ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (23,641)
  • Cambridge University Press  (23,641)
  • Geological Magazine  (288)
  • 2106
Collection
  • Articles  (23,641)
Publisher
  • Cambridge University Press  (23,641)
Topic
  • 1
    Publication Date: 2021-02-01
    Description: A recent excavation yielded 118 large tridactyl footprints in the Lower Jurassic Dolomitic Formation of the Causses Basin, at Mongisty in southern France. Most of the tracks are ascribed to Eubrontes giganteus Hitchcock, 1845. They are preserved on a surface of 53 m2 and form parallel rows with a preferential orientation towards the north. Such an abundance and density of E. giganteus is observed for the first time in the Early Jurassic from the Causses Basin. Sedimentological and ichnotaphonomical analyses show that the footprints were made at different time intervals, thus excluding the passage of a large group. In contrast to all other tracksites from the Dolomitic Formation, where tracks are preserved in fine-grained sediments corresponding to low-energy depositional palaeoenvironments, the tracks from Mongisty are preserved in coarse-grained sediment which is a matrix- to clast-supported breccia. Clasts consist of angular to sub-rounded, millimetric to centimetric-scale (up to 2 cm), poorly sorted, randomly oriented, homogeneous dolostone intraclasts floating in a dolomudstone matrix. Sedimentological analysis shows that the depositional environments of Mongisty varied from subtidal to intertidal/supratidal settings in a large and protected flat marsh. The lithology of the track-bearing surfaces indicates that the mudflat of the Causses Basin was sporadically affected by large mud flows that reworked and redeposited mudstone intraclasts coming from the erosion of upstream, dry and partially lithified mud beds. Throughout the world, this type of preservation of dinosaur tracks in tidal matrix- to clast-supported breccias remains rare.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-03-12
    Description: The theory of plate tectonics suggests that deformation occurs mainly along plate boundaries; however, compression can result in the formation of orogens and basins within intracontinental settings. During these two tectonic processes, the sedimentation and environmental changes occur in response to marginal and intracontinental deformation. Early Jurassic – Early Cretaceous deformation and basin formation along the Qinling orogenic belt and the northwestern Sichuan Basin in central–SW China are ideal for investigating a reactivated tectonic belt and basin formation. We studied the Lower Jurassic – Lower Cretaceous sedimentary sequences and structures along the northwestern margin of the Sichuan Basin, and obtained detrital zircon U–Pb ages for these rocks. The structures show that deformation migrated SE-wards and S-wards into the Sichuan Basin along the Longmen Shan, Micang Shan and Daba Shan tectonic belts during middle–late Mesozoic time. The Lower Jurassic oligomictic conglomerates have a smaller grain size and thicken towards the south, indicating protracted transport from a northern source. The conglomerates deposited near-source record post-orogenic south-vergent thrusting during the Late Triassic – Early Jurassic epochs. The Lower Cretaceous conglomerates and sandstones have multiple sources, which indicate that they were rapidly deposited near their source, synchronous with thrusting that occurred in response to coeval SE-wards and S-wards thrusting in the Longmen Shan and Daba Shan tectonic belts during the Late Jurassic – Early Cretaceous epochs. Detrital zircon grains from the Lower Jurassic – Lower Cretaceous sedimentary rocks yielded age peaks of 2600–2200, 1850–1600, 850–700, 540–400, 250–180 and 180–140 Ma. A comparison of these ages with those of surrounding exposed rocks indicates that the sediments in the northwestern Sichuan Basin were supplied from the Qinling orogenic belt, the northwestern Yangtze Block, the south margin of the North China Block and the Songpan–Garzê Terrane. The youngest peaks of detrital zircon U–Pb ages at 207 and 159 Ma constrain the two stages of intracontinental shortening and highlight the link between intracontinental deformation and sedimentation.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-03-22
    Description: This paper provides insight into the Late Ordovician to earliest Silurian evolution of sedimentary environments in the southern Holy Cross Mountains (SE Poland), which at that time were a part of the SW periphery of Baltica. The facies layout in this area was influenced by the basement block faulting, which differentiated the basin bathymetry into submarine horst and grabens, controlling facies distribution. However, the local tectonism was insufficient to fully mask the global eustatic events. Therefore, it is possible to correlate some facies changes in the Upper Ordovician and lower Llandovery sedimentary record of the southern Holy Cross Mountains with eustatic and palaeoceanographic changes reported worldwide. The most noticeable influence of eustasy on the sedimentary record in the studied area occurs at the Ordovician/Silurian boundary. It is manifested by Hirnantian regressive coarse-grained clastic sediments overlain by a post-glacial anoxic/dysoxic interval represented by the Rhuddanian transgressive black cherts and shales. It is noteworthy that the pre- and post-Hirnantian sedimentary environments in the southern Holy Cross Mountains were affected by upwelling induced by the SE trade winds.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-02-10
    Description: The Ladakh Himalayan ophiolites preserve remnants of the eastern part of the Neo-Tethyan Ocean, in the form of Dras, Suru Valley, Shergol, Spongtang and Nidar ophiolitic sequences. In Kohistan region of Pakistan, Muslim Bagh, Zhob and Bela ophiolites are considered to be equivalents of Ladakh ophiolites. In western Ladakh, the Suru–Thasgam ophiolitic slice is highly dismembered and consists of peridotites, pyroxenites and gabbros, emplaced as imbricate blocks thrust over the Mesozoic Dras arc complex along the Indus Suture Zone. The Thasgam peridotites are partially serpentinized with relict olivine, orthopyroxene and minor clinopyroxene, as well as serpentine and iron oxide as secondary mineral assemblage. The pyroxenites are dominated by clinopyroxene followed by orthopyroxene with subordinate olivine and spinel. Gabbros are composed of plagioclase and pyroxene (mostly replaced by amphiboles), describing an ophitic to sub-ophitic textural relationship. Geochemically, the studied rock types show sub-alkaline tholeiitic characteristics. The peridotites display nearly flat chondrite-normalized rare earth element (REE) patterns ((La/Yb)N = 0.6–1.5), while fractionated patterns were observed for pyroxenites and gabbros. Multi-element spidergrams for peridotites, pyroxenites and gabbros display subduction-related geochemical characteristics such as enriched large-ion lithophile element (LILE) and depleted high-field-strength element (HFSE) concentrations. In peridotites and pyroxenites, highly magnesian olivine (Fo88.5-89.3 and Fo87.8-89.9, respectively) and clinopyroxene (Mg no. of 93–98 and 90–97, respectively) indicate supra-subduction zone (SSZ) tectonic affinity. Our study suggests that the peridotites epitomize the refractory nature of their protoliths and were later evolved in a subduction environment. Pyroxenites and gabbros appear to be related to the base of the modern intra-oceanic island-arc tholeiitic sequence.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-02-09
    Description: Felsic tuff as a direct fallout deposit is known from one small area in the Kyrenia Range, north Cyprus, within deep-sea terrigenous turbidites. Nearby tuffaceous siltstones contain compositionally similar felsic volcanic rocks (c. 5–10%), mixed with terrigenous material. Sedimentary evidence indicates that the fallout tuff was variable reworked locally, whereas the tuffaceous siltstones are interpreted as turbidites mixed with terrigenous material derived from Anatolia. U–Pb dating of zircons that were extracted from a sample of relatively homogeneous tuff yielded a dominant age of 16.64 ± 0.12 Ma (Burdigalian). Zircon trace-element analysis indicates predominant derivation from within-plate-type felsic magma. Whole-rock chemical analysis of the tuffaceous sediments as a whole is compatible with a felsic arc source, similar to the post-collisional magmatism within Anatolia. Regional comparisons suggest that the nearest volcanism of similar age and composition is located c. 500 km away, within the Kırka area (Eskişehir region) of the Western Anatolia Volcanic Province. Evidence of tephra dispersal in the western Mediterranean region and climatic modelling suggests E-wards prevailing winds and therefore tephra transport over southern Anatolia and adjacent areas during early Miocene time. The north Cyprus tuffs could represent powerful Minoan (Plinian)-type eruptions in western Anatolia, coupled with SE-wards tephra transport during and soon after the onset of post-collisional magmatism.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-02-18
    Description: Early-middle Ediacaran organic-walled microfossils from the Doushantuo Formation studied in several sections in the Yangtze Gorges area, South China, show ornamented cyst-like vesicles of very high diversity. These microfossils are diagenetically permineralized and observed in petrographic thin-sections of chert nodules. Exquisitely preserved specimens belonging to seven species of Appendisphaera, Mengeosphaera, Tanarium, Urasphaera and Tianzhushania contain either single or multiple spheroidal internal bodies inside the vesicles. These structures indicate reproductive stages, endocyst and dividing cells, respectively, and are preserved at early to late ontogenetic stages in the same taxa. This new evidence supports the algal affiliations for the studied taxa and refutes previous suggestions of Tianzhushania being animal embryo or holozoan. The first record of a late developmental stage of a completely preserved specimen of T. spinosa observed in thin-section demonstrates the interior of vesicles with clusters of identical cells but without any cavity that is diagnostic for recognizing algal cysts vs animal diapause cysts. Various lines of evidence to infer biological affinities of these microfossils – morphology, reproductive characters, spatial arrangement of cells, and biochemical properties of the vesicle wall – are collectively characteristic of algal clades. Recognizing the biological affinities of these microfossils is key to understanding whether animals capable of producing such morphologically complex diapause cysts had an early Ediacaran fossil record (633–610 Ma), or the microfossils were non-animal holozoans or algae as argued herein for Tianzhushania spinosa and other studied microfossils.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-02-11
    Description: Horseshoe crabs within Austrolimulidae represent the extreme limits to which the xiphosurid Bauplan could be modified. Recent interest in this group has uncovered an unprecedented diversity of these odd-ball xiphosurids and led to suggestions that Austrolimulidae arose during the Permian Period and had become extinct by the end of the Triassic Period. Here, we extend the temporal record of Austrolimulidae by documenting a new horseshoe crab from the Lower Jurassic (Hettangian) Bayreuth Formation, Franconiolimulus pochankei gen. et sp. nov. The novel specimen displays hypertrophied genal spines, a key feature indicative of Austrolimulidae, but does not show as prominent accentuation or reduction of other exoskeletal sections. In considering the interesting family, we explore the possible origins and explanations for the bizarre morphologies exhibited by the Austrolimulidae and present hypotheses regarding the extinction of the group. Further examination of horseshoe crab fossils with unique features will undoubtedly continue to increase the diversity and disparity of these curious xiphosurids.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-02-22
    Description: Detrital coesite-bearing garnet is the final product of a complex geological cycle including coesite entrapment at ultra-high-pressure conditions, exhumation to Earth’s surface, erosion and sedimentary transport. In contrast to the usual enrichment of high-grade metamorphic garnet in medium- to coarse-sand fractions, coesite-bearing grains are often enriched in the very-fine-sand fraction. To understand this imbalance, we analyse the role of source-rock lithology, inclusion size, inclusion frequency and fluid infiltration on the grain-size heterogeneity of coesite-bearing garnet based on a dataset of 2100 inclusion-bearing grains, of which 93 contain coesite, from the Saxonian Erzgebirge, Germany. By combining inclusion assemblages and garnet chemistry, we show that (1) mafic garnet contains a low number of coesite inclusions per grain and is enriched in the coarse fraction, and (2) felsic garnet contains variable amounts of coesite inclusions per grain, whereby coesite-poor grains are enriched in the coarse fraction and coesite-rich grains extensively disintegrated into smaller fragments resulting in an enrichment in the fine fraction. Raman images reveal that: small coesite inclusions of dimension 〈 9 µm are primarily monomineralic, whereas larger inclusions partially transformed to quartz; and garnet fracturing, fluid infiltration and the coesite-to-quartz transformation is a late process during exhumation taking place at c. 330°C. A model for the disintegration of coesite-bearing garnet enables the heterogeneous grain-size distribution to be explained by inclusion frequency. High abundances of coesite inclusions cause a high degree of fracturing and fracture connections to smaller inclusions, allowing fluid infiltration and the transformation to quartz, which in turn further promotes garnet disintegration.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-04-29
    Description: Burmese amber continues to provide unique insights into the terrestrial biota inhabiting tropical equatorial forests during mid-Cretaceous time. In contrast to the large amount and great diversity of terrestrial species retrieved so far, aquatic biota constitute rare inclusions. Here we describe the first freshwater snail ever preserved in amber. The new species Galba prima sp. nov. belongs in the family Lymnaeidae, today a diverse and near globally distributed family. Its inclusion in terrestrial amber is probably a result of the amphibious lifestyle typical of modern representatives of the genus. The finding of a freshwater snail on the Burma Terrane, back then an island situated at some 1500 km from mainland Asia, has implications for the dispersal mechanisms of Mesozoic lymnaeids. The Cenomanian species precedes the evolution of waterfowl, which are today considered a main vector for long-distance dispersal. In their absence, we discuss several hypotheses to explain the disjunct occurrence of the new species.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-04-05
