for various genotoxicity tests, the in vitro genotoxicity test battery comprises the bacterial Ames test and mammalian cell assays. Several chemicals exhibit conflicting results for the bacterial Ames test and mammalian cell genotoxicity studies, which may stem from the differences in DNA repair capacity or metabolism, between different cell types or species. For better understanding the mechanistic implications regarding conflict outcomes between different assay systems, it is necessary to develop in vitro genotoxicity testing approaches with higher specificity towards DNA-damaging reagents. We have recently established an improved thymidine kinase (TK) gene mutation assay (TK assay) i.e. deficient in DNA excision repair system using human lymphoblastoid TK6 cells lacking XRCC1 and XPA (XRCC1−/−/XPA−/−), the core factors of base excision repair (BER) and nucleotide excision repair (NER), respectively. This DNA repair-deficient TK6 cell line is expected to specifically evaluate the genotoxic potential of chemical substances based on the DNA damage. We focussed on four reagents, N-(1-naphthyl)ethylenediamine dihydrochloride (NEDA), p-phenylenediamine (PPD), auramine and malachite green (MG) as the Ames test-positive chemicals. In our assay, assessment using XRCC1−/−/XPA−/− cells revealed no statistically significant increase in the mutant frequencies after treatment with NEDA, PPD and MG, suggesting the chemicals to be non-genotoxic in humans. The observations were consistent with that of the follow-up in vivo studies. In contrast, the mutant frequency was markedly increased in XRCC1−/−/XPA−/− cells after treatment with auramine. The results suggest that auramine is the genotoxic reagent that preferentially induces DNA damages resolved by BER and/or NER in mammals. Taken together, BER/NER-deficient cell-based genotoxicity testing will contribute to elucidate the mechanism of genotoxicity and therefore play a pivotal role in the accurate safety assessment of chemical substances.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2021-08-30
    Description: The main bactericidal components of cold atmospheric plasma (CAP) are thought to be reactive oxygen and nitrogen species (RONS) and UV-radiation, both of which have the capacity to cause DNA damage and mutations. Here, the mutagenic effects of CAP on Escherichia coli were assessed in comparison to X- and UV-irradiation. DNA damage and mutagenesis were screened for using a diffusion-based DNA fragmentation assay and modified Ames test, respectively. Mutant colonies obtained from the latter were quantitated and sequenced. CAP was found to elicit a similar mutation spectrum to X-irradiation, which did not resemble that for UV implying that CAP-produced RONS are more likely the mutagenic component of CAP. CAP treatment was also shown to promote resistance to the antibiotic ciprofloxacin. Our data suggest that CAP treatment has mutagenic effects that may have important phenotypic consequences.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2021-09-01
    Description: Hepatocellular carcinoma (HCC) is still one of the most common malignancies worldwide. The accuracy of biomarkers for predicting the prognosis of HCC and the therapeutic effect is not satisfactory. N6-methyladenosine (m6A) methylation regulators play a crucial role in various tumours. Our research aims further to determine the predictive value of m6A methylation regulators and establish a prognostic model for HCC. In this study, the data of HCC from The Cancer Genome Atlas (TCGA) database was obtained, and the expression level of 15 genes and survival was examined. Then we identified two clusters of HCC with different clinical factors, constructed prognostic markers and analysed gene set enrichment, proteins’ interaction and gene co-expression. Three subgroups by consensus clustering according to the expression of the 13 genes were identified. The risk score generated by five genes divided HCC patients into high-risk and low-risk groups. In addition, we developed a prognostic marker that can identify high-risk HCC. Finally, a novel prognostic nomogram was developed to accurately predict HCC patients’ prognosis. The expression levels of 13 m6A RNA methylation regulators were significantly upregulated in HCC samples. The prognosis of cluster 1 and cluster 3 was worse. Patients in the high-risk group show a poor prognosis. Moreover, the risk score was an independent prognostic factor for HCC patients. In conclusion, we reveal the critical role of m6A RNA methylation modification in HCC and develop a predictive model based on the m6A RNA methylation regulators, which can accurately predict HCC patients’ prognosis and provide meaningful guidance for clinical treatment.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2021-07-17
    Description: G:C sites distant from 8-oxo-7,8-dihydroguanine (GO, 8-hydroxyguanine) are frequently mutated when the lesion-bearing plasmid DNA is replicated in human cells with reduced Werner syndrome (WRN) protein. To detect the untargeted mutations preferentially, the oxidised guanine base was placed downstream of the reporter supF gene and the plasmid DNA was introduced into WRN-knockdown cells. The total mutant frequency seemed higher in the WRN-knockdown cells as compared to the control cells. Mutation analyses revealed that substitution mutations occurred at the G:C pairs of 5′-GpA-3′/5′-TpC-3′ sites, the preferred sequence for the apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3 (APOBEC3)-family cytosine deaminases, in the supF gene in both control and knockdown cells. These mutations were observed more frequently at G sites than C sites on the DNA strand where the GO base was originally located. This tendency was promoted by the knockdown of the WRN protein. The present results imply the possible involvement of APOBEC3-family cytosine deaminases in the action-at-a-distance (untargeted) mutations at G:C (or G) sites induced by GO and in cancer initiation by oxidative stress.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2021-07-23
    Description: Type 2 diabetes is associated with elevated levels of DNA damage, in particular micronuclei (MNi) which are formed by acentric chromosome fragments caused by double-stranded DNA breaks (DSBs), or whole chromosomes which fail to segregate during mitosis. We investigated if methylglyoxal (MGO), a reactive dicarbonyl known to be elevated in type 2 diabetes is capable of increasing chromosomal instability and DNA damage as measured by the cytokinesis block micronucleus cytome (CBMNcyt) assay in B-lymphoblastoid WIL2-NS cells and primary peripheral blood lymphocytes (PBL). We also investigated the level of various dicarbonyl stress biomarkers, including extracellular and intracellular MGO, protein and MGO modifications of DNA. WIL2-NS cells exposed to either MGO or a glyoxalase 1 inhibitor showed increases in MNi and nuclear buds, which were associated with an increase in intracellular MGO. DNA damage in the form of MNi and nucleoplasmic bridges were observed in primary PBL exposed to 10 µM MGO, suggesting low concentrations of MGO may be genotoxic. Furthermore, we showed, using fluorescent in situ hybridisation, that the majority of MNi caused by MGO in WIL2-NS cells were caused by whole chromosome loss events, rather than DSBs. Our data suggest that MGO, a reactive metabolite elevated in type 2 diabetes and other pathologies, can affect genomic integrity by impairing chromosome segregation during mitosis.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2021-07-02
    Description: Cell-free DNA (cfDNA) has recently been used as a non-invasive diagnostic tool for detecting tumour-specific mutations. cfDNA may also be used for monitoring disease progression and treatment response, but so far researchers focused on one or few genes only. A genomic profile may provide better information on patient prognosis compared to single specific mutations. In this hypothesis-generating study, we profiled by whole exome sequencing serial plasma samples from 10 colon cancer (CC) patients collected before and after 5-fluorouracil-based therapy, and one year after diagnosis to determine alterations associated with treatment response. In parallel, genome profiling was also performed in patients’ corresponding tumour tissue to ascertain the molecular landscape of resistant tumours. The mutation concordance between cfDNA and tumour tissue DNA was higher in more advanced tumour stages than in the early stages of the disease. In non-responders, a specific mutation profile was observed in tumour tissues (TPSD1 p.Ala92Thr, CPAMD8 p.Arg341Gln, OBP2A p.ArgTyr123CysHis). A pathogenic APC mutation (p.Ser1315Ter) was detected only in cfDNA of one poor responder one year after the diagnosis and after therapy termination. Another poor responder presented a likely pathogenic TP53 mutation (p.Arg110Pro) in cfDNA of all plasma samplings and in tumour tissue. In conclusion, cfDNA could be used for genetic characterisation of CC patients and might be clinically useful for non-invasive therapy response monitoring.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2021-09-24
    Description: Immunological tolerance is a critical feature of the immune system; its loss might lead to an abnormal response of lymphocytes causing autoimmune diseases. One of the most important groups belonging to autoimmune disorders is the connective tissue diseases (CTD). CTD are classified among systemic rheumatic diseases and include pathologies such as systemic lupus erythematosus (SLE), and undifferentiated CTD (UCTD). In this study, we evaluated oxidative and genome damage in peripheral blood lymphocytes from patients with SLE and UCTD, further classified on the basis of disease activity and the presence/absence of a serological profile. Oxidative damage was evaluated in cell membrane using the fluorescent fatty acid analogue BODIPY581/591 C11. The percentage of oxidised lymphocytes in both SLE and UCTD patients was higher than in the control group, and the oxidative stress correlated positively with both disease activity and autoantibody profile. The γH2AX focus assay was used to quantify the presence of spontaneous double strand breaks (DSBs), and to assess the abilities of DSBs repair system after T cells were treated with mitomycin C (MMC). Subjects with these autoimmune disorders showed a higher number of γH2AX foci than healthy controls, but no correlation with diseases activity and presence of serological profile was observed. In addition, patients displayed an altered response to MMC-induced DSBs, which led their peripheral cells to greatly increase apoptosis. Taken together our results confirmed an interplay among oxidative stress, DNA damage and impaired DNA repair, which are directly correlated to the aggressiveness and clinical progression of the diseases. We propose the evaluation of these molecular markers to better characterise SLE and UCTD, aiming to improve the treatment plan and the quality of the patients’ life.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2021-09-23
    Description: Abstract Scientific, financial, and ethical drivers have led to unprecedented interest in implementing human-relevant, mechanistic in vitro and in silico testing approaches. Further, as non-animal approaches are being developed and validated, researchers are interested in strategies that can immediately reduce the use of animals in toxicology testing. Here, we aim to outline a testing strategy for assessing genotoxicity beginning with standard in vitro methods, such as the bacterial reverse mutation test and the in vitro micronucleus test, followed by a second tier of in vitro assays including those using advanced 3D tissue models. Where regulatory agencies require in vivo testing, one demonstrated strategy is to combine genotoxicity studies traditionally conducted separately into a single test or to integrate genotoxicity studies into other toxicity studies. Standard setting organisations and regulatory agencies have encouraged such strategies, and examples of their use can be found in the scientific literature. Employing approaches outlined here will reduce animal use as well as study time and costs.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2021-10-06
    Description: Advanced glycation end products (AGEs) are formed via non-enzymatic reactions between amino groups of proteins and the carbonyl groups of reducing sugars. Previous studies have shown that highly glycated albumin prepared using a glucose-bovine serum albumin (Glu-BSA) model system incubated at 60°C for 6 weeks induces genotoxicity in WIL2-NS cells at 9 days of exposure measured by the cytokinesis-block micronucleus cytome (CBMNcyt) assay. However, this AGE model system is not physiologically relevant as normal body temperature is 37°C and the degree of glycation may exceed the extent of albumin modification in vivo. We hypothesised that the incubation temperature and purification method used in these studies may cause changes to the chemical profile of the glycated albumin and may influence the extent of genotoxicity observed at 3, 6 and 9 days of exposure. We prepared AGEs generated using Glu-BSA model systems incubated at 60°C or 37°C purified using trichloroacetic acid (TCA) precipitation or ultrafiltration (UF) and compared their chemical profile (glycation, oxidation, and aggregation) and genotoxicity in WIL2-NS cells using the CBMNcyt assay after 3, 6 and 9 days of exposure. The number of micronuclei (MNi) was significantly higher for cells treated with Glu-BSA incubated at 60°C and purified via TCA (12 ± 1 MNi/1000 binucleated cells) compared to Glu-BSA incubated at 37°C and purified using UF (6 ± 1 MNi/1000 binucleated cells) after 9 days (P 〈 0.0001). The increase in genotoxicity observed could be explained by a higher level of protein glycation, oxidation, and aggregation of the Glu-BSA model system incubated at 60°C relative to 37°C. This study highlighted that the incubation temperature, purification method and cell exposure time are important variables to consider when generating AGEs in vitro and will enable future studies to better reflect in vivo situations of albumin glycation.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2021-10-27
