ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2019-12-03
    Description: Implementation of the seventh amendment to the EU Cosmetics Directive has driven much research into suitable in vitro alternative assays to support satisfactory risk assessments. One such assay is the reconstructed skin micronucleus (RSMN) assay. First reported in 2006, further development occurred and a standard protocol was published in 2011. To evaluate and optimise the assay at Covance Laboratories, we tested nine chemicals [4-nitrophenol (4-NP), cyclohexanone (CH), 2-ethyl-1,3-hexanediol (2-EHD), methyl methansulfonate (MMS), mitomycin C (MMC), ethyl nitrosourea (ENU), benzo[a]pyrene (BaP), cyclophosphamide (CPA) and vinblastine (VIN)] using the EpiDerm™ 3D skin model (MatTek Corporation®, IVLSL, Bratislava, Slovakia) and compared the data using the standard 48-h treatment regimen and also an emerging 72-h treatment protocol. The EpiDerm™ tissue has reportedly some metabolic capacity but data using 48-h treatments has provided mixed results. Our investigations demonstrate that the two chemicals requiring metabolic activation (BaP and CPA) were negative following the 48-h protocol but were clearly positive following 72-h treatment. Furthermore, Replication Index (RI) data showed higher RI values in vehicle control treatments (indicating increased cell division) across the treatment set following 72-h treatments. A general greater magnitude of micronucleus (MN) induction was also observed following test chemical treatment. These data suggest that the 72-h treatment protocol is more suitable as a standard approach for the detection of clastogenic, aneugenic and metabolically activated chemicals in the RSMN assay. For further assay optimisation, we compare the statistical power of scoring cells from duplicate or triplicate cultures per treatment concentration and provide recommendations.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-05-01
    Description: The in vitro micronucleus (IVMN) test was endorsed for regulatory genotoxicity testing with adoption of the Organisation for Economic Co-operation and Development (OECD) test guideline (TG) 487 in 2010. This included two equally acceptable options for extended treatment in the absence of metabolic activation: a treatment for 1.5–2.0 cell cycles with harvest at the end of treatment (Option A) or treatment for 1.5–2.0 cell cycles followed by recovery for 1.5–2.0 cell cycles prior to harvest (Option B). Although no preferences were discussed, TG 487 cautions that Option B may not be appropriate for stimulated lymphocytes where exponential growth may be declining at 96 h after phytohaemagglutinin (PHA) stimulation. Following revision of TG 487 in 2014 and 2016, emphasis has been placed on using Option A. Given the purpose of the IVMN assay is to determine both clastogenic and aneugenic potential, the authors believe the assay is compromised if an extended treatment with recovery is not included for sensitive detection of certain classes of chemical. In this study, average generation time (via bromodeoxyuridine incorporation) of human peripheral blood lymphocytes (HPBL) was measured up to 144 h after PHA stimulation. In addition, the HPBL micronucleus (MN) assay was performed using Option A and B treatment schedules. Cytotoxicity (replication index) and MN induction were determined following treatment with 14 chemicals. The data demonstrate that lymphocytes actively divide beyond 96 h after PHA stimulation. Furthermore, MN induction was only observed with some aneugenic chemicals and nucleoside analogues in HPBLs following extended treatment with a recovery period. For the majority of chemicals tested the magnitude of MN induction was generally greater and MN induction was observed across a wider concentration range following the Option B treatment schedule. In addition, steep concentration-related toxicity following treatment without recovery is more common, making selection of suitable concentrations (within regulatory toxicity limits) for MN analysis challenging.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...