    Description: Myanmar is occupied by the N-wards continuation of the Sunda arc and by the Shan Plateau and its continuation through Yunnan into Tibet. Our new tectonic interpretation of the ophiolite–flysch belts, world-famous jadeite and tin deposits in Myanmar west of the Salween adopts previous proposals that, before 450-km post-early Oligocene dextral displacement along the Sagaing Fault, the ophiolite belt in NE Myanmar continued through the topography that is now located west of the fault in the Indo-Burman Ranges. Differences in cross-section through Mogok and the Shan Scarps are reconciled by the recently proposed emplacement, in our view during Permian time, of the Mogok Metamorphic Group onto the Slate Belt to form Sibumasu. We argue that during Early Jurassic time a Neo-Tethys ophiolite nappe was obducted over turbidites on Sibumasu’s passive western margin. Following reversal in tectonic polarity, the remaining Neo-Tethys subducted E-wards generating the 113–128 Ma Mondaung Arc. During ocean closure the Victoria–Katha Block and its Triassic flysch subducted beneath Sibumasu, resulting in jadeite veins in overlying serpentinite that ascended in the subduction zone and were exhumed at Hpakant and Nat Hmaw, bordering the Jade Mines Uplift. Subduction of the Indian Ocean since Albian time generated the Popa–Loimye arc, while extensional faulting led to uplift of the Indo-Burman Ranges and to the formation of the Western Tin Belt granites. Tectonic effects in Myanmar of the India–Asia collision may be confined to the Disang thrust belt in the Naga Hills.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2021-04-06
    Description: Several sag-type basins apparently developed from rift systems, but there is no consensus about how and if these grabens influenced the sedimentation of the post-rift thermal subsidence phase. The Ediacaran Jaibaras Rift Basin is one of the best-exposed sedimentary records among the NE Brazil late Precambrian – early Cambrian rift system, cropping out at the eastern margin of the intracratonic Parnaíba Basin and extending below it towards the west. Here we present detrital zircon U–Pb ages of rocks from the Jaibaras (Aprazível Formation) and Parnaíba (Ipu Formation) basins, in order to understand the provenance patterns, maximum depositional ages (MDA) and age relationship between these units. The MDA for the Aprazível Formation (c. 499 ± 5 Ma) indicates a Cambrian age for the upper part of the Jaibaras Basin. The bulk U–Pb data indicate that the Ipu Formation started to deposit during late Cambrian and/or Early Ordovician time, despite its MDA (c. 528 ± 11 Ma) being older than that of the Aprazível Formation. Detrital zircon provenance suggests that the primary source areas for the early deposits of the Parnaíba Basin were mountains related to the Brasiliano Orogeny to the south and SE (e.g. Rio Preto and Riacho do Pontal metamorphic belts). Finally, our data emphasize the key change in source areas from the rift to the initial deposition of the intracratonic phase, indicating major depositional style changes between both basins after the Gondwana assembly.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2021-04-12
    Description: Detrital zircon geochronology can help address stratigraphic- to lithospheric-scale geological questions. The approach is reliant on statistically robust, representative age distributions that fingerprint source areas. However, there is a range of biases that may influence any detrital age signature. Despite being a fundamental and controllable source of bias, handpicking of zircon grains has received surprisingly little attention. Here, we show statistically significant differences in age distributions between bulk-mounted and handpicked fractions from an unconsolidated heavy mineral sand deposit. Although there is no significant size difference between bulk-mounted and handpicked grains, there are significant differences in their aspect ratio, circularity and colour, which indicate inadvertent preferential visual selection of euhedral and coloured zircon grains. Grain colour comparisons between dated and bulk zircon fractions help quantify bias. Bulk-mounting is the preferred method to avoid human-induced selection bias in detrital zircon geochronology.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2021-04-12
    Description: The classical genus of Ediacaran macroorganisms, Dickinsonia, was part of an extensive benthic marine community inhabiting the fields of microbial mats. The remains of Dickinsonia are commonly preserved in the position of adhesion to the habitat substrate. However, these were mobile organisms. In addition to the already known feeding traces of Dickinsonia, structures described as traces of motor activity are reported. Long parallel furrows, extending from the posterior end of the body imprint, are interpreted as imprints of ridges left by an organism moving along the surface of the substrate. Groups of differently shaped grooves laying in the depression that enhalo the Dickinsonia body imprints or accompany their individual areas are interpreted as imprints of ridges and cords of mucous material. They are considered to represent structures of self-determined stretching and lift-off of the body margins from the substrate. The rings and arcs of silt- and sand-sized mineral particles bordering the body imprints are composed of material that was supposedly brushed off from the surface of the microbial mat by Dickinsonia. They are considered traces of the adhesion of these organisms to the substrate. Accumulations of multidirectional pulling and tear-off structures, lacking the body imprint but accompanied by the joint plane passing into the overlying sediment and cutting through the bedding, are interpreted as escape traces. The dual modality of the behaviour (attachment and mobility) could indicate the adaptability of Dickinsonia to life in extremely shallow-water environments.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2021-04-14
    Description: Throughout the Ediacaran Period, variable water-column redox conditions persisted along productive ocean margins due to a complex interplay between nutrient supply and oceanographic restriction. These changing conditions are considered to have influenced early faunal evolution, with marine anoxia potentially inhibiting the development of the ecological niches necessary for aerobic life forms. To understand this link between oxygenation and evolution, the combined geochemical and palaeontological study of marine sediments is preferable. Located in the Yangtze Gorges region of southern China, lagoonal black shales at Miaohe preserve alga and putative metazoans, including Eoandromeda, a candidate total-group ctenophore, thereby providing one example of where integrated study is possible. We present a multi-proxy investigation into water-column redox variability during deposition of these shales (c. 560–551 Ma). For this interval, reactive iron partitioning indicates persistent water-column anoxia, while trace metal enrichments and other geochemical data suggest temporal fluctuations between ferruginous, euxinic and rare suboxic conditions. Although trace metal and total organic carbon values imply extensive basin restriction, sustained trace metal enrichment and δ15Nsed data indicate periodic access to open-ocean inventories across a shallow-marine sill. Lastly, δ13Corg values of between −35‰ and −40‰ allow at least partial correlation of the shales at Miaohe with Member IV of the Doushantuo Formation. This study provides evidence for fluctuating redox conditions in the lagoonal area of the Yangtze platform during late Ediacaran time. If these low-oxygen environments were regionally characteristic, then the restriction of aerobic fauna to isolated environments can be inferred.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2021-02-05
    Description: A large bone from the upper Eocene Totland Bay Formation of Hordle Cliff (Hampshire), originally described by Seeley (1866) as Macrornis tanaupus and interpreted by him as belonging to a ‘large Struthious bird’, is redescribed and illustrated for the first time. It is not a reptile bone, as previously suggested, but the proximal part of a left avian tibiotarsus. A mass estimate of 43 kg, comparable to that of an emu, suggests that it was flightless. A precise identification is difficult because of the incompleteness of the specimen, and Macrornis tanaupus should probably be considered as a nomen dubium. We exclude Seeley’s interpretation as a ratite, as well as previous attributions to gastornithids. We tentatively suggest that the specimen may belong to a phorusrhacid, which would extend the stratigraphic record of this group in Europe by a few million years. The presence of a large terrestrial bird in the upper Eocene of Europe may have a bearing on the interpretation of enigmatic footprints of very large birds from the upper Eocene Paris gypsum.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2021-04-23
    Description: The Sargur Group has been considered to be the oldest group (〉3.0 Ga) in the Archaean sequence of the Dharwar Craton in south India, whereas the rocks of the Dharwar Supergroup are younger (between 3.0 and 2.55 Ga). The supracrustal units of the Sargur Group were deposited during the Archaean period. The Banavara quartzite forms part of the supracrustal Sargur Group and contains significant amounts of chromian spinel (Cr-spinel). Here, U–Pb and Hf isotopes of detrital zircons are integrated with compositional data and X-ray refinement parameters for Cr-spinels to decipher the provenance of the metasediments. Zircons show an age spectrum from 3.15 to 2.50 Ga, and juvenile Hf isotopic compositions (ϵHf = +0.8 to +6.4) with model ages between 3.3 and 3.0 Ga. Major- and trace-element contents of the Cr-spinels do not resemble those in the Sargur ultramafic rocks, but resemble well-characterized Archaean anorthosite-hosted chromites. Cr-spinel trace-element signatures indicate that they have undergone secondary alteration or metamorphism. X-ray refinement parameters for the Cr-spinels also resemble the anorthosite-hosted chromites. We conclude that the detrital minerals were probably derived from gneissic and anorthositic rocks of the Western Dharwar Craton, and that the Sargur Group sequences have experienced a younger (2.5 Ga) metamorphic overprint.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2021-07-15
    Description: The recent proliferation of deformable plate tectonic modelling techniques has provided a new direction in the study of plate tectonics with substantial implications for our understanding of plate deformation and past kinematics. Such models account for intraplate deformation, yet are highly variable in their inputs, capabilities and applications. The aim of this commentary is to review recent contributions to this topic, and to consider future directions and major omissions. Through this review it is apparent that the current published deformable models can be subdivided into those that as an input either: (1) solely use plate motions to drive deformation, or (2) require stretching or beta factor. Deformable models are resolving some outstanding issues with plate reconstructions, but major simplifications and modelling assumptions remain. Primarily, obtaining model constraints on the spatio-temporal evolution of deformation is an outstanding problem. Deformable plate models likely work best when the kinematics of smaller plates are included. However, questions remain regarding how to define such blocks, and their kinematic histories, whilst some work suggests that inclusion of such entities is negated through quantitative restorations.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2021-07-13
    Description: The episode of widespread organic carbon deposition marked by peak black shale sedimentation during the Palaeoproterozoic is also reflected in exceptionally abundant graphite deposits of this age. Worldwide anoxic/euxinic sediments were preserved as a deep crustal reservoir of both organic carbon, and sulphur in accompanying pyrite, both commonly 〉1 wt %. The carbon- and sulphur-rich Palaeoproterozoic crust interacted with mafic magma to cause Ni–Co–Cu–PGE mineralization over the next billion years, and much uranium currently produced is from Mesoproterozoic deposits nucleated upon older Palaeoproterozoic graphite. Palaeoproterozoic carbon deposition has thus left a unique legacy of both graphite deposits and long-term ore deposition.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2021-08-10
    Description: The Jueluotage area, which is located in the southern branch of the Eastern Tianshan and northeast of the Tarim Basin, represents a vital locality for investigating intracontinental reactivation induced by the tectonic events at the Eurasian plate margin. This study applies zircon and apatite (U–Th)/He and apatite fission-track thermochronology to the Jueluotage area in the Eastern Tianshan. Our data and thermal history modelling show that the Jueluotage area experienced Triassic–Early Jurassic (˜240–180 Ma) cooling, reflecting the closure of the North Tianshan Ocean and subsequent far-field effects of collision/accretion of the Qiangtang Block and Kunlun terrane. Following this period of fast cooling, a differential exhumation process occurred between the various tectonic belts in the Jueluotage area. The Aqishan–Yamansu belt was exposed at the surface during the Triassic–Early Jurassic cooling phase and experienced subsequent burial, which continued until Early Cretaceous time when a pulse of exhumation occurred. However, the major fault zones (Kanggurtag ductile shear zone and Aqikkuduk Fault) and Central Tianshan arc have remained tectonically stable since Early Jurassic time. No Cenozoic rapid cooling was recorded by the low-temperature thermochronology results in this study, indicating that much of the Jueluotage area was exhumed to the upper crust in the late Mesozoic period.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2021-08-10
    Description: A detailed geochronological study was conducted on zircons from a diorite sample of the Posets pluton (Axial Zone, Pyrenees). The extracted igneous zircons constrain the emplacement of the pluton to 302 ± 2 Ma and 301 ± 3 Ma, by means of U–Pb sensitive high-resolution ion microprobe (SHRIMP) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analyses, respectively. Considering the syn- to late-tectonic emplacement of the Posets pluton during the main Variscan deformation event (D2), the obtained ages constrain the long-lasting D2, associated with the dextral transpression registered through the Axial Zone of the Pyrenees.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2021-04-13