    Description: We have previously described two flow cytometry-based in vitro genotoxicity tests: micronucleus (MN) scoring (MicroFlow ®) and a multiplexed DNA damage response biomarker assay (MultiFlow ®). Here, we describe a strategy for combining the assays in order to efficiently supplement MN analyses with a panel of biomarkers that comment on cytotoxicity (i.e., relative nuclei count, relative increased nuclei count, cleaved PARP-positive chromatin, and ethidium monoazide-positive chromatin) and genotoxic mode of action (i.e., γH2AX, phospho-histone H3, p53 activation, and polyploidy). For these experiments, human TK6 cells were exposed to each of 32 well-studied reference chemicals in 96-well plates for 24 continuous hr. The test chemicals were evaluated over a range of concentrations in the presence and absence of a rat liver S9-based metabolic activation system. MultiFlow assay data were acquired at 4 and 24 hr, and MN were scored at 24 hr. Testing 32 chemicals in two metabolic activation arms translated into 64 a priori calls: 42 genotoxicants and 22 non-genotoxicants. The MN assay showed high sensitivity and moderate specificity (90% and 68%, respectively). When a genotoxic call required significant MN and MultiFlow responses, specificity increased to 95% without adversely affecting sensitivity. The dose response data were analyzed with PROAST Benchmark Dose (BMD) software in order to calculate potency metrics for each endpoint, and ToxPi software was used to synthesize the resulting lower and upper bound 90% confidence intervals into visual profiles. The BMD/ToxPi combination was found to represent a powerful strategy for synthesizing multiple BMD confidence intervals, as the software output provided MoA information as well as insights into genotoxic potency.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2020-07-01
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2020-07-01
    Description: The in vivo Pig-a assay is being used in safety studies to evaluate the potential of chemicals to induce somatic cell gene mutations. Ongoing work is aimed at developing an Organisation for Economic Cooperation and Development (OECD) test guideline to support routine use for regulatory purposes (OECD project number 4.93). Among the details that will need to be articulated in an eventual guideline are recommended treatment and harvest schedules. With this in mind, experiments reported herein were performed with Wistar Han rats exposed to aristolochic acid I (AA), 1,3-propane sultone, chlorambucil, thiotepa or melphalan using each of two commonly used treatment schedules: 3 or 28 consecutive days. In the case of the 3-day studies, blood was collected for Pig-a analysis on days 15 or 16 and 29 or 30. For the 28-day studies blood was collected on day 29 or 30. The effect of treatment on mutant reticulocytes and mutant erythrocytes was evaluated with parametric pair-wise tests. While each of the five mutagens increased mutant phenotype cell frequencies irrespective of study design, statistical significance was consistently achieved at lower dose levels when the 28-day format was used (e.g. 2.75 vs 20 mg/kg/bw for AA). To more thoroughly investigate the dose–response relationships, benchmark dose (BMD) analyses were performed with PROAST software. These results corroborate the pair-wise testing results in that lower BMD values were obtained with the 28-day design. Finally, mutagenic potency, as measured by BMD analyses, most consistently correlated with the mutagens’ tumorigenic dose 50 values when the lengthier treatment schedule was used. Collectively, these results suggest that both 3- and 28-day treatment schedules have merit in hazard identification-type studies. That being said, for the purpose of regulatory safety assessments, there are clear advantages to study designs that utilise protracted exposures.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2020-01-10
    Description: The chemotherapeutic efficacy in colorectal cancer (CRC) is limited due to the inter-individual variability in drug response and the development of tumour resistance. ATP-binding cassette (ABC) transporters are crucial in the development of resistance by the efflux of anticancer agents from cancer cells. In this study, we identified 14 single nucleotide polymorphisms (SNPs) in 11 ABC transporter genes acting as an expression of quantitative trait loci (eQTLs), i.e. whose variation influence the expression of many downstream genes. These SNPs were genotyped in a case–control study comprising 1098 cases and 1442 healthy controls and analysed in relation to CRC development risk and patient survival. Considering a strict correction for multiple tests, we did not observe any significant association between SNPs and CRC risk. The rs3819720 polymorphism in the ABCB3/TAP2 gene was statistically significantly associated with shorter overall survival (OS) in the codominant, and dominant models [GA vs. GG, hazard ratio (HR) = 1.48; P = 0.002; AA vs. GG, HR = 1.70; P = 0.004 and GA + AA vs. GG, HR = 1.52; P = 0.0006]. Additionally, GA carriers of the same SNP displayed worse OS after receiving 5-FU based chemotherapy. The variant allele of rs3819720 polymorphism statistically significantly affected the expression of 36 downstream genes. Screening for eQTL polymorphisms in relevant genes such as ABC transporters that can regulate the expression of several other genes may help to identify the genetic background involved in the individual response to the treatment of CRC patients.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2020-09-11
    Description: Cancer deaths account for nearly 10 million deaths worldwide each year, with lung cancer (LCa) as the leading cause of cancer-related death. Smoking is one of the major LCa risk factors, and tobacco-related carcinogens are potent mutagens and epi-mutagens. In the present study, we aimed to analyse smoking-related epigenetic changes in lung tissues from LCa cases. The study cohort consisted of paired LCa and noncancerous lung tissues (NLT) from 104 patients, 90 of whom were smokers or ex-smokers (i.e. ever smokers) at the time of diagnosis. DNA methylation status of tumour suppressor genes DAPK1, MGMT, p16, RASSF1 and RARB was screened by means of methylation-specific PCR (MSP) and further analysed quantitatively by pyrosequencing. Methylation of at least one gene was detected in 59% (61 of 104) of LCa samples and in 39% (41 of 104) of NLT. DAPK1 and RASSF1 were more frequently methylated in LCa than in NLT (P = 0.022 and P = 0.041, respectively). The levels of DNA methylation were higher in LCa than NLT at most of the analysed CpG positions. More frequent methylation of at least one gene was observed in LCa samples of ever smokers (63%, 57 of 90) as compared with never smokers (36%, 5 of 14; P = 0.019). In the ever smokers group, methylation of the genes also occurred in NLT, but was rare or absent in the samples of never smokers. Among the current smokers, RASSF1 methylation in LCa showed association with the number of cigarettes smoked per day (P = 0.017), whereas in NLT it was positively associated with the duration of smoking (P = 0.039). Similarly, p16 methylation in LCa of current smokers correlated with the larger number of cigarettes smoked per day (P = 0.047). Overall, DNA methylation changes were present in both cancerous and noncancerous tissues of LCa patients and showed associations with smoking-related parameters.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2020-01-22
    Description: The consumption of fructose during pregnancy can cause hyperglycaemia and may stimulate production of reactive oxygen species; however, there are only a few studies reporting whether fructose consumption during pregnancy causes DNA damage. Therefore, the aim of this study was to evaluate the effects of fructose consumption on genetic and biochemical parameters in Swiss mice treated during pregnancy and lactation. For this, 15 couples of 60-day-old Swiss mice were divided into three groups of five couples: negative control (water) and two fructose groups (fructose dose of 10%/l and 20%/l). During this period, we evaluated food consumption, energy efficiency and body weight. Samples of blood were collected from the females before copulation, after the 15th day of conception and on the 21st day after the lactation period, for the glycaemic and lipid profiles as well as comet assay and micronucleus (MN) test. Comet assay and MN test evaluate DNA damage and clastogenicity, respectively. In the gestation and lactation period, the two fructose doses tested showed DNA damage as observed in the comet assay, which is associated with an increase in dietary intake, body weight, lipid profile and fasting glycaemia in females. Thus, it can be suggested that the high consumption of fructose during these periods is harmful for pregnancy and lactation.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2020-08-13
    Description: The antitumour activity of chrysin have been studied in several types of cancer cells. In urinary bladder cancer, its cytotoxic effects have already demonstrated; however, its mechanism of action is not completely understood and the role of tumour protein p53 (TP53) gene in these effects is unclear. In this study, we investigated the role of chrysin (10, 20, 40, 60 80 and 100 µM) in progression of bladder tumour cells with different status of the TP53 gene and different degrees of tumour (RT4, grade 1, TP53 wild type; 5637, grade 2, TP53 mutated and T24, grade 3, TP53 mutated). Results demonstrated that chrysin inhibited cell proliferation by increasing reactive oxygen species and DNA damage and inhibited cell migration in all cell lines. In TP53 wild-type cells, a sub-G1 apoptotic population was present. In mutated TP53 cells, chrysin caused arrest at the G2/M phase and morphological changes accompanied by downregulation of PLK1, SRC and HOXB3 genes. In addition, in Grade 2 cells, chrysin induced global DNA hypermethylation and, in the highest-grade cells, downregulated c-MYC, FGFR3 and mTOR gene expression. In conclusion, chrysin has antiproliferative and toxicogenetic activity in bladder tumour cells independently of TP53 status; however, the mechanisms of action are dependent on TP53 status.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2020-07-28
    Description: The ageing process is a multifactorial phenomenon, associated with decreased physiological and cellular functions and an increased propensity for various degenerative diseases. Studies on melatonin (N-acetyl-5-methoxytryptamine), a potent antioxidant, are gaining attention since melatonin production declines with advancing age. Hence, the aim of this study was to evaluate the effects of chronic melatonin consumption on genotoxic and mutagenic parameters of old Swiss mice. Herein, 3-month-old Swiss albino male mice (n = 240) were divided into eight groups and subdivided into two experiments: first (three groups): natural ageing experiment; second (five groups): animals that started water or melatonin supplementation at different ages (3, 6, 12 and 18 months) until 21 months. After 21 months, the animals from the second experiment were euthanized to perform the comet assay, micronucleus test and western blot analysis. The results demonstrated that melatonin prolonged the life span of the animals. Relative to genomic instability, melatonin was effective in reducing DNA damage caused by ageing, presenting antigenotoxic and antimutagenic activities, independently of initiation age. The group receiving melatonin for 18 months had high levels of APE1 and OGG1 repair enzymes. Conclusively, melatonin presents an efficient antioxidant mechanism aiding modulating genetic and physiological alterations due to ageing.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2020-02-12
    Description: Inflammatory bowel disease (IBD) is an important risk factor for gastrointestinal cancers. Inflammation and other carcinogenesis-related effects at distal, tissue-specific sites require further study. In order to better understand if systemic genotoxicity is associated with IBD, we exposed mice to dextran sulfate sodium salt (DSS) and measured the incidence of micronucleated cells (MN) and Pig-a mutant phenotype cells in blood erythrocyte populations. In one study, 8-week-old male CD-1 mice were exposed to 0, 1, 2, 3 or 4% w/v DSS in drinking water. The 4-week in-life period was divided into four 1-week intervals—alternately on then off DSS treatment. Low volume blood samples were collected for MN analysis at the end of each week, and cardiac blood samples were collected at the end of the 4-week period for Pig-a analyses. The two highest doses of DSS were observed to induce significant increases in reticulocyte frequencies. Even so, no statistically significant treatment-related effects on the genotoxicity biomarkers were evident. While one high-dose mouse showed modestly elevated MN frequencies during the DSS treatment cycles, it also exhibited exceptionally high reticulocyte frequencies (e.g. 18.7% at the end of the second DSS cycle). In a second study, mice were treated with 0 or 4% DSS for 9–18 consecutive days. Exposure was continued until rectal bleeding or morbidity was evident, at which point the treatment was terminated and blood was collected for MN analysis. The Pig-a assay was conducted on samples collected 29 days after the start of treatment. The initial blood specimens showed highly elevated reticulocyte frequencies in DSS-exposed mice (mean ± SEM = 1.75 ± 0.10% vs. 13.04 ± 3.66% for 0 vs. 4% mice, respectively). Statistical analyses showed no treatment-related effect on MN or Pig-a mutant frequencies. Even so, the incidence of MN versus reticulocytes in the DSS-exposed mice were positively correlated (linear fit R2 = 0.657, P = 0.0044). Collectively, these results suggest that in the case of the DSS CD-1 mouse model, systemic effects include stress erythropoiesis but not remarkable genotoxicity. To the extent MN may have been slightly elevated in a minority of individual mice, these effects appear to be secondary, likely attributable to stimulated erythropoiesis.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2020-07-01
    Description: The extensive development of nanotechnologies and nanomaterials poses a number of questions to toxicologists about the potential health risks of exposure to nanoparticles (NP). In this study, we analysed DNA damage in the leukocytes of 20 workers who were long-term exposed (18 ± 10 years) to NP in their working environment. Blood samples were collected in September 2016, before and after a shift, to assess (i) the chronic effects of NP on DNA (pre-shift samples) and (ii) the acute effects of exposure during the shift (the difference between pre- and post-shift samples). The samples from matched controls were taken in parallel with workers before the shift. Leukocytes were isolated from heparinised blood on a Ficoll gradient. The enzyme-modified comet assay (DNA formamido-pyrimidine-glycosylase and endonuclease III) demonstrated a considerable increase of both single- and double-strand breaks in DNA (DNA-SB) and oxidised bases when compared with the controls (2.4× and 2×, respectively). Acute exposure induced a further increase of DNA-SB. The welding and smelting of nanocomposites represented a higher genotoxic risk than milling and grinding of nanocomposite surfaces. Obesity appeared to be a factor contributing to an increased risk of oxidative damage to DNA. The data also indicated a higher susceptibility of males vs. females to NP exposure. The study was repeated in September 2017. The results exhibited similar trend, but the levels of DNA damage in the exposed subjects were lower compared to previous year. This was probably associated with lower exposure to NP in consequence of changes in nanomaterial composition and working operations. The further study involving also monitoring of personal exposures to NP is necessary to identify (i) the main aerosol components responsible for genotoxic effects in workers handling nanocomposites and (ii) the primary cause of gender differences in response to NP action.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2020-03-10
    Description: As part of the safety assessment process, all industrial sectors employ genotoxicity test batteries, starting with well-established in vitro assays. However, these batteries have limited predictive capacity for the in vivo situation, which may result in unnecessary follow-up in vivo testing or the loss of promising substances where animal tests are prohibited or not desired. To address this, a project involving regulators, academia and industry was established to develop and validate in vitro human skin-based genotoxicity assays for topically exposed substances, such as cosmetics ingredients. Here, we describe the validation of the 3D reconstructed skin (RS) Comet assay. In this multicenter study, chemicals were applied topically three times to the skin over 48 h. Isolated keratinocytes and fibroblasts were transferred to slides before electrophoresis and the resulting comet formation was recorded as % tail DNA. Before decoding, results of the validation exercise for 32 substances were evaluated by an independent statistician. There was a high predictive capacity of this assay when compared to in vivo outcomes, with a sensitivity of 77 (80)%, a specificity of 88 (97)% and an overall accuracy of 83 (92)%. The numbers reflect the calls of the performing laboratories in the coded phase, whereas those in parenthesis reflect calls according to the agreed evaluation criteria. Intra- and inter-laboratory reproducibility was also very good, with a concordance of 93 and 88%, respectively. These results generated with the Phenion® Full-Thickness skin model demonstrate its suitability for this assay, with reproducibly low background DNA damage and sufficient metabolic capacity to activate pro-mutagens. The validation outcome supports the use of the RS Comet assay to follow up positive results from standard in vitro genotoxicity assays when the expected route of exposure is dermal. Based on the available data, the assay was accepted recently into the OECD test guideline development program.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2020-04-22
    Description: The comet assay is a popular assay in biomonitoring studies. DNA strand breaks (or unspecific DNA lesions) are measured using the standard comet assay. Oxidative stress-generated DNA lesions can be measured by employing DNA repair enzymes to recognise oxidatively damaged DNA. Unfortunately, there has been a tendency to fail to report results from assay controls (or maybe even not to employ assay controls). We believe this might have been due to uncertainty as to what really constitutes a positive control. It should go without saying that a biomonitoring study cannot have a positive control group as it is unethical to expose healthy humans to DNA damaging (and thus potentially carcinogenic) agents. However, it is possible to include assay controls in the analysis (here meant as a cryopreserved sample of cells i.e. included in each experiment as a reference sample). In the present report we tested potassium bromate (KBrO3) as a positive comet assay control for the formamidopyrimidine DNA glycosylase (Fpg)-modified comet assay. Ten laboratories used the same procedure for treatment of monocytic THP-1 cells with KBrO3 (0.5, 1.5 and 4.5 mM for 1 h at 37°C) and subsequent cryopreservation. Results from one laboratory were excluded in the statistical analysis because of technical issues in the Fpg-modified comet assay. All other laboratories found a concentration–response relationship in cryopreserved samples (regression coefficients from 0.80 to 0.98), although with different slopes ranging from 1.25 to 11.9 Fpg-sensitive sites (%DNA in tail) per 1 mM KBrO3. Our results demonstrate that KBrO3 is a suitable positive comet assay control.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2020-07-01
    Description: Following advancements in the field of genotoxicology, it has become widely accepted that 3D models are not only more physiologically relevant but also have the capacity to elucidate more complex biological processes that standard 2D monocultures are unable to. Whilst 3D liver models have been developed to evaluate the short-term genotoxicity of chemicals, the aim of this study was to develop a 3D model that could be used with the regulatory accepted in vitro micronucleus (MN) following low-dose, longer-term (5 days) exposure to engineered nanomaterials (ENMs). A comparison study was carried out between advanced models generated from two commonly used liver cell lines, namely HepaRG and HepG2, in spheroid format. While both spheroid systems displayed good liver functionality and viability over 14 days, the HepaRG spheroids lacked the capacity to actively proliferate and, therefore, were considered unsuitable for use with the MN assay. This study further demonstrated the efficacy of the in vitro 3D HepG2 model to be used for short-term (24 h) exposures to genotoxic chemicals, aflatoxin B1 (AFB1) and methyl-methanesulfonate (MMS). The 3D HepG2 liver spheroids were shown to be more sensitive to DNA damage induced by AFB1 and MMS when compared to the HepG2 2D monoculture. This 3D model was further developed to allow for longer-term (5 day) ENM exposure. Four days after seeding, HepG2 spheroids were exposed to Zinc Oxide ENM (0–2 µg/ml) for 5 days and assessed using both the cytokinesis-block MN (CBMN) version of the MN assay and the mononuclear MN assay. Following a 5-day exposure, differences in MN frequency were observed between the CBMN and mononuclear MN assay, demonstrating that DNA damage induced within the first few cell cycles is distributed across the mononucleated cell population. Together, this study demonstrates the necessity to adapt the MN assay accordingly, to allow for the accurate assessment of genotoxicity following longer-term, low-dose ENM exposure.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2020-10-12
    Description: It is well understood that poor diet and lifestyle choices can increase the risk of cancer. It is also well documented that cancer is a disease of DNA mutations, with mutations in key genes driving carcinogenesis. Measuring these mutations in a minimally invasive way may be informative as to which exposures are harmful and thus allow us to introduce primary preventative measures, in a bid to reduce cancer incidences. Here, we have measured mutations in the phosphatidylinositol glycan class A (PIG-A) gene in erythrocytes from healthy volunteers (n = 156) and from non-cancer patients attending the local endoscopy department (n = 144). The X-linked PIG-A gene encodes an enzyme involved in glycosylphosphatidylinositol (GPI) anchor synthesis. A silencing mutation in which leads to the absence of GPI anchors on the extracellular surface which can be rapidly assessed using flow cytometry. The background level of PIG-A mutant erythrocytes was 2.95 (95% CI: 2.59–3.67) mutant cells (10−6). Older age increased mutant cell frequency (P 〈 0.001). There was no difference in mutant cell levels between males and females (P = 0.463) or smokers and non-smokers (P = 0.186). In the endoscopy group, aspirin users had lower mutant frequencies (P = 0.001). Further information on diet and exercise was available for the endoscopy patient group alone, where those with a higher health promotion index score had lower mutant frequencies (P = 0.011). Higher dietary intake of vegetables reduced mutant cell levels (P = 0.022). Participants who exercised for at least 1 h a week appeared to have reduced mutant frequencies than those who did not exercise, although this was not statistically significant (P = 0.099). This low background level of mutant erythrocytes in a population makes this assay an attractive tool to monitor exposures such as those associated with lifestyles and diet, as demonstrated here.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2020-10-12
    Description: Glutamine (Gln) is a non-essential amino acid central for generating building blocks and cellular energy in tumours and rapidly proliferating non-transformed cells. However, the influence of Gln on regulating chromosomal stability of transformed and non-transformed cells remain poorly understand. We hypothesised that Gln is required for maintaining a homeostatic level of chromosomal stability. To this end, transformed cells HeLa and A375 and non-transformed cells NCM460 and HUVEC cells were intervened with varying concentrations of Gln (10, 1, 0.1 and 0.01 mM), with or without cisplatin (0.1 µg/ml), for 24 h. The cytokinesis-block micronucleus (MN) assay was used to determine chromosomal instability (CIN), the extent of which is reflected by the frequency of MN, nucleoplasmic bridge (NPB) and nuclear bud (NB). We demonstrated an unexpected decrease in the spontaneous rate of MN, but not NPB and NB, after Gln restriction in HeLa and A375 cells. Gln restriction reduced cisplatin-induced MN, but not NPB and NB, in HeLa and A375 cells. We further revealed that Gln restriction suppressed the proliferation of HeLa cells with high CIN induced by nocodazole, partially explaining why Gln restriction decreased the frequency of spontaneous and cisplatin-induced MN in transformed cells. In contrast, Gln restriction increased MN and NB, but not NPB, in NCM460 cells. In HUVEC cells, Gln restriction increased MN, NPB and NB. Meanwhile, Gln restriction sensitised NCM460 cells to cisplatin-induced genotoxicity. A similar but more pronounced pattern was observed in HUVEC cells. Collectively, these results suggest that the in vitro influences of Gln metabolism on CIN depend on cellular contexts: Transformed cells require high Gln to fine tune their CIN in an optimal rate to maximise genomic heterogeneity and fitness, whereas non-transformed cells need high Gln to prevent CIN.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2020-04-22
    Description: This study investigated the effect of dietary sugars and advanced glycation end-products (AGE) on telomere dynamics in WIL2-NS cells. Dietary sugars [glucose (Glu) and fructose (Fru); 0.1 M each] were incubated with bovine serum albumin (BSA) (10 mg/ml) at 60 ± 1°C for 6 weeks to generate AGE-BSA. Liquid chromatography-mass spectrometry (LC-MS/MS) analysis showed total AGE levels as 87.74 ± 4.46 nmol/mg and 84.94 ± 4.28 nmol/mg respectively in Glu-BSA and Fru-BSA model. Cell treatment studies using WIL2-NS cells were based on either glucose, fructose (each 2.5–40 mM) or AGE-BSA (200–600 µg/ml) in a dose-dependent manner for 9 days. Telomere length (TL) was measured using qPCR. Nitric oxide (NO) production and tumour necrosis factor-α (TNF-α) levels were measured in WIL2-NS culture medium. An increasing trend for TNF-α and NO production was observed with higher concentration of glucose (R2 = 0.358; P = 0.019; R2 = 0.307; P = 0.027) and fructose (R2 = 0.669; P = 0.001; R2 = 0.339; P = 0.006). A decreasing trend for TL (R2 = 0.828; P = 0.000), and an increasing trend for NO production (R2 = 0.352; P = 0.031) were observed with increasing Glu-BSA concentrations. Fru-BSA treatment did not show significant trend on TL (R2 = 0.135; P = 0.352) with increasing concentration, however, a significant reduction was observed at 600 µg/ml (P 〈 0.01) when compared to BSA treatment. No trends for TNF-α levels and a decreasing trend on NO production (R2 = 0.5201; P = 0.019) was observed with increasing Fru-BSA treatment. In conclusion, this study demonstrates a potential relationship between dietary sugars, AGEs and telomere attrition. AGEs may also exert telomere shortening through the production of pro-inflammatory metabolites, which ultimately increase the risk of diabetes complications and age-related disease throughout lifespan.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2020-04-07