    Description: Oceanic red beds (ORBs) are present in Upper Cretaceous and Danian deep-marine deposits in the Basque–Cantabrian Basin of northern Spain. The presence and regularity of the succession of marl–limestone couplets is exceptional based on the macroscopic, microscopic and geochemical evidence collected. Five types of marl–limestone couplets are identified based on the colour, and a high maximum sedimentation rate (3.6 cm ka–1 ) is noted. The oxidizing activity of deep, cold-water masses is indicated by the oxygen isotope signal in the lower–upper Maastrichtian and Danian sections and the presence of the boreal inoceramid Spyridoceramus tegulatus. In theory, the variation in colour from grey to greenish-yellow, purple and pink up to red tones correlates with the Fe2+/(Fe2++Fe3+) ratio. It is interpreted as the possible palaeoenvironmental transit of particles that sediment out slowly in oxic environments when they circulate through cooler, oxidizing water masses. The colour is considered to be a depositional feature, and hematite, detected by X-ray diffraction, is the main staining agent, without discarding the possible redistribution of previous oxyhydroxides passing to hematite as a final product. The cell filling of the foraminifer shells does not incorporate appreciable amounts of Fe and Mg during diagenesis. Bacterial activity is detected using scanning electron microscopy images, both in the coccolith debris and in the detrital micas, although there is uncertainty as to its importance in the staining process.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2021-03-24
    Description: Late Mesozoic igneous rocks are important for deciphering the Mesozoic tectonic setting of NE China. In this paper, we present whole-rock geochemical data, zircon U–Pb ages and Lu–Hf isotope data for Early Cretaceous volcanic rocks from the Tulihe area of the northern Great Xing’an Range (GXR), with the aim of evaluating the petrogenesis and genetic relationships of these rocks, inferring crust–mantle interactions and better constraining extension-related geodynamic processes in the GXR. Zircon U–Pb ages indicate that the rhyolites and trachytic volcanic rocks formed during late Early Cretaceous time (c. 130–126 Ma). Geochemically, the highly fractionated I-type rhyolites exhibit high-K calc-alkaline, metaluminous to weakly peraluminous characteristics. They are enriched in light rare earth elements (LREEs) and large-ion lithophile elements (LILEs) but depleted in high-field-strength elements (HFSEs), with their magmatic zircons ϵHf(t) values ranging from +4.1 to +9.0. These features suggest that the rhyolites were derived from the partial melting of a dominantly juvenile, K-rich basaltic lower crust. The trachytic volcanic rocks are high-K calc-alkaline series and exhibit metaluminous characteristics. They have a wide range of zircon ϵHf(t) values (−17.8 to +12.9), indicating that these trachytic volcanic rocks originated from a dominantly lithospheric-mantle source with the involvement of asthenospheric mantle materials, and subsequently underwent extensive assimilation and fractional crystallization processes. Combining our results and the spatiotemporal migration of the late Early Cretaceous magmatic events, we propose that intense Early Cretaceous crust–mantle interaction took place within the northern GXR, and possibly the whole of NE China, and that it was related to the upwelling of asthenospheric mantle induced by rollback of the Palaeo-Pacific flat-subducting slab.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2021-03-22
    Description: Delimiting the Aravalli mountain range in the east, the Great Boundary Fault (GBF) occurs as a crustal-scale tectonic lineament in the NW Indian Shield. The structural and tectonic characteristics of the GBF are, as yet, not well-understood. We attempt to fill this gap by using a combination of satellite image processing, high-resolution outcrop mapping and structural analysis around Chittaurgarh. The study area exposes the core and damage zone of the GBF. Three successive phases of folding, F1, F2 and F3, are associated with deformation in the GBF. The large-scale structural characteristics of the GBF core are: (i) a non-coaxial refolding of F1 folds by F2 folds; and (ii) the parallelism between the GBF and F2 axial traces. In addition, numerous metre-scale ductile shear zones cut through the rocks in the GBF core. The damage zone is characterized by the large-scale F1 folds and the mesoscopic-scale strike-slip faults, thrusts and brittle-ductile shear zones. Several lines of evidence, such as the inconsistent overprinting relationship between the strike-slip faults and thrusts, the occurrence of en échelon folds and the palaeostress directions suggest that the GBF is a dextral transpression fault zone. Structural geometry and kinematic indicators imply a wrench- and contraction-dominated deformation in the core and damage zone, respectively. We infer that the GBF is a strain-partitioned dextral transpression zone.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2021-03-18
    Description: The Proterozoic Chotanagpur Granite Gneiss Complex (CGGC) at the northern boundary of the Central Indian Tectonic Zone (CITZ) of the eastern Indian shield preserves relics of fossilized oceanic back-arc crust. We describe the field, petrographical and geochemical characteristics of the mafic rocks comprising pillow basalts and dolerites from the Bathani area of the northern fringe of the CGGC, eastern India. The basalts consist of plagioclase feldspar, hornblende, opaque minerals (Fe–Ti oxide) and chlorite, and the dolerite consists of plagioclase, hornblende and opaque minerals. Our data indicate that the Bathani mafic rocks have tholeiitic to transitional composition and are overprinted by greenschist facies metamorphic conditions; however, REE and fluid immobile elements preserve their primary geochemical signatures. The (La/Sm)N ratios (1.38–2.15) and chondrite-normalized REE patterns point to an enriched mid-ocean ridge basalt (E-MORB) mantle source. Geochemical characteristics indicate a mixed signature of MORB and arc tholeiite with enrichment of Ba, Th, Eu and Sr, similar to that of back-arc supra-subduction zone ophiolites. These mafic rocks are the product of MORB-like magma derived from a depleted mantle corresponding to 〈 2% partial melting of spinel lherzolite, enriched by subduction-induced slab metasomatism and melting. The Bathani mafic rocks are representative of the upper part of a supra-subduction zone columnar ophiolite section, which was emplaced onto the present-day northern margin of the CGGC during suturing of the northern and southern Indian block at c. 1.9 Ga during the Nuna amalgamation.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2021-04-16
    Description: The recently developed fluorite (U–Th)/He thermochronology (FHe) technique was applied to date fluorite mineralization and elucidate the exhumation history of the Mazandaran Fluorspar Mining District (MFMD) located in the east Central Alborz Mountains, Iran. A total of 32 fluorite single-crystal samples from four Middle Triassic carbonate-hosted fluorite deposits were dated. The presented FHe ages range between c. 85 Ma (age of fluorite mineralization) and c. 20 Ma (erosional cooling during the exhumation of the Alborz Mountains). The Late Cretaceous FHe ages (i.e. 84.5 ± 3.6, 78.8 ± 4.4 and 72.3 ± 3.5 Ma) are interpreted as the age of mineralization and confirm an epigenetic origin for ore mineralization in the MFMD, likely a result of prolonged hydrothermal circulation of basinal brines through potential source rocks. Most FHe ages scatter around the Eocene Epoch (55.4 ± 3.9 to 33.1 ± 1.7 Ma), recording an important cooling event after heating by regional magmatism in an extensional tectonic regime. Cooling of the heated fluorites, as a result of thermal relaxation in response to geothermal gradient re-equilibration after the end of magmatism, or exhumation cooling during extensional tectonics characterized by lower amount of erosion are most probably the causes of the recorded Eocene FHe cooling ages. Oligocene–Miocene FHe ages (i.e. 27.6 ± 1.4 to 19.5 ± 1.1 Ma) are related to the accelerated uplift of the whole Alborz Mountains, possibly as a result of the initial collision between the Afro-Arabian and Eurasian plates further to the south.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2021-04-12
    Description: The Arabian Shield of Saudi Arabia represents part of the Arabian–Nubian Shield and forms an exposure of juvenile continental crust on the eastern side of the Red Sea rift. Gabbroic intrusions in Saudi Arabia constitute a significant part of the mafic magmatism in the Neoproterozoic Arabian Shield. This study records the first detailed geological, mineralogical and geochemical data for gabbroic intrusions located in the Gabal Samra and Gabal Abd areas of the Hail region in the Arabian Shield of Saudi Arabia. Geological field relations and investigations, supported by mineralogical and geochemical data, indicate that the gabbroic intrusions are generally unmetamorphosed and undeformed, and argue for their post-collisional emplacement. Their mineralogical and geochemical features reveal crystallization from hydrous, mainly tholeiitic, mafic magmas with arc-like signatures, which were probably inherited from the previous subduction event in the Arabian–Nubian Shield. The gabbroic rocks exhibit sub-chondritic Nb/U, Nb/Ta and Zr/Hf ratios, revealing depletion of their mantle source. Moreover, the high ratios of (Gd/Yb)N and (Dy/Yb)N indicate that their parental mafic melts were derived from a garnet-peridotite source with a garnet signature in the mantle residue. This implication suggests that the melting region was at a depth exceeding ∼70–80 km at the garnet stability field. They have geochemical characteristics similar to other post-collisional gabbros of the Arabian–Nubian Shield. Their origin could be explained by adiabatic decompression melting of depleted asthenosphere that interacted during ascent with metasomatized lithospheric mantle in an extensional regime, likely related to the activity of the Najd Fault System, at the end of the Pan-African Orogeny.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2021-03-30
    Description: Heavy mineral analysis is a long-standing and valuable tool for sedimentary provenance analysis. Many studies have indicated that heavy mineral data can also be significantly affected by hydraulic sorting, weathering and reworking or recycling, leading to incomplete or erroneous provenance interpretations if they are used in isolation. By combining zircon U–Pb geochronology with heavy mineral data for the southern North Sea Basin, this study shows that the classic model of sediment mixing between a northern and a southern source throughout the Neogene is more complex. In contrast to the strongly variable heavy mineral composition, the zircon U–Pb age spectra are mostly constant for the studied samples. This provides a strong indication that most zircons had an initial similar northern source, yet the sediment has undergone intense chemical weathering on top of the Brabant Massif and Ardennes in the south. This weathered sediment was later recycled into the southern North Sea Basin through local rivers and the Meuse, leading to a weathered southern heavy mineral signature and a fresh northern heavy mineral signature, yet exhibiting a constant zircon U–Pb age signature. Thus, this study highlights the necessity of combining multiple provenance proxies to correctly account for weathering, reworking and recycling.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2021-03-18
    Description: Serpentinization of ultramafic rocks in the sea and on land leads to the generation of alkaline fluids rich in molecular hydrogen (H2) and methane (CH4) that favour the formation of carbonate mineralization, such as veins in the sub-seafloor, seafloor carbonate chimneys and terrestrial hyperalkaline spring deposits. Examples of this type of seawater–rock interaction and the formation of serpentinization-derived carbonates in a shallow-marine environment are scarce, and almost entirely lacking in the geological record. Here we present evidence for serpentinization-induced fluid seepage in shallow-marine sedimentary rocks from the Upper Cretaceous (upper Campanian to lower Maastrichtian) Qahlah Formation at Jebel Huwayyah, United Arab Emirates. The research object is a metre-scale structure (the Jebel Huwayyah Mound) formed of calcite-cemented sand grains, which formed a positive seafloor feature. The Jebel Huwayyah Mound contains numerous vertically orientated fluid conduits containing two main phases of calcite cement. We use C and O stable isotopes and elemental composition to reconstruct the fluids from which these cements precipitated and infer that the fluids consisted of variable mixtures of seawater and fluids derived from serpentinization of the underlying Semail Ophiolite. Based on their negative δ13C values, hardgrounds in the same section as the Jebel Huwayyah Mound may also have had a similar origin. The Jebel Huwayyah Mound shows that serpentinization of the Semail Ophiolite by seawater occurred very soon after obduction and marine transgression, a process that continued through to the Miocene, and, with interaction of meteoric water, up to the present day.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2021-03-18
    Description: The Upper Triassic Xujiahe Formation is a typical tight gas reservoir in which natural fractures determine the migration, accumulation and production capacity of tight gas. In this study, we focused on the influences of natural fractures on the tight gas migration and production. We clarified characteristics and attributes (i.e. dips, apertures, filling degree and cross-cutting relationships) of the fractures based on image logging interpretations and core descriptions. Previous studies of electron spin resonance, carbon and oxygen isotopes, homogenization temperature of fluid inclusions analysis and basin simulation were considered. This study also analysed the fracture sequences, source of fracture fillings, diagenetic sequences and tight gas enrichment stages. We obtained insight into the relationship between fracture evolution and hydrocarbon charging, particularly the effect of the apertures and intensity of natural fractures on tight gas production. We reveal that the bedding fractures are short horizontal migration channels of tight gas. The tectonic fractures with middle, high and nearly vertical angles are beneficial to tight gas vertical migration. The apertures of fractures are controlled by the direction of maximum principal stress and fracture angle. The initial gas production of the vertical wells presents a positive correlation with the fracture abundance, and the intensity and aperture of fractures are the fundamental factors that determine the tight gas production. With these findings, this study is expected to guide the future exploration and development of tight gas with similar geological backgrounds.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2021-04-05