    Description: Prostate cancer is a major health burden, being the second most commonly diagnosed malignancy in men worldwide. Overtreatment represents a major problem in prostate cancer therapy, leading to significant long-term quality-of-life effects for patients and a broad socio-ecological burden. Biomarkers that could facilitate risk stratification of prostate cancer aggressiveness at the time of diagnosis may help to guide clinical treatment decisions and reduce overtreatment. Previous research on genetic variations in prostate cancer has shown that germline copy number variations as well as somatic copy number alterations are commonly present in cancer patients, altering a greater portion of the cancer genome than any other type of genetic variation. To investigate the effect of germline copy number variations on cancer aggressiveness we have compared genome-wide screening data from genomic DNA isolated from the blood of 120 patients with aggressive prostate cancer, 231 patients with non-aggressive prostate cancer and 87 controls with benign prostatic hyperplasia from the Prostate Cancer Study of Austria biobank using the Affymetrix SNP 6.0 array. We could show that patients with an aggressive form of prostate cancer had a higher frequency of copy number variations [mean count of copy number segments (CNS) = 12.9, median count of CNS = 9] compared to patients with non-aggressive prostate cancer (mean count of CNS = 10.4, median count of CNS = 8) or control patients diagnosed with benign prostatic hyperplasia (mean count of CNS = 9.3, median count of CNS = 8). In general, we observed that copy number gain is a rarer event, compared to copy number loss within all three patient groups. Furthermore, we could show a significant effect of copy number losses located on chromosomes 8, 9 and 10 on prostate cancer aggressiveness (P = 0.040, P = 0.037 and P = 0.005, respectively). Applying a cross-validation analysis yielded an area under the curve of 0.63. Our study reports promising findings suggesting that copy number losses might play an important role in the establishment of novel biomarkers to predict prostate cancer aggressiveness at the time of diagnosis. Such markers could be used to facilitate risk stratification to reduce overtreatment of prostate cancer patients.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2020-01-01
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2020-02-18
    Description: The European Regulation on Cosmetics (no. 1223/2009) has prohibited the use of animals in safety testing since March 2009 for ingredients used in cosmetics. Irreversible events at the chromosome level (clastogenesis and aneugenesis) are commonly evaluated by scoring either micronuclei or chromosome aberrations using cell-based genotoxicity assays. Like most in vitro genotoxicity assays, the 2D in vitro micronucleus assay exhibits a poor specificity and does not mimic the dermal route. To address these limitations, the current project aims to develop and validate a 3D micronucleus assay using the EpiSkin™ model. This project is scientifically supported by the Cosmetics Europe Genotoxicity Task Force. In a first step, two key criteria for the development of micronucleus assay, namely, the sufficient yield of cells from the EpiSkin™ model and an acceptable proliferation rate of the basal layer, were assessed and demonstrated. Subsequently, six chemicals (vinblastine, n-ethylnitrosourea, β-butyrolactone, 2-acetylaminofluorene, 2,4-dichlorophenoland d-limonene) were evaluated in the EpiSkin™ Micronucleus Assay. At least two independent experiments using 48- and 72-h incubations were performed for each chemical. Results showed good inter-experimental reproducibility, as well as the correct identification of all six tested chemicals. The metabolism of 2-acetylaminofluorene on the EpiSkin™ model was also investigated and confirmed by the formation of an intermediate metabolite (2-aminofluorene). These preliminary results from the EpiSkin™ Micronucleus Assay indicate that it is a promising in vitro assay for assessing genotoxicity. The availability and suitability of this test method contribute significantly to the development of non-animal testing methods in China and its impact on the worldwide field.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2020-01-23
    Description: This study investigated the effect of glucose and fructose, and advanced glycation end-products (AGEs) on genome damage in WIL2-NS cells, measured using the cytokinesis-block micronucleus cytome (CBMN-Cyt) assay. The effect of AGEs was investigated using the bovine serum albumin (AGE-BSA) model system induced either with glucose (Glu–BSA) or with fructose (Fru–BSA). Liquid chromatography-mass spectrometry (LC-MS/MS) analysis showed higher Nε-carboxymethyllysine (CML; 26.76 ± 1.09 nmol/mg BSA) levels in the Glu–BSA model. Nε-Carboxyethyllysine (CEL; 7.87 ± 0.19 nmol/mg BSA) and methylglyoxal-derived hydroimidazolone-1 (MG-H1; 69.77 ± 3.74 nmol/mg BSA) levels were higher in the Fru–BSA model. Genotoxic effects were measured using CBMN-Cyt assay biomarkers [binucleated(BN) cells with micronuclei (MNi), BN with nucleoplasmic bridges (NPBs) and BN with nuclear buds (NBuds)] following 9 days of treatment with either glucose, fructose, Glu–BSA or Fru–BSA. Fructose treatment exerted a significant genotoxic dose–response effect including increases of BN with MNi (R2 = 0.7704; P = 0.0031), BN with NPBs (R2 = 0.9311; P 〈 0.0001) and BN with NBuds (R2 = 0.7118; P = 0.0091) on cells, whereas the DNA damaging effects of glucose were less evident. High concentrations of AGEs (400–600 µg/ml) induced DNA damage; however, there was no effect on cytotoxicity indices (necrosis and apoptosis). In conclusion, this study demonstrates a potential link between physiologically high concentrations of reducing sugars or AGEs with increased chromosomal damage which is an important emerging aspect of the pathology that may be induced by diabetes. Ultimately, loss of genome integrity could accelerate the rate of ageing and increase the risk of age-related diseases over the long term. These findings indicate the need for further research on the effects of glycation on chromosomal instability and to establish whether this effect is replicated in humans in vivo.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2020-08-18
    Description: Humans are exposed to multiple exogenous substances, notably through food consumption. Many of these compounds are suspected to impact human health, and their combination could exacerbate their harmful effects. We previously observed in human cells that, among the six most prevalent food contaminant complex mixtures identified in the French diet, synergistic interactions between component appeared in two mixtures compared with the response with the chemicals alone. In the present study, we demonstrated in human cells that these properties are driven only by two heavy metals in each mixture: tellurium (Te) with cadmium (Cd) and Cd with inorganic arsenic (As), respectively. It appeared that the predicted effects for these binary mixtures using the mathematical model of Chou and Talalay confirmed synergism between these heavy metals. Based on different cell biology experiments (cytotoxicity, genotoxicity, mutagenesis and DNA repair inhibition experiments), a detailed mechanistic analysis of these two mixtures suggests that concomitant induction of oxidative DNA damage and decrease of their repair capacity contribute to the synergistic toxic effect of these chemical mixtures. Overall, these results may have broad implications for the fields of environmental toxicology and chemical mixture risk assessment.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2020-01-01
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2020-05-08
    Description: The cytokinesis-block micronucleus cytome (CBMNcyt) assay is a comprehensive method to measure DNA damage, cytostasis and cytotoxicity caused by nutritional, radiation and chemical factors. A slide imaging technique has been identified as a new method to assist with the visual scoring of cells for the CBMNcyt assay. A NanoZoomer S60 Digital Pathology slide scanner was used to view WIL2-NS cells treated with hydrogen peroxide (H2O2) and measure CBMNcyt assay biomarkers using a high-definition desktop computer screen. The H2O2-treated WIL2-NS cells were also scored visually using a standard light microscope, and the two visual scoring methods were compared. Good agreement was found between the scoring methods for all DNA damage indices (micronuclei, nucleoplasmic bridges and nuclear buds) and nuclear division index with correlation R values ranging from 0.438 to 0.789, P 〈 0.05. Apoptotic and necrotic cell frequency was lower for the NanoZoomer scoring method, but necrotic frequency correlated well with the direct visual microscope method (R = 0.703, P 〈 0.0001). Considerable advantages of the NanoZoomer scoring method compared to direct visual microscopy includes reduced scoring time, improved ergonomics and a reduction in scorer fatigue. This study indicates that a digital slide scanning and viewing technique may assist with visual scoring for the CBMNcyt assay and provides similar results to conventional direct visual scoring.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2020-09-11
    Description: DNA ligase I (LIG1) joins DNA strand breaks during DNA replication and repair transactions and contributes to genome integrity. The mutations (P529L, E566K, R641L and R771W) in LIG1 gene are described in patients with LIG1-deficiency syndrome that exhibit immunodeficiency. LIG1 senses 3’-DNA ends with a mismatch or oxidative DNA base inserted by a repair DNA polymerase. However, the ligation efficiency of the LIG1 variants for DNA polymerase-promoted mutagenesis products with 3’-DNA mismatches or 8-oxo-2’-deoxyguanosine (8-oxodG) remains undefined. Here, we report that R641L and R771W fail in the ligation of nicked DNA with 3’-8-oxodG, leading to an accumulation of 5’-AMP-DNA intermediates in vitro. Moreover, we found that the presence of all possible 12 non-canonical base pairs variously impacts the ligation efficiency by P529L and R771W depending on the architecture at the DNA end, whereas E566K exhibits no activity against all substrates tested. Our results contribute to the understanding of the substrate specificity and mismatch discrimination of LIG1 for mutagenic repair intermediates and the effect of non-synonymous mutations on ligase fidelity.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2020-07-16
    Description: 1,3-Dichloropropene (1,3-D; CAS No. 542-75-6) is a soil fumigant used for the control of nematodes in agriculture. There is an extensive database on the genotoxicity of 1,3-D and many of the published studies are confounded by the presence of mutagenic stabilisers in the test substance. Mixed results were obtained in the in vitro assays, often due to the purity of the 1,3-D sample tested. In order to get further clarity, the mutagenic potential of 1,3-D was investigated in vivo in the transgenic Big Blue rodent models. Inhalation exposure of 150 ppm 1,3-D (×2.5 tumourigenic dose) to transgenic male B6C3F1 mice did not induce lacI mutations in either the lung (tumour target tissue) or liver. Similarly, dietary administration of 1,3-D up to 50 mg/kg/day to transgenic male Fischer 344 rats did not increase the cII mutant frequency in either the liver (tumour target) or kidney. These results, along with other available in vivo data, including the absence of DNA adducts and clastogenic/aneugenic potential, support the conclusion that 1,3-D is efficiently detoxified in vivo and, as such, does not pose a mutagenic hazard or risk.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2020-02-21
    Description: Colorectal cancer (CRC) continues to be one of the leading malignancies and causes of tumour-related deaths worldwide. Both impaired DNA repair mechanisms and disrupted telomere length homeostasis represent key culprits in CRC initiation, progression and prognosis. Mechanistically, altered DNA repair results in the accumulation of mutations in the genome and, ultimately, in genomic instability. DNA repair also determines the response to chemotherapeutics in CRC treatment, suggesting its utilisation in the prediction of therapy response and individual approach to patients. Telomere attrition resulting in replicative senescence, simultaneously by-passing cell cycle checkpoints, is a hallmark of malignant transformation of the cell. Telomerase is almost ubiquitous in advanced solid cancers, including CRC, and its expression is fundamental to cell immortalisation. Therefore, there is a persistent effort to develop therapeutics, which are telomerase-specific and gentle to non-malignant tissues. However, in practice, we are still at the level of clinical trials. The current state of knowledge and the route, which the research takes, gives us a positive perspective that the problem of molecular models of telomerase activation and telomere length stabilisation will finally be solved. We summarise the current literature herein, by pointing out the crosstalk between proteins involved in DNA repair and telomere length homeostasis in relation to CRC.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2020-02-28