    Description: An extensive dataset of major- and trace-element and B-isotope composition related to the compositional variation of the tourmalines from the S-type granite and pegmatite from the Upper Bonai and Gangpur Group granitoids, eastern India, is provided. The Gangpur Schist Belt, consisting of the Upper Bonai and Gangpur Group, lies at the eastern end of the Proterozoic Central Indian Tectonic Zone. An attempt to constrain the source of the boron isotope and describe the magmatic–hydrothermal evolution of the granite–pegmatite system is made. The tourmalines record generally low trace-element concentrations, with the exception of some elements such as Zn, Li, Ga, Mn and Ti. The Zn and Li concentration increases from the tourmalines in the granites to the tourmalines in the pegmatite. Trace-element compositions also vary slightly from the core tourmaline to the rim tourmaline. Tourmalines in granites/pegmatites are mostly Fe-rich schorl, and have S-type B-isotopic signature (δ11B = −10‰ to −12‰). Their chemistries reflect changing salinities of the granitic melts as well as vapour exsolution during progressive crystallization. This study indicates that the tourmalines in the pegmatites crystallized from evolved flux-element-rich (F, B, Li) melt, probably after the crystallization of granite-forming melt.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2021-08-26
    Description: New detrital U–Pb zircon ages from the Sanandaj–Sirjan metamorphic zone in the Zagros orogenic belt allow discussion of models of the late Neoproterozoic to early Palaeozoic plate tectonic evolution and position of the Iranian microcontinent within a global framework. A total of 194 valid age values from 362 zircon grains were obtained from three garnet-micaschist samples. The most abundant detrital zircon population included Ediacaran ages, with the main age peak at 0.60 Ga. Other significant age peaks are at c. 0.64–0.78 Ga, 0.80–0.91 Ga, 0.94–1.1 Ga, 1.8–2.0 Ga and 2.1–2.5 Ga. The various Palaeozoic zircon age peaks could be explained by sediment supply from sources within the Iranian microcontinent. However, Precambrian ages were found, implying a non-Iranian provenance or recycling of upper Ediacaran–Palaeozoic clastic rocks. Trace-element geochemical fingerprints show that most detrital zircons were sourced from continental magmatic settings. In this study, the late Grenvillian age population at c. 0.94–1.1 Ga is used to unravel the palaeogeographic origin of the Sanandaj–Sirjan metamorphic zone. This Grenvillian detrital age population relates to the ‘Gondwana superfan’ sediments, as found in many Gondwana-derived terranes within the European Variscides and Turkish terranes, but also to units further east, e.g. in the South China block. Biogeographic evidence proves that the Iranian microcontinent developed on the same North Gondwana margin extending from the South China block via Iran further to the west.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2021-09-10
    Description: The newly discovered Bibole banded iron formations are located within the Nyong Group at the northwest of the Congo Craton in Cameroon. The Bibole banded iron formations comprise oxide (quartz-magnetite) and mixed oxide-silicate (chlorite-magnetite) facies banded iron formations, which are interbedded with felsic gneiss, phyllite and quartz-chlorite schist. Geochemical studies of the quartz-magnetite banded iron formations and chlorite-magnetite banded iron formations reveal that they are composed of 〉95 wt % Fe2O3 plus SiO2 and have low concentrations of Al2O3, TiO2 and high field strength elements. This indicates that the Bibole banded iron formations were not significantly contaminated by detrital materials. Post-Archaean Australian Shale–normalized rare earth element and yttrium patterns are characterized by positive La and Y anomalies, a relative depletion of light rare earth elements compared to heavy rare earth elements and positive Eu anomalies (average of 1.86 and 1.15 for the quartz-magnetite banded iron formations and chlorite-magnetite banded iron formations, respectively), suggesting the influence of low-temperature hydrothermal fluids and seawater. The quartz-magnetite banded iron formations display true negative Ce anomalies, while the chlorite-magnetite banded iron formations lack Ce anomalies. Combined with their distinct Eu anomalies consistent with Algoma- and Superior-type banded iron formations, we suggest that the Bibole banded iron formations were deposited under oxic to suboxic conditions in an extensional basin. SIMS U–Pb data indicate that the Bibole banded iron formations were deposited at 2466 Ma and experienced metamorphism and metasomatism at 2078 Ma during the Eburnean/Trans-Amazonian orogeny. Overall, these findings suggest that the studied banded iron formations probably marked the onset of the rise of atmospheric oxygen, also known as the Great Oxidation Event in the Congo Craton.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2021-04-26
    Description: Late Miocene volcanic rocks host the Sari Gunay epithermal gold deposit in NW Iran. These rocks are located within the Hamedan–Tabriz volcanic belt and occupy the northwestern part of the Sanandaj–Sirjan zone (SaSZ). The volcanic rocks span in composition from latite to dacite and rhyolite. Plagioclase, hornblende, biotite and quartz are the main phenocrysts in a fine-grained and glassy matrix. Laser ablation inductively coupled plasma mass spectrometry zircon U–Pb dating yielded crystallization ages of 10.10 ± 0.01 Ma and 11.18 ± 0.14 Ma for rhyolite and dacite, respectively. High ratios of Sr/Y (〉 20) and La/Yb (〉 20), high contents of Sr (≥ 400 ppm), low contents of MgO (≤ 6 wt%), Y ≤ 18 ppm (c. 16.5 ppm), Yb ≤ 1.9 ppm (c. 1.53 ppm) and weak negative Eu anomalies (Eu*/Eu c. 0.81) are compatible with a high-silica adakitic signature of the rocks. Regarding the location of the study area nearly 100 km from the Zagros suture zone, we argue that delamination of lithospheric mantle beneath the SaSZ has played a key role in the development of the adakitic rocks in a post-collision tectonic regime. The adakitic melts are suggested to have formed by partial melting of delaminated continental lithosphere and/or lower crustal amphibolite following the collision of the Arabian and Iranian plates.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2021-07-23
    Description: The medium-sized Ergu Fe–Zn polymetallic skarn deposit is located in the central Lesser Xing’an Range, NE China. The ore bodies are mainly hosted in the contact zone between granodiorite intrusions and lower Cambrian dolomitic crystalline limestones or skarns. To reveal the magmatic influence on the mineralization, resource potential and metallogenic geodynamic process of this deposit, a systematic study of the geology, petrology, zircon U–Pb dating, element geochemistry, amphibole geochemistry and Sr–Nd–Pb–Hf isotopes of the Ergu deposit intrusives was conducted. The results show the following: (1) The major rock types in the mine area are medium-grained granodiorite and porphyritic granite, and the rock related to mineralization is medium-grained granodiorite. Zircon U–Pb dating suggests that the granodiorite and porphyritic granite formed at 181.9–183.8 Ma and 182.7 Ma, respectively. Thus, an Early Jurassic magmatic event led to the formation of the Ergu deposit. (2) The granodiorite and porphyritic granite are high-K calc-alkaline I-type granites that formed by comagmatic evolution with varying degrees of fractional crystallization and were likely derived from partial melting of the lower crust. The Ergu deposit occurred in an active continental-margin tectonic setting. (3) The high water content (5.69 wt % H2O), high oxygen fugacity (ΔFMQ = +1.75 to +1.82) and intermediate-plutonic emplacement (3.13 km) of the granodioritic magma are key factors in the formation of the Ergu deposit. The porphyry granite is characterized by high water content (〉4 wt % H2O), reduced oxygen fugacity (ΔFMQ = −0.47) and shallow emplacement (
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2021-05-31
    Description: The South Qinling block, a segment of the Yangtze craton involved in the Qinling–Dabie orogen, is critical for understanding the tectonic evolution of eastern China. However, the tectonic setting of the South Qinling block and the northern margin of the Yangtze block during middle Neoproterozoic time has long been the subject of debate, with two distinctly different models (continental rift or volcanic arc) proposed. Here, a comprehensive study of zircon U–Pb geochronology and geochemistry has been carried out on the Chengwan granitic pluton from the Suizao terrane in the South Qinling block. The granites are monzogranite and syenogranite in lithology, and are mainly composed of potash feldspar, quartz, plagioclase and biotite. This suite has long been regarded as a Palaeozoic magmatic pluton, but zircon U–Pb ages of 809 ± 9 Ma and 816 ± 4 Ma are obtained in this study. The granites are metaluminous to strongly peraluminous with high alkali contents, and exhibit highly fractionated features, including high SiO2, low Zr/Hf ratios, rare earth element tetrad effects and enrichment of K and Rb. They show Hf–Nd isotopic decoupling, which may be genetically related to their petrogenetic process. Based on the geochemical features and the positive εHf(t) values of the zircons, it is indicated that the granites may have been derived from partial melting of juvenile tonalitic rocks by biotite breakdown under fluid-absent conditions. The Chengwan granite geochemically belongs to the A2-subtype granites, suggesting that it might have formed in a post-orogenic tectonic setting. The highly fractionated A-type granite in this study may represent extensional collapse shortly after the collisional events in the South Qinling block, and thus indicate a tectonic regime switch, from compression to extension, as early as middle Neoproterozoic time. Integrating our new data with documented magmatic, metamorphic and sedimentary events during middle Neoproterozoic time in the region may support a continental rift model, and argues against arc models.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2021-05-21
    Description: Textures are important features of sandstones; however, their controlling factors are not fully understood. We present a detailed textural analysis of fluvio-lacustrine sandstones and discuss the influences of provenance and depositional environments on sandstone textures. The upper Permian – lowermost Triassic Wutonggou sandstones in the Bogda Mountains, NW China, are the focus of this study. Sandstone thin-sections were studied by point counting and their textures were analysed using statistical and principal component analysis. Fluvial lithic, fluvial feldspathic, deltaic lithic, deltaic feldspathic, littoral lithic and littoral feldspathic sandstone were classified and compared. These comparisons indicate that lithic and feldspathic sandstones from the same depositional settings have significant differences in graphic mean, graphic standard deviation and roundness; in contrast, sandstones from different depositional settings but with similar compositions have limited differences in textures. Moreover, three principal components (PCs) are recognized to explain 75% of the total variance, of which the first principal component (PC1) can explain 44%. In bivariate plots of the PCs, sandstones can be distinguished by composition where lithic and feldspathic sandstones are placed in different fields of the plots along the axis of PC1. However, sandstones from different depositional settings overlap and show no clear division. These results indicate that provenance, mainly the source lithology, is the most significant controlling factor on sandstone texture, whereas the depositional environment has limited influence. This study improves our understanding of textural characteristics of fluvio-lacustrine sandstones and their controlling factors, and shows the potentiality of principal component analysis in sandstone studies.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2021-05-11
    Description: New zircon U–Pb ages and whole-rock chemical data from four adakitic and two non-adakitic igneous rocks as tectonic blocks in the southern West Junggar accretionary complexes, northwestern China and one gabbro enclave in adakitic block provide further constraints on the initial subduction and following rollback process of the Junggar Ocean as part of southern Palaeo-Asian Ocean. The oldest adakitic monzonite in Tangbale is intruded by the non-adakitic quartz monzonite at 549 Ma, and the youngest adakitic diorite in Tierekehuola formed at 520 Ma. The Ediacaran–Cambrian magmatism show a N-wards younger trend. The high-SiO2 adakitic rocks have high Sr (300–663 ppm) and low Y (6.68–12.2 ppm), with Sr/Y = 40–84 and Mg no. = 46–60, whereas the non-adakitic rocks have high Y (13.2–22.7 ppm) and Yb (2.32–2.92 ppm), with Mg no. = 36–40. The gabbro has high MgO (14.81–15.11 wt%), Co (45–48 ppm), Cr (1120–1360 ppm) and Ni (231–288 ppm), with Mg no. = 72–73. All the samples show similar large-ion lithophile element (LILE) and light rare earth element (LREE) enrichment and Nb, Ta, Ti and varying Zr and Hf depletion, suggesting that they were formed in a subduction-related setting. The adakitic rocks were produced by partial melting of subducted oceanic slab, but the melts were modified by mantle wedge and slab-derived fluids; the non-adakitic rocks were likely derived from partial melts of the middle-lower arc crust; and the gabbro originated from the mantle wedge modified by slab-derived fluids. The magmatism could have been generated during the Ediacaran initial subduction and Cambrian slab rollback of the Junggar Ocean.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2021-04-27
    Description: The Precordillera mafic–ultramafic belt (PMUB), located in central-western Argentina, comprises mafic and ultramafic bodies interlayered and/or in tectonic contact with marine siliciclastic units. Whole-rock, mineral geochemistry and Nd–Sr isotope analyses performed in magmatic rocks suggest a relatively different spatial and temporal evolution along the belt. The southern PMUB (south of 32° S) evolved as an intra-continental rifted margin with an enriched mid-ocean-ridge basalt (E-MORB) tholeiitic to alkaline magmatism, to a proto-ocean basin (the Cuyano proto-ocean) with tholeiitic normal-MORB geochemical signature. Based on neodymium model ages (TDM), the magmatic activity started during the late Neoproterozoic Era and continued into the early Palaeozoic Era. Instead, the northern PMUB (28–32° S) evolved as an intra-continental rifted margin with dominant tholeiitic E-MORB to continental flood basalt (CFB) magmatism during the early Palaeozoic Era. ϵNd values (+3.4 to +8.4), rare earth element trends and high-field-strength element systematics, together with an estimated potential mantle temperature of c. 50–100°C above ambient mantle, suggest the PMUB magmatism derived from an enriched mantle source related to the effect of a rising plume linked to the Iapetus Ocean opening. In particular, TDM estimations of 600–550 Ma agree with reported magmatism in central to southern Appalachians. The magmatism in the PMUB, and those registered in the Neoproterozoic Catoctin Formation and in the Southern Oklahoma Aulacogen in the conjugated Laurentian margin, seem to be contemporaneous, sharing a similar plume-enriched mantle source. In this context, the E-MORB signature identified along the PMUB can be described as a plume-distal ridge tectonic setting over an extended margin.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2021-05-17