    Description: Mismatch repair (MMR) systems play important roles in maintaining the high fidelity of genomic DNA. It is well documented that a lack of MMR increases the mutation rate, including base exchanges and small insertion/deletion loops; however, it is unknown whether MMR deficiency affects the frequency of chromosomal recombination in somatic cells. To investigate the effects of MMR on chromosomal recombination, we used the Drosophila wing-spot test, which efficiently detects chromosomal recombination. We prepared MMR (MutS)-deficient flies (spel1(−/−)) using a fly line generated in this study. The spontaneous mutation rate as measured by the wing-spot test was slightly higher in MutS-deficient flies than in wild-type (spel1(+/−)) flies. Previously, we showed that N-nitrosodimethylamine (NDMA)-induced chromosomal recombination more frequently than N-nitrosodiethylamine (NDEA) in Drosophila. When the wing-spot test was performed using MMR-deficient flies, unexpectedly, the rate of NDMA-induced mutation was significantly lower in spel1(−/−) flies than in spel1(+/−) flies. In contrast, the rate of mutation induced by NDEA was higher in spel1(−/−) flies than in spel1(+/−) flies. These results suggest that in Drosophila, the MutS homologue protein recognises methylated DNA lesions more efficiently than ethylated ones, and that MMR might facilitate mutational chromosomal recombination due to DNA double-strand breaks via the futile cycle induced by MutS recognition of methylated lesions.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2020-02-22
    Description: Toxicogenomics, the application of genomics to toxicology, was described as ‘a new era’ for toxicology. Standard toxicity tests typically involve a number of short-term bioassays that are costly, time consuming, require large numbers of animals and generally focus on a single end point. Toxicogenomics was heralded as a way to improve the efficiency of toxicity testing by assessing gene regulation across the genome, allowing rapid classification of compounds based on characteristic expression profiles. Gene expression microarrays could measure and characterise genome-wide gene expression changes in a single study and while transcriptomic profiles that can discriminate between genotoxic and non-genotoxic carcinogens have been identified, challenges with the approach limited its application. As such, toxicogenomics did not transform the field of genetic toxicology in the way it was predicted. More recently, next generation sequencing (NGS) technologies have revolutionised genomics owing to the fact that hundreds of billions of base pairs can be sequenced simultaneously cheaper and quicker than traditional Sanger methods. In relation to genetic toxicology, and thousands of cancer genomes have been sequenced with single-base substitution mutational signatures identified, and mutation signatures have been identified following treatment of cells with known or suspected environmental carcinogens. RNAseq has been applied to detect transcriptional changes following treatment with genotoxins; modified RNAseq protocols have been developed to identify adducts in the genome and Duplex sequencing is an example of a technique that has recently been developed to accurately detect mutation. Machine learning, including MutationSeq and SomaticSeq, has also been applied to somatic mutation detection and improvements in automation and/or the application of machine learning algorithms may allow high-throughput mutation sequencing in the future. This review will discuss the initial promise of transcriptomics for genetic toxicology, and how the development of NGS technologies and new machine learning algorithms may finally realise that promise.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2020-11-01
    Description: In this study, we have studied the cytotoxicity and genotoxic potency of 3 pro-oxidants; H2O2, menadione and KBrO3 in different dosing scenarios, namely acute (1-day dosing) and chronic (5-days). For this purpose, relative population doubling (RPD%) and mononucleated micronucleus (MN) test were used. TK6 cells and NH32 were employed in in vitro experiments. In the study, the total acute dose was divided into 5 days for each prooxidant chemicals by dose fractionation (1/5th per day) method. Acute dosing was compared to chronic dosing. The oxidative stress caused by the exposure of cells with pro-oxidant chemicals to the cells was determined by an optimized 2′,7′-dichlorofluorescein diacetate (DCFHDA) test method. The antioxidant levels of the cell lines were altered with buthionine sulfoxide (BSO) and N-acetyl cysteine (NAC), and the effect of antioxidant capacity on the MN formation in the cells was observed with this method. In the case of H2O2 and menadione, fractional dosing has been observed to result in lower toxicity and lower genotoxicity. But in the case of KBrO3, unlike the other 2 pro-oxidants, higher MN induction was observed with fractionated doses. DCFHDA test clearly demonstrated ROS induction with H2O2 and menadione but not with KBrO3. Unexpectedly, DCFHDA test demonstrated that KBrO3 did not cause an increase ROS levels in both acute and chronic dosing, suggesting an alternative ROS induction mechanism. It was also observed that, treatment with BSO and NAC, caused increasing and decreasing of MN fold change respectively, allowing further ROS specific mechanisms to be explored. Hence, dose fractionation expectedly caused less MN, cytotoxicity and ROS formation with H2O2 and menadione exposure, but not with KBrO3. This implies a unique mechanism of action for KBrO3 induced genotoxicity. Chronic dosing in vitro may be a valuable approach allowing better understanding of how chemicals damage DNA and pose human hazards.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-11-02
    Description: The tetrahydrofuran-type abasic site analog (THF) induces large deletion mutations in human cells. To compare the large deletions induced by THF on leading and lagging strand templates, plasmid DNAs bearing the analog at a specific position outside the supF gene were introduced into human U2OS cells. The replicated DNAs recovered from the transfected cells were electroporated into an Escherichia coli indicator strain. THF on the lagging strand template produced more supF mutants than THF on the leading strand template. This unequal mutagenicity was due to the higher frequencies of not only large deletions but also untargeted base substitutions induced in the gene. These results suggested that both types of mutations occur more frequently when abasic sites are formed on the lagging strand template.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-05-01
    Description: Radiopharmaceuticals used for diagnosis or therapy induce DNA strand breaks, which may be detectable by single-cell gel electrophoresis (called comet assay). Blood was taken from patients before and at different time points after treatment with radiopharmaceuticals; blood cells were investigated by the comet assay using the percentage of DNA in the tail as the critical parameter. Whereas [225Ac]Ac-prostate-specific membrane antigen (PSMA)-617 alpha therapy showed no difference relative to the blood sample taken before treatment, beta therapy with [177Lu]Lu-PSMA-617 3 h post-injection revealed a small but significant increase in DNA strand breaks. In blood of patients who underwent positron emission tomography (PET) with either [18F]2-fluor-2-deoxy-D-glucose (FDG) or [68Ga]Ga-PSMA-11, an increase of DNA migration determined by the comet assay was not found when analysed at different time points (2–70 min) after intravenous tracer injection. Human whole blood was incubated with the targeted clinically relevant therapeutic radiopharmaceuticals [225Ac]Ac-PSMA-617, [177Lu]Lu-PSMA-617 and [90Y]Y-DOTA(0)-Phe(1)-Tyr(3)-octreotide (DOTA-TOC) at different activity concentrations (kBq/ml) for 5 days and then analysed by the comet assay. DNA damage increased with higher concentrations of all radiolabeled compounds tested. [177Lu]Lu-PSMA-617 caused higher blood cell radiotoxicity than equal activity concentrations of [90Y]Y-DOTA-TOC. Likewise, whole human blood was exposed to the positron emitters [18F]FDG and [68Ga]Ga-PSMA-11 in vitro for 24 h with activity concentrations ranging between 5 and 40 MBq/ml. The same activity concentration dependent elevated DNA migration was observed for both compounds although decay energies are different. This study demonstrated that the amount of DNA damage detected by the comet assay in whole human blood is similar among different positron emitters and divergent by a factor of 200 between alpha particles and beta radiation.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-12-03
    Description: Implementation of the seventh amendment to the EU Cosmetics Directive has driven much research into suitable in vitro alternative assays to support satisfactory risk assessments. One such assay is the reconstructed skin micronucleus (RSMN) assay. First reported in 2006, further development occurred and a standard protocol was published in 2011. To evaluate and optimise the assay at Covance Laboratories, we tested nine chemicals [4-nitrophenol (4-NP), cyclohexanone (CH), 2-ethyl-1,3-hexanediol (2-EHD), methyl methansulfonate (MMS), mitomycin C (MMC), ethyl nitrosourea (ENU), benzo[a]pyrene (BaP), cyclophosphamide (CPA) and vinblastine (VIN)] using the EpiDerm™ 3D skin model (MatTek Corporation®, IVLSL, Bratislava, Slovakia) and compared the data using the standard 48-h treatment regimen and also an emerging 72-h treatment protocol. The EpiDerm™ tissue has reportedly some metabolic capacity but data using 48-h treatments has provided mixed results. Our investigations demonstrate that the two chemicals requiring metabolic activation (BaP and CPA) were negative following the 48-h protocol but were clearly positive following 72-h treatment. Furthermore, Replication Index (RI) data showed higher RI values in vehicle control treatments (indicating increased cell division) across the treatment set following 72-h treatments. A general greater magnitude of micronucleus (MN) induction was also observed following test chemical treatment. These data suggest that the 72-h treatment protocol is more suitable as a standard approach for the detection of clastogenic, aneugenic and metabolically activated chemicals in the RSMN assay. For further assay optimisation, we compare the statistical power of scoring cells from duplicate or triplicate cultures per treatment concentration and provide recommendations.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
  • 62
    Publication Date: 2019-08-19
    Description: We review here data on familial risk in colorectal cancer (CRC) generated from the Swedish Family-Cancer Database, the largest resource of its kind in the world. Although the concordant familial risk for CRC (i.e. CRC risk in families of CRC patients) has been reasonably well established, the studies on discordant familial risks (i.e. CRC risk in families with any other cancers) are rare. Because different cancers could be caused by shared genetic susceptibility or shared environment, data of associations of discordant cancers may provide useful information for identifying common risk factors. In analyses between any of 33 discordant cancers relative risks (RRs) for discordant cancers were estimated in families with increasing numbers of probands with CRC; in the reverse analyses, RRs for CRC were estimated in families with increasing numbers of probands with discordant cancers. In separate analyses, hereditary non-polyposis colorectal cancer (HNPCC) families were excluded from the study, based on HNPCC related double primary cancers, to assess the residual familial RRs. We further reviewed familial risks of colon and rectal cancers separately in search for distinct discordant associations. The reviewed data suggested that colon cancer was associated with a higher familial risk for CRC compared to rectal cancer. The previous data had reported associations of CRC with melanoma, thyroid and eye cancers. Nervous system cancer was only associated with colon cancer, and lung cancer only associated with rectal cancer. The reviewed data on discordant association may provide guidance to gene identification and may help genetic counseling.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-11-26
    Description: Evaluation of the functional impact of germline BRCA1 variants that are likely to be associated to breast and ovarian cancer could help to investigate the mechanism of BRCA1 tumorigenesis. Expression of pathogenic BRCA1 missense variants increased homologous recombination (HR) and gene reversion (GR) in yeast. We thought to exploit yeast genetics to shed light on BRCA1-induced genome instability and tumorigenesis. We determined the effect on GR of several neutral and pathogenic BRCA1 variants in the yeast strain RSY6wt and its isogenic DSB repair mutants, such as mre11∆, rad50∆ and rad51∆. In the RSY6wt, four out of five pathogenic and two out of six neutral variants significantly increased GR; rad51∆ strain, the pathogenic variants C61G and A1708E induced a weak but significant increase in GR. On the other hand, in rad50∆ mutant expressing the pathogenic variants localised at the BRCT domain, a further GR increase was seen. The neutral variant N132K and the VUS A1789T induced a weak GR increase in mre11∆ mutant. Thus, BRCA1 missense variants require specific genetic functions and presumably induced GR by different mechanisms. As DNA repair is regulated by cell cycle, we determined the effect on GR of BRCA1 variants in cell cycle-arrested RSYwt cells. GR is highly BRCA1-inducible in S-phase-arrested cells as compared to G1 or G2. Sequence analysis of genomic DNA from ILV1 revertant clones showed that BRCA1-induced ilv1-92 reversion by base substitution when GR is at least 6-fold over the control. Our study demonstrated that BRCA1 may interfere with yeast DNA repair functions that are active in S-phase causing high level of GR. In addition, we confirmed here that yeast could be a reliable model to investigate the mechanism and genetic requirements of BRCA1-induced genome instability. Finally, developing yeast-based assays to characterise BRCA1 missense variants could be useful to design more precise therapies.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-05-01