    Description: We report the first Hettangian theropod tracksite (~200 Ma) yielding a rich accumulation of plant remains from the Bleymard Strait (southern France). It constitutes an excellent opportunity to reconstruct lowermost Jurassic ecosystems hosting dinosaurs and which are still poorly documented in this area. Two morphotypes of tridactyl tracks are distinguished. They share similarities with Grallator and Kayentapus. Plant-bearing beds yield abundant leafy axes (Pagiophyllum peregrinum), male cones (Classostrobus sp.), wood (Brachyoxylon sp.) and pollen of conifers (Classopollis classoides). Sedimentological, petrological and mineralogical analyses demonstrated that, in the Dolomitic Formation from Bleymard, the palaeoenvironment progressively evolved from (1) a shoreface to a foreshore domain; to (2) a shallow environment that is restricted or occasionally open to the sea; then to (3) an intertidal to supratidal zone. The Hettangian theropod ecosystem of the Bleymard Strait was composed of tidal flats that were periodically emerged and bordered paralic environments inhabited by a littoral conifer-dominated forest in which Cheirolepidiaceae were the main component. The paucity of the palaeobotanical assemblage, as well as the xerophytic characteristics of Pagiophyllum, show that flora from Bleymard was adapted to withstand intense sunlight and coastal environments exposed to desiccant conditions coupled with salty sea spray, and dry conditions. These features are those of a conifer-dominated flora under a tropical to subtropical climate. The flora as well as the clay mineral analyses suggest contrasting seasons (cyclically dry then humid). This study supports that theropods were abundant and particularly adapted to this type of littoral environment bordering Cheirolepidiaceae-dominated forests.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2021-04-29
    Description: Stromatolites are biogenic sedimentary structures formed by the interplay of biological (microbial composition) and environmental factors (local hydrodynamic conditions, clastic input and/or water chemistry). Well-preserved, three-dimensional (3D) fossil stromatolites are key to assessing the environmental factors controlling their growth and resulting morphology in space and time. Here, we report the detailed analysis of well-exposed, highly informative stromatolite build-ups from a single stratigraphic horizon within the Maastrichtian–Danian Yacoraite Formation (Argentina). This study focuses on the analysis of depositional processes driving intertidal to shallow subtidal stromatolites. Overall depositional architecture, external morphology and internal arrangement (mega, macro, meso and microstructures) of stromatolite build-ups were analysed and combined with 3D photogrammetric models, allowing us to decipher the links between stromatolite structure and tidal dynamics. Results suggest that external morphology and architecture of elongated and parallel clusters grew under the influence of run-off channels. The internal morphology exhibits columnar structures where the space between columns is interpreted as recharge or discharge channels. This work supports the theory that stromatolites can be used as a high-resolution tool in the assessment of water dynamics, and provides a new methodological approach and data for the dynamic reconstruction of intertidal stromatolite systems through the geological record.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2021-04-20
    Description: Graptolites have been collected from sections through Lower Ordovician strata in northern Iran. At the Saluk Mountains, in the Kopet–Dagh region, mudrocks yielded fragmentary tubaria of Rhabdinopora sp. cf. R. flabelliformis, indicating the presence of lower Tremadocian strata there; stratigraphically, they lie between two limestone beds with the euconodont Cordylodus lindstromi. At Simeh–Kuh in the eastern Alborz Mountains (Semnan Province), upper Tremadocian – lower Floian strata include laminated dark mudstones that contain restricted graptolite faunas, mainly of small declined didymograptids; these are thought to represent incursions of plankton during periods of marine highstands. The lower major flooding surface in Simeh–Kuh coincides with an invasion of the graptolite biofacies and an incursion of Hunnegraptus? sp.; the second major flooding surface is associated with an incursion of Baltograptus geometricus. They were most probably synchronous with those in the lower part of the Hunnegraptus copiosus Biozone and at the base of the Cymatograptus protobalticus Biozone in the of the Tøyen Shale Formation succession of Västergötland, Scandinavia, suggesting that observed characters of sedimentation were eustatically controlled.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2021-05-12
    Description: The North Qilian Orogenic Belt is surrounded by the Tarim Craton to the NW and the North China Craton to the NE. The Precambrian continental crust remnants that are distributed in the North Qilian Orogenic Belt are termed the North Qilian Block (NQB), and their tectonic evolution has profound implications for the evolution of the Columbia Supercontinent. Here we present major- and trace-element and Sr–Nd–Hf isotope data for (meta-) basalts from the Beidahe Group (BDHG) and Zhulongguan Group (ZLGG) in the western North Qilian Orogenic Belt, to investigate the tectonic evolution of the NQB during the Proterozoic Eon. The protoliths of Palaeoproterozoic amphibole gneisses and plagioclase amphibolites from the BDHG are calc-alkaline series basalts. These metabasalts show island-arc-basalt affinities with variable Nd and Hf isotopes (ϵNd(t) = −5.0–0.6 and 2.7–4.3; ϵHf(t) = −14.2–2.0 and 6.9–8.8) and were generated by partial melting of the asthenospheric mantle that was metasomatized by aqueous fluid and sediment melt in a continental-arc setting. The early Mesoproterozoic ZLGG basalts show features of shoshonite-series basalts and are geochemically similar to ocean-island basalts. These basalts show variable (87Sr/86Sr)i, ϵNd(t) and ϵHf(t) values of 0.70464–0.70699, −1–2.6 and −1.5–5.7, and are products of mantle plume magmatism that participated with subducted oceanic crust in an intracontinental rift setting. This study suggests that the NQB underwent tectonic evolution from palaeo-oceanic subduction to intracontinental rifting during the Palaeoproterozoic–Mesoproterozoic eras. Furthermore, the above tectonomagmatic events were in response to convergence–splitting events of the Columbia Supercontinent during the Palaeoproterozoic–Mesoproterozoic eras.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2021-09-14
    Description: A new enantiornithine bird is described on the basis of a well preserved partial skeleton from the Upper Cretaceous Qiupa Formation of Henan Province (central China). It provides new evidence about the osteology of Late Cretaceous enantiornithines, which are mainly known from isolated bones; in contrast, Early Cretaceous forms are often represented by complete skeletons. While the postcranial skeleton shows the usual distinctive characters of enantiornithines, the skull displays several features, including confluence of the antorbital fenestra and the orbit and loss of the postorbital, evolved convergently with modern birds. Although some enantiornithines retained primitive cranial morphologies into the latest Cretaceous Period, at least one lineage evolved cranial modifications that parallel those in modern birds.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2021-09-15
    Description: Remnants of some of the planet’s most ancient life forms, stromatolites in the late Mesoproterozoic sea of the Chattisgarh Basin, India, preserve a conspicuous sinuous pattern. They occur as successive biostromes, 10–30 cm thick, separated by 2–5-cm-thick marly layers and discrete bioherms up to several metres thick and 20 m across. Stromatolite columns in the Chandi Formation are 5–10 cm high, sinuous, inclined and straight, with both branched and non-branched types. These stromatolites are composed of calcite micrite and show well defined light and dark laminae with evidence of erosion between lamina sets. The column sinuosity probably originated as a response to changes in direction and strength of currents. Successive flat beds of stromatolite (biostromes), separated by marl/clay horizons, impart a rhythmic pattern to the succession. The Chandi sinuous stromatolite columns resemble those occurring in China, North America and Siberia, of a comparable age, suggesting that similar marine conditions of stromatolite formation might have been operating in the late Mesoproterozoic seas worldwide. However, the petrographic and sedimentological analyses of these stromatolites indicate their development through in situ production of carbonate with some trapping and binding of detrital sediment. As a result of the presence of terrigenous material within the stromatolites, whole-rock geochemical analyses for trace elements and rare earth elements cannot be used for interpretation of seawater chemistry and the redox conditions at the time.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2021-09-17
    Description: Arumberia is an enigmatic sedimentary surface texture that consists of parallel, sub-parallel or radiating ridges and grooves, most commonly reported from upper Neoproterozoic – lower Palaeozoic strata. It has variably been interpreted as the impression of a small metazoan, a ‘vendobiont’, a physical sedimentary structure formed on a substrate with or without a microbial mat covering, or a non-actualistic microbial community. In this paper we contribute new insights into the origin of Arumberia, resulting from the discovery of the largest contiguous bedding plane occurrence of the texture reported to date: a 300 m2 surface in the lower Cambrian Port Lazo Formation of Brittany, NW France. We compare the characteristic features of Arumberia at this locality with 38 other global records, revealing four defining characteristics: (1) the three-dimensional (3D) morphology of exposed Arumberia lines (either positive relief ‘ridges’ or negative relief ‘grooves’) records fully preserved cords within clay laminae; (2) lines may transition laterally into reticulated patterns; (3) characteristic parallel and sub-parallel Arumberia lines can become modified by desiccation on emergent substrates prior to interment; and (4) Arumberia are streamlined with palaeoflow in successions showing evidence of unidirectional currents, but are organized parallel to ripple crests where strata were sculpted by oscillatory flows. These characteristics indicate that Arumberia records a 3D entity, distinct in material properties from its host sediment, which occurred in very shallow water settings where it was prone to passive reorganization in moving water, and desiccation when water drained. A literature survey of all known Arumberia occurrences reveals that the most reliable examples of the form are stratigraphically restricted to a 40 Ma interval straddling the Ediacaran–Cambrian boundary (560–520 Ma). Together these characteristics suggest that Arumberia records the remains of extinct, sessile filamentous organisms (microbial or algal?) that occupied very shallow water and emergent environments across the globe at the dawn of the Phanerozoic Eon.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2021-09-27
    Description: Later Cambrian and earliest Ordovician trilobites and brachiopods spanning eight horizons from five localities within the Sông Mã, Hàm Rồng and Đông Sơn formations of the Thanh Hóa province of Việt Nam, constrain the age and faunal affinities of rocks within the Sông Đà terrane, one of several suture/fault-bounded units situated between South China to the north and Indochina to the south. ‘Ghost-like’ preservation in dolomite coupled with tectonic deformation leaves many of the fossils poorly preserved, and poor exposure precludes collecting within continuously exposed stratigraphic successions. Cambrian carbonate facies pass conformably into Lower Ordovician carbonate-rich strata that also include minor siliciclastic facies, and the recovered fauna spans several uppermost Cambrian and Lower Ordovician biozones. The fauna is of equatorial Gondwanan affinity, and comparable to that from South China, North China, Sibumasu and Australia. A new species of Miaolingian ‘ptychopariid’ trilobite, Kaotaia xuanensis, is described. Detrital zircon samples from Cambrian–Ordovician rocks of the North Việt Nam and Sông Đà terranes, and from Palaeozoic samples from the Trường Sơn sector of Indochina immediately to the south, contain a predominance of ages spanning the Neoproterozoic period and have a typical equatorial Gondwanan signature. We associate the Cambrian and Tremadocian of the Sông Đà terrane with areas immediately to the north of it, including the North Việt Nam terrane and the southern parts of Yunnan and Guangxi provinces of China.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2021-10-11
    Description: During the Early Ordovician Epoch, the Mediterranean brachiopod Province was extensive in the higher-latitude sectors of the globe in the Southern Hemisphere. The latter was much occupied by the massive continent of Gondwana, which stretched from north of the Equator S-wards to cover the South Pole. The Mediterranean Province can be separated into two groups: Group 1, the higher-latitude fauna dominated by large linguliform brachiopods; and Group 2, which is more diverse, particularly in orthides. The large linguliform brachiopod faunas are particularly well known in southern Europe (France, Spain and Bohemia) and North Africa, and the second group in Avalonia, Chile and Argentina. The province is different from, but merges with, more diverse contemporary faunas in the lower latitudes of Gondwana to its north, although the latter contrast with other lower-latitude faunal provinces in South China, Laurentia, Siberia and elsewhere. Since the Rheic Ocean between Avalonia and Gondwana was relatively narrow during the Early Ordovician Epoch, the Avalonian brachiopods were integral parts of the Mediterranean Province, but only until end of the Dapingian Age. This paper focuses on the earlier phases of the Mediterranean Province, although the province continued until near the end of the Ordovician Period. Intermediate-latitude Baltica and some other faunas are included in new principal components and other analyses in order to compare them with the Mediterranean Province faunas. Radiation was very significant for many brachiopod taxa during the period, with first appearances of the Plectambonitoidea (Taffiidae), several orthide families (Euorthisinidae, Tarfayidae and Anamalorthidae) and the earliest endopunctate orthide, the dalmanelloid Lipanorthis.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2021-10-15
    Description: Classic tectonic models for the Caledonian orogeny in Scotland involve Ordovician collision of Laurentia–Midland Valley arc (Grampian orogeny), followed by middle Silurian collision of Laurentia–Baltica (Scandian orogeny) and 500–700 km of sinistral displacement along the Great Glen fault separating the Northern Highlands (Moine Supergroup) from the Grampian Highlands (Dalradian Supergroup). A review of the timing of magmatic and metamorphic rocks across Scotland allows a simpler explanation that fits with a classic Himalayan-style continent–island arc–continent collision. Late Cambrian – Early Ordovician NW-directed ophiolite obduction (Highland Border complex) coincided with the ending of stable continental shelf sedimentation along the eastern margin of Laurentia. Following collision between Laurentia and the Midland Valley arc–microcontinent in Early Ordovician time, crustal thickening and shortening led to almost continuous regional metamorphism from c. 470 to 420 Ma, rather than two discrete ‘orogenies’ (Grampian, Scandian). U–Pb monazite and garnet growth ages indicating prograde metamorphism, and S-type granites related to melting of crustal protoliths are coeval in the Grampian and Northern Highlands terranes. There is no evidence that the Great Glen fault was a terrane boundary, and strike-slip shearing post-dated emplacement of Silurian – Early Devonian granites. Late orogenic alkaline granites (c. 430–405 Ma) in both Moine and Dalradian terranes are not associated with subduction. They are instead closely related to regional alkaline appinite–lamprophyric magmatism resulting from simultaneous melting of lower crust and enriched lithospheric mantle. Caledonian deformation and metamorphism in northern Scotland, with continuous SE-directed subduction, show geometry and time scales that are comparable to the Cenozoic India–Kohistan arc–Asia collisional Himalayan orogeny.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2021-10-18
    Description: Generally all orogenic ultrapotassic rocks are formed after melting of metasomatized sub-continental lithospheric mantle via subducted crustal mica-bearing lithologies. Here we present another possible model, based on the study of the small Stomanovo ultrapotassic monzonite porphyry intrusion in the Central Rhodope Massif, Bulgaria. The monzonite dated at 30.50 ± 0.46 Ma is intruded into the voluminous Oligocene (31.63 ± 0.40 Ma) Bratsigovo–Dospat ignimbrite. The monzonite hosts both normally and reversely zoned clinopyroxene phenocrysts. The normally zoned clinopyroxene is characterized by gradually diminishing core-to-rim Mg no. (89–74), whereas the reversely zoned clinopyroxene has green Fe-rich cores (Mg no. 71–55) mantled by normally zoned clinopyroxene (Mg no. 87–74). Neither the core of the normally zoned clinopyroxene nor the Fe-rich green cores are in equilibrium with the host monzonite. This ultrapotassic monzonite shows more radiogenic Sr isotopes ((87Sr/86Sr)i = 0.71066) and ϵNd(t) = −7.8 to −8.0 that are distinct from the host ignimbrites with (87Sr/86Sr)i = 0.70917–0.70927 and ϵNd(t) = −4.6 to −6.5. The Sr–Nd isotopic data and the presence of copious zircon xenocrysts from the underlying metamorphic basement suggest extensive crustal assimilation. Our observations indicate that the Stomanovo ultrapotassic monzonite formed after extensive lower or middle crustal fractional crystallization from an evolved magma producing cumulates. The process was followed by hybridization with primitive mantle-derived magma and subsequent continuous crustal contamination. We suggest that instead of inheriting their high K2O and large-ion lithophile element enrichments from slab-derived/metasomatic fluids, the Stomanovo ultrapotassic monzonite may owe some of its unusually high alkalinity to the assimilation of potassium-rich phases from the Rhodope Massif basement rocks.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2021-10-18
    Description: The metavolcanics of Chitradurga region host numerous shallow crustal veins and fractures and faults of multiple orientations. Several high and low Pf cycles have been recorded in the region, leading to the reactivation of most of the pre-existing fractures for high Pf and selective reactivation of some well-oriented fractures under low Pf conditions. The pre-existing anisotropy (magnetic fabric) in the metavolcanics acted as the most prominent planar fabric for fracture propagation and vein emplacement under both conditions, thereby attaining maximum vein thickness. In this study, we emphasize the reactivation propensity of these pre-existing fracture planes under conditions of fluid pressure variation, related to the high and low Pf cycles. Multiple cycles of fluid-induced fracture reactivation make it difficult to quantify the maximum/minimum fluid pressure magnitudes. However, in this study we use the most appropriate fluid pressure magnitudes mathematically feasible for a shallow crustal depth of ∼2.4 km. We determine the changes in the reactivation potential with states of stress for the respective fracture orientations under both high and low Pf conditions. Dependence of fluid pressure variation on the opening angle of the fractures is also monitored. Finally, we comment on the failure mode and deformation behaviour of the fractures within the prevailing stress field inducing volumetric changes at the time of deformation. We find that deformation behaviour is directly related to the dip of the fracture planes.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2021-10-26
    Description: The Middle Miocene Climatic Optimum is known for abrupt events during the global cooling trend of the past 20 Ma. Its identification in the Tibetan Plateau can help explain the cause of the critical Middle Miocene climate transition in Central Asia. In this study, fine-grained mixed sediments widely distributed in the Miocene Qaidam Lake in the northern Tibetan Plateau were used as a sensitive indicator for palaeoclimate. Their geochemical characteristics were investigated, together with an analysis of 2600 m long successive gamma-ray logging data from the whole JS2 drillcore, to understand the mid-Miocene climate transition in the Tibetan Plateau. By comparing the gamma-ray curve of the mixed sediments with global temperature, the Middle Miocene Climatic Optimum event can be easily identified. Further, the detailed petrological features and geochemical data of lacustrine fine-grained mixed sediments from a 400 m drillcore show oxidizing, high-sedimentation rate and brackish-saline water conditions in a semi-arid climate during the Middle Miocene period, demonstrating a dryer climate in the Qaidam Basin than in the monsoon-sensitive regions in Central Asia. These fine-grained mixed sediments have recorded climate drying before 15.3 Ma that represents a climatic transition within the Middle Miocene Climatic Optimum; increasing carbonate-rich mixed sediments, decreasing algal limestone layers and decreasing lacustrine organic matter are indicators of this transition. Regional tectonic events include the retreat of the Paratethys from Central Asia at ∼15 Ma and the synchronous tectonic reorganization of the Altyn-Tagh fault system and the northeastern Tibetan Plateau. We find that global climate change is the primary factor affecting the overall characteristics and changes of the Neogene climate in the Qaidam Basin, including the occurrence of the Middle Miocene Climatic Optimum and the cooling and drying tendency, while the regional events are a secondary factor.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2020-07-10
    Description: Whole-rock major and trace elements and Hf isotopes of magmatic zircons of tonalite–trondhjemite–granodiorite (TTG) rocks with different ages (2.9, 2.7 and 2.5 Ga) from the three blocks (the Eastern Block, Western Block and Trans-North China Orogen) of the North China Craton were compiled to investigate their respective petrogenesis, tectonic setting and implications for crustal growth and evolution. Geochemical features of the 2.5 Ga TTGs of the Eastern Block require melting of predominant rutile-bearing eclogite and subordinate garnet-amphibolite at higher pressure, while the source material of the 2.7 Ga TTGs is garnet-amphibolite or granulite at lower pressure. The 2.5 Ga TTGs have high Mg#, Cr and Ni, negative Nb–Ta anomalies and a juvenile basaltic crustal source, indicating derivation from the melting of a subducting slab. In contrast, features of the 2.7 Ga TTGs suggest generation from melting of thickened lower crust. The 2.5 and 2.7 Ga TTGs in the Trans-North China Orogen were formed at garnet-amphibolite to eclogite facies, and the source material of the 2.5 Ga TTGs in the Western Block is most likely garnet-amphibolite or eclogite. The 2.5 Ga TTGs in the Trans-North China Orogen and Western Block were generated by the melting of a subducting slab, whereas the 2.7 Ga TTGs in the Trans-North China Orogen derived from melting of thickened lower crust. The Hf isotopic data suggest both the 2.5 and 2.7 Ga TTG magmas were involved with contemporary crustal growth and reworking. The two-stage model age (TDM2) histograms show major crustal growth between 2.9 and 2.7 Ga for the whole North China Craton.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2020-07-10
    Description: Nektaspids are Palaeozoic non-biomineralized euarthropods that were at the peak of their diversity during the Cambrian Period. Post-Cambrian nektaspids are a low-diversity group with only a few species described so far. Here we describe Tariccoia tazagurtensis, a new species of small-bodied nektaspid from the Lower Ordovician Fezouata Shale of Morocco. The new species differs from the type (and only other known) species from the Ordovician strata of Sardinia (Italy), Tariccoia arrusensis, in possessing more pointed genal angles, a cephalon with marginal rim, a pygidium with anterior margin curved forwards, a rounded posterior margin, and longer and more curved thoracic tergites. The two specimens of T. tazagurtensis sp. nov. show remains of digestive glands that are comparable to those seen in the Cambrian nektaspid Naraoia. The rare occurrence of T. tazagurtensis sp. nov. in the Fezouata Shale and the distribution of other liwiids suggest that these liwiids were originally minor members of open-marine communities during the Cambrian Period, and migrated into colder brackish or restricted seas during the Ordovician Period.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2020-07-10
    Description: Significant uncertainty remains regarding the exact timing and nature of subduction events during the closure of the Tethyan seas in what is now NW Iran. This study thus presents new geochemical compositions and U–Pb ages for a suite of volcanic rocks emplaced during Cenozoic volcanism in the west Alborz Magmatic Assemblage, which is commonly regarded as the back-arc of the Neotethyan magmatism in Central Iran. The subalkali basalts and andesites are dated to 57 ± 1.2 Ma, and are likely derived from a supra-subduction mantle wedge. Later, trachytic A-type rocks erupted from ~42 to 25 Ma during an anorogenic (extensional) stage triggered by slab retreat and associated asthenospheric mantle influx. A-type melts were at least partly concurrent with lithospheric mantle magmatism implied by eruption of subalkali basalts–andesites around 26–24 Ma. Next, Amp-Bt trachybasaltic volcanism with high-Nb basaltic affinity at ~19 Ma likely records slab deepening and slab partial melting, which reacted with the mantle wedge to produce the source material for the high-Nb basalts. Sr–Nd isotopic ratios for SE Ahar mafic as well as A-type rocks imply rather enriched mantle source(s). Some crustal contamination is implied by the presence of inherited zircons dominated by those derived from Neoproterozoic–Cambrian basement rocks and Carboniferous magmatism. Rhyolitic rocks with adakitic affinity probably mark the final volcanism in the study area. The adakitic rocks show crustal signatures such as high K and Th, probably formed as a consequence of higher temperature gradients, at crustal levels, imposed by both slab and mantle partial melts.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2020-04-24
    Description: The Upper Mustang region of west-central Nepal contains exposures of metamorphosed Tethyan Sedimentary Sequence rocks that have been interpreted to reflect either contact metamorphism related to the nearby Mugu pluton or regional metamorphism associated with the North Himalayan domes. New monazite geochronology results show that the Mugu leucogranite crystallized at c. 21.3 Ma, while the dominant monazite age peaks from the surrounding garnet ± staurolite ± sillimanite schists range between c. 21.7 and 19.4 Ma, generally decreasing in age away from the pluton. Metamorphic temperature estimates based on Ti-in-biotite and garnet–biotite thermometry are highest in the specimens closest to the pluton (648 ± 24°C and 615 ± 25°C, respectively) and lowest in those furthest away (578 ± 24°C and 563 ± 25°C, respectively), while pressure estimates are all within uncertainty of one another, averaging 5.0 ± 0.5 kbar. These results are interpreted to be consistent with contact metamorphism of the rocks in proximity to the Mugu pluton, which was emplaced at c. 18 ± 2 km depth after local movement across the South Tibetan detachment system had ceased. While this new dataset helps to characterize the metamorphic rocks of the Tethyan Sedimentary Sequence and provides new constraints on the thickness of the upper crust, it also emphasizes the importance of careful integration of metamorphic conditions and inferred processes that may affect interpretation of currently proposed Himalayan models.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2020-04-27
    Description: We investigate the phased evolution and variation of the South Asian monsoon and resulting weathering intensity and physical erosion in the Himalaya–Karakoram Mountains since late Pliocene time (c. 3.4 Ma) using a comprehensive approach. Neodymium and strontium isotopic compositions and single-grain zircon U–Pb age spectra reveal the sources of the deposits in the east Arabian Sea, and show a combination of sources from the Himalaya and the Karakoram–Kohistan–Ladakh Mountains, with sediments from the Indian Peninsula such as the Deccan Traps or Craton. We interpret shifts in the sediment sources to have been forced by sea-level changes that correlate with South Asian monsoon rainfall variation since late Pliocene time. We collected 908 samples from the International Ocean Discovery Program Hole U1456A, which was drilled in the east Arabian Sea. Time series of hematite content and grain size of the sediments were examined downcore. We found South Asian monsoon precipitation and weathering intensity experienced three phases from late Pliocene time. Lower monsoon precipitation, with a lower variability and strong weathering intensity, occurred during 3.4–2.4 Ma; an increased and more variable South Asian monsoon rainfall, along with strengthened but fluctuating weathering intensity, occurred at 1.8–1.1 Ma; and a reduced rainfall with lower South Asian monsoon precipitation variability and moderate weathering intensity marked the period 1.1–0.1 Ma. Maximum entropy spectral analysis and wavelet transform show that there were orbital-dominated cycles of periods c. 100 and c. 41 ka in these proxy-based time series. We propose that the monsoon, sea level, global temperature and insolation together forced the weathering and erosion in SW Asia.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2020-04-30