    Description: The in vitro micronucleus (IVMN) test was endorsed for regulatory genotoxicity testing with adoption of the Organisation for Economic Co-operation and Development (OECD) test guideline (TG) 487 in 2010. This included two equally acceptable options for extended treatment in the absence of metabolic activation: a treatment for 1.5–2.0 cell cycles with harvest at the end of treatment (Option A) or treatment for 1.5–2.0 cell cycles followed by recovery for 1.5–2.0 cell cycles prior to harvest (Option B). Although no preferences were discussed, TG 487 cautions that Option B may not be appropriate for stimulated lymphocytes where exponential growth may be declining at 96 h after phytohaemagglutinin (PHA) stimulation. Following revision of TG 487 in 2014 and 2016, emphasis has been placed on using Option A. Given the purpose of the IVMN assay is to determine both clastogenic and aneugenic potential, the authors believe the assay is compromised if an extended treatment with recovery is not included for sensitive detection of certain classes of chemical. In this study, average generation time (via bromodeoxyuridine incorporation) of human peripheral blood lymphocytes (HPBL) was measured up to 144 h after PHA stimulation. In addition, the HPBL micronucleus (MN) assay was performed using Option A and B treatment schedules. Cytotoxicity (replication index) and MN induction were determined following treatment with 14 chemicals. The data demonstrate that lymphocytes actively divide beyond 96 h after PHA stimulation. Furthermore, MN induction was only observed with some aneugenic chemicals and nucleoside analogues in HPBLs following extended treatment with a recovery period. For the majority of chemicals tested the magnitude of MN induction was generally greater and MN induction was observed across a wider concentration range following the Option B treatment schedule. In addition, steep concentration-related toxicity following treatment without recovery is more common, making selection of suitable concentrations (within regulatory toxicity limits) for MN analysis challenging.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-11-21
    Description: There is overwhelming evidence that inflammation plays a key role in the pathogenesis of cancer and its progression. Inflammation is regulated through a complex network of genes and polymorphic variants in these genes have been found to be associated to risk of various human cancers, alone or in combination with environmental variables. Despite this, not much is known on the genetic variability of genes that regulate inflammation and risk of pancreatic ductal adenocarcinoma (PDAC). We performed a two-phase association study considering the genetic variability of 76 genes that are key players in inflammatory response. We analysed tagging single nucleotide polymorphisms (SNPs) and regulatory SNPs on 7207 PDAC cases and 7063 controls and observed several associations with PDAC risk. The most significant association was between the carriers of the A allele of the CCL4-rs1719217 polymorphism, which was reported to be also associated with the expression level of the CCL4 gene, and increased risk of developing PDAC (odds ratio = 1.12, 95% confidence interval = 1.06–1.18, P = 3.34 × 10−5). This association was significant also after correction for multiple testing, highlighting the importance of using potentially functional SNPs in order to discover more genetic variants associated with PDAC risk.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-01-01
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-03-01
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-10-24
    Description: Human cancers arise from the alteration of genes involved in important pathways that mainly affect cell growth and proliferation. DNA replication and DNA damages recognition and repair are among these pathways and DNA polymerases that take part in these processes are frequently involved in cancer onset and progression. For example, damaging alterations within the proofreading domain of replicative polymerases, often reported in patients affected by colorectal cancer (CRC), are considered risk factors and drivers of carcinogenesis as they can lead to the accumulation of several mutations throughout the genome. Thus, replicative polymerases can be involved in cancer when losses of their physiological functions occur. On the contrary, reparative polymerases are often involved in cancer precisely because of their physiological role. In fact, their ability to repair and bypass DNA damages, which confers genome stability, can also counteract the effect of most anticancer drugs. In addition, the altered expression can characterise some type of cancers, which exacerbates this aspect. For example, all of the DNA polymerases involved a damage bypass mechanism, known as translesion synthesis, with the only exception of polymerase theta, are downregulated in CRC. Conversely, in pancreatic ductal adenocarcinoma (PDAC), most of these polymerase result upregulated. This suggests that different types of cancer can rely on different reparative polymerases to acquire drug resistance. Here we will examine all of the aspects that link DNA polymerases with CRC and PDAC.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-08-03
    Description: The KRAS signalling pathway is pivotal for pancreatic ductal adenocarcinoma (PDAC) development. After the failure of most conventional cytotoxic and targeted therapeutics tested so far, the combination of taxane nab-paclitaxel (Abraxane) with gemcitabine recently demonstrated promising improvements in the survival of PDAC patients. This study aimed to explore interactions of conventional paclitaxel and experimental taxane SB-T-1216 with the KRAS signalling pathway expression in in vivo and in vitro PDAC models in order to decipher potential predictive biomarkers or targets for future individualised therapy. Mouse PDAC PaCa-44 xenograft model was used for evaluation of changes in transcript and protein levels of the KRAS signalling pathway caused by administration of experimental taxane SB-T-1216 in vivo. Subsequently, KRAS wild-type (BxPc-3) and mutated (MiaPaCa-2 and PaCa-44) cell line models were treated with paclitaxel to verify dysregulation of the KRAS signalling pathway gene expression profile in vitro and investigate the role of KRAS mutation status. By comparing the gene expression profiles, this study observed for the first time that in vitro cell models differ in the basal transcriptional profile of the KRAS signalling pathway, but there were no differences between KRAS mutated and wild-type cells in sensitivity to taxanes. Generally, the taxane administration caused a downregulation of the KRAS signalling pathway both in vitro and in vivo, but this effect was not dependent on the KRAS mutation status. In conclusion, putative biomarkers for prediction of taxane activity or targets for stimulation of taxane anticancer effects were not discovered by the KRAS signalling pathway profiling in various PDAC models.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-01-01
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-05-01
    Description: Repetitive DNA sequences support the formation of structures that can interrupt replication and repair, leading to breaks and mutagenesis. One particularly stable structure is G-quadruplex (G4) DNA, which is four-stranded and formed from tandemly repetitive guanine bases. When folded within a template, G4 interferes with DNA synthesis. Similar to non-duplex structures, DNA base lesions can also halt an advancing replication fork, but the Y-family polymerases solve this problem by bypassing the damage. In order to better understand how guanine-rich DNA is replicated, we have investigated the activity of the model Y-family polymerase, Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4), on guanine-rich templates in vitro. We find that Dpo4 progression on templates containing either a single GC-rich hairpin or a G4 DNA structure is greatly reduced and synthesis stalls at the structure. Human polymerase eta (hPol eta) showed the same pattern of stalling at G4; however, and in contrast to Klenow, hPol eta and Dpo4 partially synthesise into the guanine repeat. Substitution of the nucleotide selectivity residue in Dpo4 with alanine permitted ribonucleotide incorporation on unstructured templates, but this further reduced the ability of Dpo4 to synthesise across from the guanine repeats. The advancement of Dpo4 on G4 templates was highest when the reaction was supplied with only deoxycytidine triphosphate, suggesting that high-fidelity synthesis is favoured over misincorporation. Our results are consistent with a model where the Y-family polymerases pause upon encountering G4 structures but have an ability to negotiate some synthesis through tetrad-associated guanines. This suggests that the Y-family polymerases reduce mutagenesis by catalysing the accurate replication of repetitive DNA sequences, but most likely in concert with additional replication and structure resolution activities.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-10-14
    Description: The environmental carcinogen benzo[a]pyrene (BaP) is presumed to exert its genotoxic effects after metabolic activation by cytochrome P450 (CYP) enzymes. However, studies using the Hepatic Reductase Null (HRN) mouse model, in which cytochrome P450 oxidoreductase (POR), the electron donor to CYP enzymes, is deleted specifically in hepatocytes, have shown that loss of hepatic POR-mediated CYP function leads to greater BaP-DNA adduct formation in livers of these mice than in wild-type (WT) mice. Here, we used CRISPR/Cas9 technology to knockout (KO) POR expression in mouse hepatoma Hepa1c1c7 cells to create an in vitro model that can mimic the HRN mouse model. Western blotting confirmed the deletion of POR in POR KO Hepa1c1c7 cells whereas expression of other components of the mixed-function oxidase system including cytochrome b5 (Cyb5) and NADH:cytochrome b5 reductase (which can also serve as electron donors to CYP enzymes), and CYP1A1 was similar in BaP-exposed WT and POR KO Hepa1c1c7 cells. BaP exposure caused cytotoxicity in WT Hepa1c1c7 cells but not in POR KO Hepa1c1c7 cells. In contrast, CYP-catalysed BaP-DNA adduct levels were ~10-fold higher in POR KO Hepa1c1c7 cells than in WT Hepa1c1c7 cells, in concordance with the presence of higher levels of BaP metabolite (e.g. BaP-7,8-dihydrodiol) in the medium of cultured BaP-exposed POR KO Hepa1c1c7 cells. As was seen in the HRN mouse model, these results suggest that Cyb5 contributes to the bioactivation of BaP in POR KO Hepa1c1c7 cells. These results indicate that CYP enzymes may play a more important role in the detoxication of BaP, as opposed to its bioactivation.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-11-07
    Description: 1,3-Butadiene (BD) is a known human carcinogen found in cigarette smoke, automobile exhaust, and urban air. Workers occupationally exposed to BD in the workplace have an increased incidence of leukemia and lymphoma. BD undergoes cytochrome P450-mediated metabolic activation to 3,4-epoxy-1-butene (EB), 1,2,3,4-diepoxybutane (DEB) and 1,2-dihydroxy-3,4-epoxybutane (EBD), which form covalent adducts with DNA. We have previously reported a quantitative nanoLC/ESI+-HRMS3 method for urinary N7-(1-hydroxy-3-buten-2-yl) guanine (EB-GII) adducts as a mechanism-based biomarker of BD exposure. In the present study, the method was updated to include high throughput 96-well solid phase extraction (SPE) and employed to establish urinary EB-GII biomarker stability and association with smoking. Urinary EB-GII levels were measured bimonthly for 1 year in 19 smokers to determine whether single adduct measurement provides reliable levels of EB-GII in an individual smoker. In addition, association of EB-GII with smoking was studied in 17 individuals participating in a smoking cessation program. EB-GII levels decreased 34% upon smoking cessation, indicating that it is associated with smoking status, but may also originate from sources other than exposure to cigarette smoke.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-03-01
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
  • 76
    Publication Date: 2019-01-01
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-10-15
    Description: Arteriovenous malformation (AVM) is defined as a fast-flow vascular anomaly that shunts blood from arteries directly to veins. This short circuit of blood flow contributes to progressive expansion of draining veins, resulting in ischaemia, tissue deformation and in some severe cases, congestive heart failure. Various medical interventions have been employed to treat AVM, however, management of which remains a huge challenge because of its high recurrence rate and lethal complications. Thus, understanding the underlying mechanisms of AVM development and progression will help direct discovery and a potential cure. Here, we summarize current findings in the field of extracranial AVMs with the aim to provide insight into their aetiology and molecular influences, in the hope to pave the way for future treatment.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-08
    Description: Hypoxia is a hallmark of the tumour microenvironment with profound effects on tumour biology, influencing cancer progression, the development of metastasis and patient outcome. Hypoxia also contributes to genomic instability and mutation frequency by inhibiting DNA repair pathways. This review summarises the diverse mechanisms by which hypoxia affects DNA repair, including suppression of homology-directed repair, mismatch repair and base excision repair. We also discuss the effects of hypoxia mimetics and agents that induce hypoxia on DNA repair, and we highlight areas of potential clinical relevance as well as future directions.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
  • 80
  • 81
    Publication Date: 2019-05-01