    Description: Magmatic rocks from the Dolomites, Carnic and Julian Alps, Italy, have been sampled to investigate the origin and geodynamic setting of Triassic magmatism in the Southern Alps. Basaltic, gabbroic and lamprophyric samples have been characterized for their petrography, mineral chemistry, whole-rock major and trace elements, and Sr, Nd and Pb isotopic compositions. Geothermobarometric estimates suggest that the basaltic magmas crystallized mostly at depths of 14–20 km. Isotopic data show variable degrees of crustal contamination decreasing westwards, probably reflecting a progressively more restitic nature of the crust, which has been variably affected by melting during the Permian period. Geochemical and isotopic data suggest that the mantle source was metasomatized by slab-derived fluids. In agreement with previous studies and based on geological evidence, we argue that this metasomatism was not contemporaneous with the Ladinian–Carnian magmatism but was related to previous subduction episodes. The lamprophyres, which likely originated some 20 Ma later by lower degrees of melting and at higher pressures with respect to the basaltic suite, suggest that the mantle source regions of Triassic magmatism in the Dolomites was both laterally and vertically heterogeneous. We conclude that the orogenic signatures of the magmas do not imply any coeval subduction in the surrounding of Adria. We rather suggest that this magmatism is related to the Triassic rifting episodes that affected the western Mediterranean region and that were ultimately connected to the rifting events that caused the break-up of Pangea during the Late Triassic – Early Jurassic period.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2020-04-21
    Description: Accretionary orogens contain key evidence for the conversion of oceanic to continental crust. The late tectonic history and closure time of the Palaeo-Asian Ocean are recorded in the Mazongshan subduction–accretion complex in the southern Beishan margin of the Central Asian Orogenic Belt. We present new data on the structure, petrology, geochemistry and zircon U–Pb isotope ages of the Mazongshan subduction–accretion complex, which is a tectonic mélange with a block-in-matrix structure. The blocks are of serpentinized peridotite, basalt, gabbro, basaltic andesite, chert and seamount sediments within a matrix that is mainly composed of fore-arc-trench turbidites. U–Pb zircon ages of two gabbros are 454.6 ± 2.5 Ma and 434.1 ± 3.6 Ma, an andesite has a U–Pb zircon age of 451.3 ± 3.5 Ma and a tuffaceous slate has the youngest U–Pb zircon age of 353.6 ± 5.1 Ma. These new isotopic ages, combined with published data on ophiolitic mélanges from central Beishan, indicate that the subduction–accretion of Beishan in the southernmost Central Asian Orogenic Belt lasted until Late Ordovician – Early Carboniferous time. Structure and age data demonstrate that the younging direction of accretion was southwards and that the subduction zone dipped continuously to the north. Accordingly, these results record the conversion of oceanic to continental crust in the southern Beishan accretionary collage.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2020-04-20
    Description: The Posada–Asinara Line is a crustal-scale transpressive shear zone affecting the Variscan basement in northern Sardinia during Late Carboniferous time. We investigated a structural transect of the Posada–Asinara Line (Baronie) with the aid of geological mapping and structural analysis. N-verging F2 isoclinal folds with associated mylonitic foliation (S2) are the main deformation features developed during the Posada–Asinara Line activity (D2). The mineral assemblages and microstructures suggest that the Posada–Asinara Line was affected by a retrograde metamorphic path. This is also confirmed by quartz microstructures, where subgrain rotation recrystallization superimposes on grain boundary migration recrystallization. Crystallographic preferred orientation data, obtained using electron backscatter diffraction, allowed analysis of quartz slip systems and estimation of the deformation temperature, vorticity of flow and rheological parameters (flow stress and strain rate) during the Posada–Asinara Line activity. Quartz deformation temperatures of 400 ± 50 °C have been estimated along a transect perpendicular to the Posada–Asinara Line, in agreement with the syn-kinematic post-metamorphic peak mineral assemblages and the late microstructures of quartz. The D2 phase can be subdivided in two events: an early D2early phase, related to the metamorphic peak and low kinematic vorticity (pure shear dominated), and a late D2late phase characterized by a lower metamorphic grade and an increased kinematic vorticity (simple shear dominated). Palaeopiezometry and strain rate estimates associated with the D2late deformation event showed an intensity gradient increasing towards the core of the shear zone. The D2early deformation developed under peak temperature conditions, while the D2late event was active at shallower structural levels.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2020-05-01
    Description: Production, transport and deposition of aeolian dust from land to sea closely interact with regional environment and global climate. This Special Issue addresses transport of aeolian dust from the Asian inland to the Loess Plateau and North Pacific Ocean and their possible links to oceanic ecosystem, global climate and even human activity, over various timescales. The papers in this volume are multidisciplinary in nature and include sedimentology, mineralogy, geochemistry, environmental magnetism and climate modelling on multi-timescales from interannual, glacial–interglacial to tectonic timescales. Based on modern observation, geological records and modelling, this Special Issue offers new insights especially into aeolian provenance, dynamics controls on dust production, a novel marine aeolian proxy, as well as long-term aeolian input to the marginal basins of NE Asia and its influence on oceanic productivity. This issue provides a good example for future comprehensive studies of source-to-sink processes of Asian dust from land to sea.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2020-05-01
    Description: The Tarim Basin is the major source of aeolian dust in the northern hemisphere. Glacial activity in the mountains, transportation by rivers and homogenization by wind are believed to be responsible for dust production within the basin. However, the major source(s) and homogenization process(es) are not clear. Moreover, provenance studies on fine fractions have never been conducted. Here, we measured electron spin resonance (ESR) signal intensity and the crystallinity index of quartz in fine (〈 16 μm) and coarse (〉 64 μm) fractions of river sediments, dry lake sediments and mountain loess to examine the process(es) that produce aeolian dust. The result suggests that the coarse fraction of the river sediment was derived from the bedrock in the drainage area. The ESR signal intensity and crystallinity index of the fine fraction of river sediments from the Tian Shan Mountains and mountainous rivers in the westernmost Kunlun and Pamir mountains are also similar to the coarse fraction, suggesting the same sources. However, the ESR signal intensity and crystallinity index of the fine fraction of river sediments from the Kunlun Mountains are different from the coarse fraction and converge towards values close to the average for the fine fraction of river sediments and mountain loess. Convergence of the ESR and crystallinity index values for the fine fraction of river sediments from the Kunlun Mountains can be explained by contamination of the river sediments by aeolian dust. The convergent values resulted from the homogenization of fine detrital material by repeated recycling within the basin.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2020-05-14
    Description: The South Altyn Orogenic Belt (SAOB) is one of the most important orogenic belts in NW China, consisting of the South Altyn Continental Block and the Apa–Mangya Ophiolitic Mélange Belt. However, its Palaeozoic tectonic evolution is still controversial. Here, we present petrological, geochemical, zircon U–Pb and Lu–Hf isotopic data for the Mangya plutons with the aim of establishing the Palaeozoic tectonic evolution. We divide the Early Palaeozoic magmatism in the Apa–Mangya Ophiolitic Mélange Belt into four episodes and propose a plate tectonic model for the formation of these rocks. During 511–494 Ma, the South Altyn Ocean (SAO) was in a spreading stage, and some shoshonite series, I-type granitic rocks were generated. From 484 to 458 Ma, the oceanic crust of the SAO subducted northward, accompanied by large-scale magmatic events resulting in the generation of vast high-K calc-alkaline series, I-type granitic rocks. During 450–433 Ma, the SAO closed, and break-off of the subducted oceanic slab occurred, with the generation of some high-K calc-alkaline series, I–S transitional type granites. The SAOB was in post-orogenic extensional environment from 419 to 404 Ma, and many A-type granites were generated.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2020-05-13
    Description: Reconstructing the provenance of siliciclastic marine sediment is important for understanding sediment pathways and constraining palaeoclimate and erosion records. However, physical fractionation of different size fractions can occur during sediment transport, potentially biasing records derived from bulk sediment. In this study, records of radiogenic Sr and Nd isotopic composition and K/Al ratio of the separated clay fraction, as well as bulk grain size, are presented, measured from deep-sea sediments recovered from International Ocean Discovery Program (IODP) Sites U1456 and U1457 in the Arabian Sea. These new records are compared with published bulk sediment records to investigate the influence of sediment transport on these proxies and to constrain provenance evolution and its relationship to climate variability since middle Miocene time. Correlations between grain size and the bulk sediment isotopic composition confirm that transport processes are influencing the bulk sediment record. This relationship, although present, is not as strong in the clay-fraction isotopic records. Heterogeneity of bulk sediment likely drives differences between bulk and clay records, thought to be largely controlled by sediment transport processes. The isotopic records reveal variations in provenance that correlate with climatic change at 8–7 Ma, as well as an increase in overall provenance variability beginning at c. 3.5 Ma, likely linked to monsoon strength and glacial–interglacial cycles. The clay-fraction records highlight the potential value of measuring proxy records from multiple size fractions to help constrain provenance records as well as investigate sediment transport and/or weathering and erosion processes recorded in deep-sea sediment archives.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2020-04-07
    Description: Thorny lacewings (Rhachiberothidae) are currently distributed only within Africa, whereas they are prevalent in the fossil record of various Cretaceous ambers across the Northern Hemisphere, with a handful of the fossil records from some Eocene European ambers. Four rhachiberothid species in four extinct genera are known from the mid-Cretaceous amber of northern Myanmar. Here, we report further examples of the remarkable palaeodiversity of this group from the same amber deposit, adding the four new fossil genera and seven new species: Acanthoberotha cuspis gen. et sp. nov., Astioberotha falcipes gen. et sp. nov., Stygioberotha siculifera gen. et sp. nov., Uranoberotha chariessa gen. et sp. nov., Creagroparaberotha cuneata sp. nov., Micromantispa galeata sp. nov. and M. spicata sp. nov. Based on a series of well-preserved specimens, we discuss the fine details of the raptorial forelegs and genital segments, which may be important for elucidating the phylogenetic relationships among genera. Our findings reveal an unexpectedly diverse assemblage of thorny lacewings in the Cretaceous System, highlighting the morphologically diverse rhachiberothids in Burmese amber. The discovery of seven additional rhachiberothid species in Myanmar amber suggests the potential for much higher diversity and abundance of the Cretaceous rhachiberothids than previously documented. Furthermore, morphological variation in the raptorial forelegs was found to be extremely diverse among the Burmese amber paraberothines, especially in terms of the size, number and shape of spines (or spine-like setae) on the inner edges of protibia, and the morphological structure of the probasitarsus.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2020-04-07
    Description: West Junggar in the southwestern Central Asian Orogenic Belt is a critical area for the study of the Junggar oceanic basin and may also reveal tectonic evolutionary events before the final closure of the Palaeo-Asian Ocean. The sedimentary formations and paragenetic associations of the Upper Carboniferous Chengjisihanshan Formation in southern West Junggar jointly reveal a back-arc basin setting with zircon U–Pb ages of 313–310 Ma for the basaltic rocks. Geochemically, the basaltic rocks are tholeiitic with low SiO2 (47.76–52.06 wt %) and K2O (0.05–0.74 wt %) but high MgO (6.55–7.68 wt %) contents and Mg no. (52.9–58.9) values. They display slightly flat rare earth element patterns with weak positive Eu anomalies, and show enrichments in large ion lithophile elements relative to high field strength elements with negative Nb and Ta anomalies, exhibiting both N-MORB-like and arc-like signatures, similar to the back-arc basin basalt from the Mariana Trough. The high positive zircon εHf(t) and bulk εNd(t) values as well as high initial Pb isotopes, together with relatively high Sm/Yb and slightly low Th/Ta ratios imply a depleted spinel lherzolitic mantle source metasomatized by slab-derived fluids. The field and geochemical data jointly suggest that the volcanic rocks within the Chengjisihanshan Formation were formed in an intra-oceanic back-arc basin above the northwestward subduction of the Junggar oceanic lithosphere in southern West Junggar. The confirmation of the Late Carboniferous back-arc basin basalts, together with other geological observations, indicate that an arc-basin evolutionary system still existed in southern West Junggar at c. 310 Ma, and the Junggar Ocean closed after Late Carboniferous time.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2020-05-19