    Description: Quantitative analysis of the mutagenicity and carcinogenicity of the low doses of genotoxic carcinogens present in food is of pressing concern. The purpose of the present study was to determine the mutagenicity and carcinogenicity of low doses of the dietary genotoxic carcinogen 2-amino-3-methylimidazo[4,5-f]quinoline (IQ). Male F344 gpt delta transgenic rats were fed diets supplemented with 0, 0.1, 1, 10 or 100 ppm IQ for 4 weeks. The frequencies of gpt transgene mutations in the liver were significantly increased in the 10 and 100 ppm groups. In addition, the mutation spectra was altered in the 1, 10 and 100 ppm groups: frequencies of G:C to T:A transversion were significantly increased in groups administered 1, 10 and 100 ppm IQ in a dose-dependent manner, and the frequencies of G:C to A:T transitions, A:T to T:A transversions and A:T to C:G transversions were significantly increased in the 100 ppm group. Increased frequencies of single base pair deletions and Spi− mutants in the liver, and an increase in glutathione S-transferase placental form (GST-P)-positive foci, a preneoplastic lesion of the liver in rats, was also observed in the 100 ppm group. In contrast, neither mutations nor mutation spectra or GST-P-positive foci were statistically altered by administration of IQ at 0.1 ppm. We estimated the point of departure for the mutagenicity and carcinogenicity of IQ using the no-observed-effect level approach and the Benchmark dose approach to characterise the dose–response relationship of low doses of IQ. Our findings demonstrate the existence of no effect levels of IQ for both in vivo mutagenicity and hepatocarcinogenicity. The findings of the present study will facilitate an understanding of the carcinogenic effects of low doses of IQ and help to determine a margin of exposure that may be useful for practical human risk assessment.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-10-14
    Description: DNA is comprised of chemically reactive nucleobases that exist under a constant barrage from damaging agents. Failure to repair chemical modifications to these nucleobases can result in mutations that can cause various diseases, including cancer. Fortunately, the base excision repair (BER) pathway can repair modified nucleobases and prevent these deleterious mutations. However, this pathway can be hindered through several mechanisms. For instance, mutations to the enzymes in the BER pathway have been identified in cancers. Biochemical characterisation of these mutants has elucidated various mechanisms that inhibit their activity. Furthermore, the packaging of DNA into chromatin poses another obstacle to the ability of BER enzymes to function properly. Investigations of BER in the base unit of chromatin, the nucleosome core particle (NCP), have revealed that the NCP acts as a complex substrate for BER enzymes. The constituent proteins of the NCP, the histones, also have variants that can further impact the structure of the NCP and may modulate access of enzymes to the packaged DNA. These histone variants have also displayed significant clinical effects both in carcinogenesis and patient prognosis. This review focuses on the underlying molecular mechanisms that present obstacles to BER and the relationship of these obstacles to cancer. In addition, several chemotherapeutics induce DNA damage that can be repaired by the BER pathway and understanding obstacles to BER can inform how resistance and/or sensitivity to these therapies may occur. With the understanding of these molecular mechanisms, current chemotherapeutic treatment regiments may be improved, and future therapies developed.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-12-09
    Description: DNA is susceptible to a range of chemical modifications, with one of the most frequent lesions being apurinic/apyrimidinic (AP) sites. AP sites arise due to damage-induced (e.g. alkylation) or spontaneous hydrolysis of the N-glycosidic bond that links the base to the sugar moiety of the phosphodiester backbone, or through the enzymatic activity of DNA glycosylases, which release inappropriate bases as part of the base excision repair (BER) response. Unrepaired AP sites, which lack instructional information, have the potential to cause mutagenesis or to arrest progressing DNA or RNA polymerases, potentially causing outcomes such as cellular transformation, senescence or death. The predominant enzyme in humans responsible for repairing AP lesions is AP endonuclease 1 (APE1). Besides being a powerful AP endonuclease, APE1 possesses additional DNA repair activities, such as 3′–5′ exonuclease, 3′-phophodiesterase and nucleotide incision repair. In addition, APE1 has been shown to stimulate the DNA-binding activity of a number of transcription factors through its ‘REF1’ function, thereby regulating gene expression. In this article, we review the structural and biochemical features of this multifunctional protein, while reporting on new structures of the APE1 variants Cys65Ala and Lys98Ala. Using a functional complementation approach, we also describe the importance of the repair and REF1 activities in promoting cell survival, including the proposed passing-the-baton coordination in BER. Finally, results are presented indicating a critical role for APE1 nuclease activities in resistance to the genotoxins methyl methanesulphonate and bleomycin, supporting biologically important functions as an AP endonuclease and 3′-phosphodiesterase, respectively.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-12-19
    Description: Alterations of DNA repair enzymes and consequential triggering of aberrant DNA damage response (DDR) pathways are thought to play a pivotal role in genomic instabilities associated with cancer development, and are further thought to be important predictive biomarkers for therapy using the synthetic lethality paradigm. However, novel unpredicted perspectives are emerging from the identification of several non-canonical roles of DNA repair enzymes, particularly in gene expression regulation, by different molecular mechanisms, such as (i) non-coding RNA regulation of tumour suppressors, (ii) epigenetic and transcriptional regulation of genes involved in genotoxic responses and (iii) paracrine effects of secreted DNA repair enzymes triggering the cell senescence phenotype. The base excision repair (BER) pathway, canonically involved in the repair of non-distorting DNA lesions generated by oxidative stress, ionising radiation, alkylation damage and spontaneous or enzymatic deamination of nucleotide bases, represents a paradigm for the multifaceted roles of complex DDR in human cells. This review will focus on what is known about the canonical and non-canonical functions of BER enzymes related to cancer development, highlighting novel opportunities to understand the biology of cancer and representing future perspectives for designing new anticancer strategies. We will specifically focus on APE1 as an example of a pleiotropic and multifunctional BER protein.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-05-01
    Description: The application of nanomaterials has been rapidly increasing during recent years. Inhalation exposure to nanoparticles (NP) may result in negative toxic effects but there is a critical lack of human studies, especially those related to possible DNA alterations. We analyzed pre-shift and post-shift a group of nanocomposite researchers with a long-term working background (17.8 ± 10.0 years) and matched controls. The study group consisted of 73.2% males and 26.8% females. Aerosol exposure monitoring during a working shift (involving welding, smelting, machining) to assess the differences in exposure to particulate matter (PM) including nanosized fractions
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-11
    Description: The comet assay is widely used in studies on genotoxicity testing, human biomonitoring and clinical studies. The simple version of the assay detects a mixture of DNA strand breaks and alkali-labile sites; these lesions are typically described as DNA strand breaks to distinguish them from oxidatively damaged DNA that are measured with the enzyme-modified comet assay. This review assesses the association between high-prevalence diseases in high-income countries and DNA damage measured with the comet assay in humans. The majority of case–control studies have assessed genotoxicity in white blood cells. Patients with coronary artery disease, diabetes, kidney disease, chronic obstructive pulmonary disease and Alzheimer’s disease have on average 2-fold higher levels of DNA strand breaks compared with healthy controls. Patients with coronary artery disease, diabetes, kidney disease and chronic obstructive pulmonary disease also have 2- to 3-fold higher levels of oxidatively damaged DNA in white blood cells than controls, although there is not a clear difference in DNA damage levels between the different diseases. Case–control studies have shown elevated levels of DNA strand breaks in patients with breast cancer, whereas there are only few studies on colorectal and lung cancers. At present, it is not possible to assess if these neoplastic diseases are associated with a different level of DNA damage compared with non-neoplastic diseases.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-05-01
    Description: Zinc oxide nanoparticles (ZnO NPs) with their wide range of consumer applications in day-to-day life received great attention to evaluate their effects in humans. This study has been attempted to elucidate the DNA damage response mechanism in a dermal model exposed to ZnO NPs through Ataxia Telangiectasia Mutated (ATM)-mediated ChK1-dependent G2/M arrest. Further, viability parameters and mechanism involved in the cell death with special reference to the consequences arising due to DNA damage were explored. Our study showed that ZnO NPs at concentrations 5 and 10 µg/ml induced significant cytotoxic effect in skin cell line. Moreover, the results confirmed generation of reactive oxygen species (ROS) induces the cell death by genotoxic insult, leading to mitochondrial membrane depolarisation and cell cycle arrest. Subsequently, ZnO NPs treatment created DNA damage as confirmed via Comet assay (increase in olive tail moment), micronucleus assay (increase in micronucleus formation), double-strand breaks (increase in ATM and Ataxia Telangiectasia and Rad3 related (ATR) expression), DNA fragmentation and cell cycle (G2/M arrest) studies. Finally, marker proteins analysis concluded the mechanistic approach by demonstrating the key marker expressions HMOX1 and HSP60 (for oxidative stress), cytochrome c, APAF1, BAX, Caspase 9, Caspase 3 and decrease in BCL2 (for activating apoptotic pathway), pATM, ATR and γH2AX (for double-strand breaks), DNA-PK (involved in DNA repair) and decrease in cell cycle regulators. In together, our data revealed the mechanism of ROS generation that triggers apoptosis and DNA damage in HaCaT cell lines exposed to ZnO NPs.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-11-30
    Description: The circulating human transcriptome, which includes both coding and non-coding RNA (ncRNA) molecules, represents a rich source of potential biomarkers for colorectal cancer (CRC) that has only recently been explored. In particular, the release of RNA-containing extracellular vesicles (EVs), in a multitude of different in vitro cell systems and in a variety of body fluids, has attracted wide interest. The role of RNA species in EVs is still not fully understood, but their capacity to act as a form of distant communication between cells and their higher abundance in association with cancer demonstrated their relevance. In this review, we report the evidence from both in vitro and human studies on microRNAs (miRNAs) and other ncRNA profiles analysed in EVs in relation to CRC as diagnostic, prognostic and predictive markers. The studies so far highlighted that, in exosomes, the most studied category of EVs, several miRNAs are able to accurately discriminate CRC cases from controls as well as to describe the progression of the disease and its prognosis. Most of the time, the in vitro findings support the miRNA profiles detected in human exosomes. The expression profiles measured in exosomes and other EVs differ and, interestingly, there is a variability of expression also among different subsets of exosomes according to their proteic profile. On the other hand, evidence is still limited for what concerns exosome miRNAs as early diagnostic and predictive markers of treatment. Several other ncRNAs that are carried by exosomes, mostly long ncRNAs and circular RNAs, seem also to be dysregulated in CRC. Besides various technical challenges, such as the standardisation of EVs isolation methods and the optimisation of methodologies to characterise the whole spectrum of RNA molecules in exosomes, further studies are needed in order to elucidate their relevance as CRC markers.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-01
    Description: DNA methylation has been widely studied for associations with exposures and health outcomes. Both 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are epigenetic marks that may function differently to impact gene expression; however, the most commonly used technology to assess methylation for population studies in blood use are the Illumina 450K and EPIC BeadChips, for which the traditional bisulfite conversion does not differentiate 5mC and 5hmC marks. We used a modified protocol originally developed by Stewart et al. to analyse oxidative bisulfite-converted and conventional bisulfite-converted DNA for the same subject in parallel by the EPIC chip, allowing us to isolate the two measures. We measured 5mC and 5hmC in cord blood of 41 newborn participants of the Center for Health Assessment of Mothers and Children of Salinas (CHAMACOS) birth cohort and investigated differential methylation of 5mC + 5hmC, isolated 5mC and isolated 5hmC with sex at birth as an example of a biological variable previously associated with DNA methylation. Results showed low levels of 5hmC throughout the epigenome in the cord blood samples in comparison to 5mC. The concordance of autosomal hits between 5mC + 5hmC and exclusive 5mC analyses were low (25%); however, overlap was larger with increased effect size difference. There were 43 autosomal cytosine nucleotide followed by a guanine nucleotide (CpG) sites where 5hmC was associated with sex, 21 of which were unique to 5hmC after adjustment for cell composition. 5hmC only accounts for a small portion of overall methylation in cord blood; however, it has the potential to impact interpretation of combined 5hmC + 5mC studies in cord blood, especially given that effect sizes of differential methylation analyses are often small. Several significant CpG sites were unique to 5hmC, suggesting some functions distinct from 5mC. More studies of genome-wide 5hmC in children are warranted.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-09-01
    Description: In contrast to the continuous increase in survival rates for many cancer entities, colorectal cancer (CRC) and pancreatic cancer are predicted to be ranked among the top 3 cancer-related deaths in the European Union by 2025. Especially, fighting metastasis still constitutes an obstacle to be overcome in CRC and pancreatic cancer. As described by Fearon and Vogelstein, the development of CRC is based on sequential mutations leading to the activation of proto-oncogenes and the inactivation of tumour suppressor genes. In pancreatic cancer, genetic alterations also attribute to tumour development and progression. Recent findings have identified new potentially important transcription factors in CRC, among those the activating transcription factor 2 (ATF2). ATF2 is a basic leucine zipper protein and is involved in physiological and developmental processes, as well as in tumorigenesis. The mutation burden of ATF2 in CRC and pancreatic cancer is rather negligible; however, previous studies in other tumours indicated that ATF2 expression level and subcellular localisation impact tumour progression and patient prognosis. In a tissue- and stimulus-dependent manner, ATF2 is activated by upstream kinases, dimerises and induces target gene expression. Dependent on its dimerisation partner, ATF2 homodimers or heterodimers bind to cAMP-response elements or activator protein 1 consensus motifs. Pioneering work has been performed in melanoma in which the dual role of ATF2 is best understood. Even though there is increasing interest in ATF2 recently, only little is known about its involvement in CRC and pancreatic cancer. In this review, we summarise the current understanding of the underestimated ‘cancer gene chameleon’ ATF2 in apoptosis, epithelial-to-mesenchymal transition and microRNA regulation and highlight its functions in CRC and pancreatic cancer. We further provide a novel ATF2 3D structure with key phosphorylation sites and an updated overview of all so-far available mouse models to study ATF2 in vivo.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-10-12
    Description: Pinpointing heritability factors is fundamental for the prevention and early detection of cancer. Up to one-quarter of colorectal cancers (CRCs) occur in the context of familial aggregation of this disease, suggesting a strong genetic component. Currently, only less than half of the heritability of CRC can be attributed to hereditary syndromes or common risk loci. Part of the missing heritability of this disease may be explained by the inheritance of elusive high-risk variants, polygenic inheritance, somatic mosaicism, as well as shared environmental factors, among others. A great deal of the missing heritability in CRC is expected to be addressed in the coming years with the increased application of cutting-edge next-generation sequencing technologies, routine multigene panel testing and tumour-focussed germline predisposition screening approaches. On the other hand, it will be important to define the contribution of environmental factors to familial aggregation of CRC incidence. This review provides an overview of the known genetic causes of familial CRC and aims at providing clues that explain the missing heritability of this disease.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-10
    Description: Mutations in oncogenes or tumour suppressor genes cause increases in cell growth capacity. In some cases, fully malignant cancer cells develop after additional mutations occur in initially mutated cells. In such instances, the risk of cancer would increase in response to growth of these initially mutated cells. To ascertain whether such a situation might occur in cultured cells, three independent cultures of human lymphoblastoid GM00130 cells were treated with N-ethyl-N-nitrosourea to induce mutations, and the cells were maintained for 12 weeks. Mutant frequencies and spectra of the cells at the MspI and HaeIII restriction sites located at codons 247–250 of the TP53 gene were examined. Mutant frequencies at both sites in the gene exhibited a declining trend during cell culture and reached background levels after 12 weeks; this was also supported by mutation spectra findings. These results indicate that the mutations detected under our assay conditions are disadvantageous to cell growth.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
  • 94
    Publication Date: 2019-03-01
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-01
    Description: Non-specific structural chromosomal aberrations (CAs) observed in peripheral blood lymphocytes of healthy individuals can be either chromosome-type aberrations (CSAs) or chromatid-type aberrations (CTAs) depending on the stage of cell division they are induced in and mechanism of formation. It is important to study the genetic basis of chromosomal instability as it is a marker of genotoxic exposure and a predictor of cancer risk. For that purpose, we conducted two genome-wide association studies (GWASs) on healthy individuals in the presence and absence of apparent genotoxic exposure from the Czech Republic and Slovakia. The pre-GWAS cytogenetic analysis reported the frequencies of CSA, CTA and total CA (CAtot). We performed both linear and binary logistic regression analysis with an arbitrary cut-off point of 2% for CAtot and 1% for CSA and CTA. Using the statistical threshold of 1.0 × 10−5, we identified five loci with in silico predicted functionality in the reference group and four loci in the exposed group, with no overlap between the associated regions. A meta-analysis on the two GWASs identified further four loci with moderate associations in each of the studies. From the reference group mainly loci within genes related to DNA damage response/repair were identified. Other loci identified from both the reference and exposed groups were found to be involved in the segregation of chromosomes and chromatin modification. Some of the discovered regions in each group were implicated in tumourigenesis and autism.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-11-29
    Description: Genotoxic stress generates single- and double-strand DNA breaks either through direct damage by reactive oxygen species or as intermediates of DNA repair. Failure to detect and repair DNA strand breaks leads to deleterious consequences such as chromosomal aberrations, genomic instability and cell death. DNA strand breaks disrupt the superhelical state of cellular DNA, which further disturbs the chromatin architecture and gene activity regulation. Proteins from the poly(ADP-ribose) polymerase (PARP) family, such as PARP1 and PARP2, use NAD+ as a substrate to catalyse the synthesis of polymeric chains consisting of ADP-ribose units covalently attached to an acceptor molecule. PARP1 and PARP2 are regarded as DNA damage sensors that, upon activation by strand breaks, poly(ADP-ribosyl)ate themselves and nuclear acceptor proteins. Noteworthy, the regularly branched structure of poly(ADP-ribose) polymer suggests that the mechanism of its synthesis may involve circular movement of PARP1 around the DNA helix, with a branching point in PAR corresponding to one complete 360° turn. We propose that PARP1 stays bound to a DNA strand break end, but rotates around the helix displaced by the growing poly(ADP-ribose) chain, and that this rotation could introduce positive supercoils into damaged chromosomal DNA. This topology modulation would enable nucleosome displacement and chromatin decondensation around the lesion site, facilitating the access of DNA repair proteins or transcription factors. PARP1-mediated DNA supercoiling can be transmitted over long distances, resulting in changes in the high-order chromatin structures. The available structures of PARP1 are consistent with the strand break-induced PAR synthesis as a driving force for PARP1 rotation around the DNA axis.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-11-30
    Description: Serrated adenocarcinoma (SAC) and colorectal carcinomas showing histological and molecular features of high-level of microsatellite instability (hmMSI-H) are both end points of the serrated pathway of colorectal carcinogenesis. Despite common features (right-sided location, CpG island methylation phenotype and BRAF mutation) there are no studies comparing the microRNA (miRNA) expression profiles in SACs and hmMSI-H. The microtranscriptome from 12 SACs and 8 hmMSI-H were analysed using Affymetrix GeneChip miRNA 3.0 arrays and differentially enriched functions involving immune response were observed from this comparison. miR-181a-2* was found significantly more expressed in hmMSI-H than in SAC and higher expression of this miRNA in microsatellite unstable colorectal cancer were corroborated by Real-Time PCR in an extended series (61 SAC, 21 hmMSI-H). An analysis of genes possibly regulated by miR-181a-2* was carried out and, amongst these, an inverse correlation of NAMPT with miR-181a-2* expression was observed, whereas, for TRAF1 and SALL1, additional regulation mechanisms involving CpG island methylation were observed. miR-181a-2* is associated with particular histological and molecular features of colorectal carcinomas within the serrated pathological pathway and might play a role in the immune responses of microsatellite instability carcinomas.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-11-30
    Description: Oxidative DNA lesions, constantly generated by both endogenous and environmentally induced reactive oxygen species, are removed via the base excision repair pathway. In bacteria, Fpg and Nei DNA glycosylases, belonging to the helix–two-turn–helix (H2TH) structural superfamily, remove oxidised purines and pyrimidines, respectively. Interestingly, the human H2TH family glycosylases, NEIL1, NEIL2 and NEIL3, have been reported to prefer oxidative lesions in DNA bubbles or single-stranded DNA. It had been hypothesised that NEIL2 might be involved in the repair of lesions in transcription bubbles; however, bubble-like structures may appear in other cellular contexts such as displacement loops (D-loops) associated with transcription, recombination or telomere maintenance. The activities of bacterial Fpg and Nei on bubble substrates were not addressed. Also, it is not known whether H2TH enzymes process bubbles containing the third DNA or RNA strand, and how the bubble length and position of the lesion within a bubble affect the excision. We have investigated the removal of 8-oxoguanine (8-oxoG) and 5,6-dihydrouracil (DHU) by Escherichia coli Fpg and Nei and human NEIL1 and NEIL2 from single-strand oligonucleotides, perfect duplexes, bubbles with different numbers of unpaired bases (6–30), bubbles containing the lesion in different positions and D-loops with the third strand made of DNA or RNA. Fpg, NEIL1 and NEIL2 efficiently excised lesions located within bubbles, with NEIL1 and NEIL2 being specific for DHU, and Fpg removing both 8-oxoG and DHU. Nei, in contrast, was significantly active only on DHU located in double-stranded DNA. Fpg and NEIL1 also tolerated the presence of the third strand of either DNA or RNA in D-loops if the lesion was in the single-stranded part, and Fpg, Nei and NEIL1 excised lesions from the double-stranded DNA part of D-loops. The presence of an additional unpaired 5′-tail of DNA or RNA did not affect the activity. No significant position preference for lesions in a 12-mer bubble was found. Overall, the activities of Fpg, NEIL1 and NEIL2 on these non-canonical substrates are consistent with the possibility that these enzymes may participate in the repair in structures arising during transcription or homologous recombination.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-12-27
    Description: Defects in DNA repair have been linked to the accumulation of somatic mutations in tumours. These mutations can promote oncogenesis; however, recent developments have indicated that they may also lead to a targeted immune response against the tumour. This response is initiated by the development of new antigenic epitopes (neoepitopes) arising from mutations in protein-coding genes that are processed and then presented on the surface of tumour cells. These neoepitopes are unique to the tumour, thus enabling lymphocytes to launch an immune response against the cancer cells. Immunotherapies, such as checkpoint inhibitors (CPIs) and tumour-derived vaccines, have been shown to enhance the immunogenic response to cancers and have led to complete remission in some cancer patients. There are tumours that are not responsive to immunotherapy or conventional tumour therapeutics; therefore, there is a push for new treatments to combat these unresponsive cancers. Recently, combinatorial treatments have been developed to further utilise the immune system in the fight against cancer. These treatments have the potential to exploit the defects in DNA repair by inducing more DNA damage and mutations. This can potentially lead to the expression of high levels of neoepitopes on the surface of tumour cells that will stimulate an immunological response. Overall, exploiting DNA repair defects in tumours may provide an edge in this long fight against cancer.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...