    Description: Detrital zircon populations from six samples of upper Triassic sandstone (Algarve Basin) were analysed, yielding mostly Precambrian ages. zircon age populations of the Triassic sandstone sampled from the western and central sectors of the basin are distinct, suggesting local recycling and/or lateral changes in their sources. Our findings and the available detrital zircon ages from the Palaeozoic terranes of SW Iberia, Nova Scotia and NW Morocco were jointly examined using the Kolmogorov–Smirnov test and multidimensional scaling diagrams. The obtained results enable direct discrimination of competing Laurussian-type and Gondwanan-type sediment sources, involving recycling and mixing relationships. The detrital zircon populations of the Algarve Triassic sandstone are very different from those of the lower–upper Carboniferous Mértola and Mira formations (South Portuguese Zone), upper Devonian – lower Carboniferous Horta da Torre, Represa and Santa Iria formations (Pulo do Lobo Zone), and the late Carboniferous Santa Susana and early Permian Viar basins, which are ruled out as potential sources. The detrital zircon populations of Triassic sandstone from the central sector and those from the Ossa–Morena Zone Ediacaran–Cambrian siliciclastic rocks, upper Devonian – Carboniferous Ronquillo, Tercenas, Phyllite-Quartzite and Brejeira formations (South Portuguese Zone), and Frasnian siliciclastic rocks of the Pulo do Lobo Zone are not statistically distinguishable. Thus, sedimentation in the central sector was influenced by Gondwanan- and Laurussian-type putative sources exposed in SW Iberia, in contrast to the western sector, where Meguma Terrane and Sehoul Block Cambrian siliciclastic rocks allegedly constituted the main (Laurussian-type) sources. These findings provide insights into the denudation of distinctive source terranes distributed along the late Palaeozoic suture zone that juxtaposed the Laurussian and Gondwanan margins.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2020-05-18
    Description: Understanding variations in body size is essential for deciphering the response of an organism to its surrounding environmental conditions and its ecological adaptations. In modern environments, large marine animals are mostly found in cold waters. However, numerous parameters can influence body-size variations other than temperatures, such as oxygenation, nutrient availability, predation or physical disturbances by storms. Here, we investigate trilobite size variations in the Lower Ordovician Fezouata Shale deposited in a cold-water environment. Trilobite assemblages dominated by small- to normal-sized specimens that are a few centimetres in length are found in proximal and intermediate settings, while those comprising larger taxa more than 20 cm in length are found in the most distal environment of the Fezouata Shale. Drill core material from distal settings shows that sedimentary rocks hosting large trilobites preserved in situ are extensively bioturbated with a high diversity of trace fossils, indicating that oxygen and nutrients were available in this environment. In intermediate and shallow settings, bioturbation is less extensive and shallower in depth. The rarity of storm events (minimal physical disturbance) and the lack of predators in deep environments in comparison to shallower settings would also have helped trilobites attain larger body sizes. This highly resolved spatial study investigating the effects of numerous biotic and abiotic parameters on body size has wider implications for the understanding of size fluctuations over geological time.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2020-05-05
    Description: Partial equilibrium textures such as corona provide information on changing pressure–temperature (P-T) conditions experienced by a rock during its geological evolution. Coronae layers may form in single or multiple stages; understanding the genesis of each layer is necessary to correctly extract information regarding the physicochemical conditions experienced by the rock. Mafic rocks from SE Chotanagpur Granite Gneissic Complex, India, show the presence of multi-layered coronae at olivine–plagioclase contact with the mineral sequence: olivine | orthopyroxene | amphibole + spinel | plagioclase. Textural studies indicate that the coronae formed during metamorphism in a single stage due to a reaction between olivine and plagioclase. Reaction modelling shows that the corona formation occurred in an open system and experienced a minor volume loss. Pseudosection modelling and thermobarometry suggest that the P-T conditions related to corona formation are 860 ± 50°C and 7 ± 0.5 kbar. A μMgO-μCaO diagram shows that the layers in coronae formed in response to chemical potential gradients between the reactant minerals. A combination of field observations and the P-T conditions of coronae formation suggest a fluid-driven metamorphism. Correlation with extant geological information indicates that the corona-forming event is possibly related to the accretion of India and Antarctica during the assembly of Rodinia.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2020-06-05
    Description: Dolostones are widely developed in the middle Permian rocks of East Yunnan, China, mainly in the shoal-facies Maokou Formation. The previously reported dolostone formation mechanisms cannot explain the distribution and geochemical characteristics of these dolostones, in particular their strontium, magnesium and oxygen isotope signatures. To help predict the distribution of dolostone reservoirs and reduce the exploration risk and cost, this study proposes a new model of dolomitization: open thermal convection dolomitization. In this new dolomitization model, Mg2+ in dolomitizing fluids originates mostly from seawater, with a minor component coming from deep hydrothermal fluids. Elevated heat flux (in this case due to the nearby Emei mantle plume) causes spatial temperature variations in the fluid along the circulation flow pathways, resulting in fast and pervasive dolomitization of limestone. The proposed model not only explains the characteristics and distribution of dolostones in the study area but also serves as a reference for predicting the distribution of dolostones in other areas subjected to thermal convection.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2020-07-20
    Description: Six acidic dykes were discovered surrounding the Laiziling pluton, Xianghualing area, in the western Cathaysia Block, South China. A number of captured zircons are found in two of these acidic dykes. By detailed U–Pb dating, Lu–Hf isotopes and trace-element analysis, we find that these zircons have ages clustered at c. 2.5 Ga. Two acidic dyke samples yielded upper intersection point 206U/238Pb ages of 2505 ± 42 Ma and 2533 ± 22 Ma, and weighted mean 207Pb/206Pb ages of 2500 ± 30 Ma and 2535 ± 16 Ma. The majority of these zircons have high (Sm/La)N, Th/U and low Ce/Ce* ratios, indicating a magmatic origin, but some grains were altered by later hydrothermal fluid. Additionally, the magmatic zircons have high Y, U, heavy rare earth element, Nb and Ta contents, indicating that their host rocks were mainly mafic rocks or trondhjemite–tonalite–granodiorite rock series. Equally, their moderate Y, Yb, Th, Gd and Er contents also indicate that a mafic source formed in a continental volcanic-arc environment. These zircons have positive ϵHf(t) values (2.5–6.9) close to zircons from the depleted mantle, with TDM (2565–2741 Ma) and TDM2 (2608–2864 Ma) ages close to their formation ages, indicating that these zircons originated directly from depleted mantle magma, or juvenile crust derived from the depleted mantle in a very short period. We therefore infer that the Cathaysia Block experienced a crustal growth event at c. 2.5 Ga.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2020-06-15
    Description: New U–Pb radioisotopic ages on early Cambrian volcanic zircons condition a high-resolution Bayesian age model that constrains the first occurrences and zonations of West Gondwanan archaeocyaths and trilobites in southern Morocco. The oldest archaeocyaths in the Tiout Member of the Igoudine Formation (519.71 + 0.26/− 0.35 Ma) are c. 6 Ma younger than the oldest Siberian archaeocyaths. The oldest Moroccan trilobite fragments, from the lower member of the Igoudine, are constrained to 519.95 + 0.43/− 0.40 Ma. The succeeding Issendalenian Stage (i.e. Hupetina antique – Eofallotaspis tioutensis – Fallotaspis plana – Choubertella – Daguinaspis trilobite zones) spans c. 1.5 Ma (519.78 + 0.26/− 0.37 Ma to 518.43 + 0.25/− 0.69 Ma). Identifiable Moroccan fallotaspidids and bigotinids, among Earth’s oldest trilobites, occur above a positive δ13C excursion dated with our age model at 520.27 + 0.59/− 0.57 Ma, and correlated with the IV excursion peak within the lower range of Siberian Atdabanian Stage trilobites (Repinaella Zone). This excursion is the best standard for a Cambrian Series 2 base. The oldest West Gondwana trilobite fragments are c. 1 Ma younger than those in Siberia and c. 0.5 Ma older than the oldest Avalonian trilobites (Callavia Zone). This diachrony means a trilobite first appearance datum is an inappropriate chronostratigraphic base for Cambrian Series 2. Taxonomic differences in the oldest trilobites between Cambrian palaeocontinents are in accordance with trace fossil evidence for the group’s appearance possibly as late as c. 530 Ma in the Cambrian Evolutionary Radiation. Coeval 519–517 Ma dates from Avalonia (cool-water siliciclastic shelf) and West Gondwana (tropical carbonate platform) sections with distinct macrofaunas emphasize these successions were latitudinally separate by the late Ediacaran Period.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2020-06-15
    Description: Along the Dinaric–Hellenic orogen, the Late Jurassic – Early Cretaceous ophiolite obduction over the Adria continental margin was sealed by sedimentation of clastic terrestrial deposits rapidly followed by a widespread carbonate platform system since the Early Cretaceous period. These Cretaceous sediments presently crop out over areas of varying extension, from several hundred kilometre wide undeformed continuous covers to small-scale tectonic slivers involved in the tectonic stack following the latest Cretaceous–Palaeogene collision. These deposits are unconformably sedimented above the units formed by the Late Jurassic to Early Cretaceous nappe stacking above the eastern Adria continental margin. We studied these deposits in a large area between western Serbia and eastern Bosnia. In the studied area, these deposits are divided into three lithostratigraphic groups according to their age, depositional environment and type of underlying basement. The Mokra Gora Group sediments (upper Aptian–Maastrichtian) were deposited on top of previously obducted and weathered ophiolites, the Kosjerić Group (Cenomanian–Campanian) overlies composite tectonic units comprising obducted ophiolites and their underlying continental basement portions, while the Guča Group (Campanian–Maastrichtian) exclusively rests on top of continental basement. The reconstructed sedimentary evolution of these groups, together with the comparison with the syn- and post-obduction deposits at the front of the ophiolitic nappe(s) in a wider area of the internal Dinarides (e.g. Pogari Group and Bosnian flysch), allowed us to clarify the obduction mechanisms, including their tectonic context, the changes in depositional environments and the timing of depositional and tectonic events, and, in a wider view, shed light on the geodynamic evolution of the Dinaric belt.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2020-07-14
    Description: Guided by conodont biostratigraphy and unconformities observed in the field, stable carbon isotopic analysis (δ13Ccarb) was performed on 210 samples from Lower–Middle Ordovician (Tremadocian to Darriwilian) sections and wells in the Tarim Basin, NW China. The δ13C trend in the Tarim Basin sections has three distinct characteristics: (1) from the Tremadocian to the Floian, a positive shift from −1.9 ‰ to −0.2 ‰ is observed near the boundary between the Penglaiba Formation and the Yingshan Formation; (2) from the Floian to the Dapingian, a positive shift in δ13C from −3 ‰ to −0.7 ‰ occurred under large-scale sea-level rise and a change in the sedimentary environment from a restricted platform to an open platform. Changes in the conodont type are also observed in the Tabei region; and (3) from the Dapingian to the Darriwilian, δ13C first decreased and then increased, showing a negative shift at the Dapingian–Darriwilian boundary. During the Floian, δ13C decreased in the study area, while it first decreased and then increased in other regions, which may reflect local sea-level movements in response to isostatic crustal movements. Two types of positive shift were identified at the Floian–Dapingian boundary, which likely show the effects of local factors, including a disconformity, dolomitization, and platform restriction, superimposed on the global signal of the carbon isotope. Some conodont zonations and recurrent negative excursions in Tremadocian, Floian and Dapingian stages appear to be truncated by unconformities, which are accompanied by short-term subaerial exposure due to sea-level fall and local tectonic uplift.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2020-07-10
    Description: The Haimur area represents the central part of the Wadi Allaqi region in the southern block of the Egyptian Eastern Desert near Nasser Lake and the Nile valley. It is made up of ophiolitic assemblage comprising serpentinite and talc carbonate, listwenite, metagabbro/amphibolite and metabasalt and island arc assemblages. The orogenic gold deposits in the Haimur area occur in the form of smoky/white sulphide-bearing quartz / quartz-carbonate veins or lenses cutting through the listwenite zone-related rocks. The NE-trending auriferous veins were formed due to an extensional to transtensional shearing related to NW Najd shear tectonics. Gold was observed in association with late-pyrite and chalcopyrite paragenetically formed in the gold phase (second phase), while the first phase is the sulphide phase including early-pyrite and arsenopyrite. Arsenopyrite was formed during early metamorphic recrystallization at a high-temperature range between 405 and 512 °C. However, gold was formed at lower temperature through retrograde metamorphism. Three types of fluid inclusions have been recognized: aqueous (type-I), mixed aqueous–carbonic (type-II) and hydrocarbonic (type-III). The P–T conditions of trapping were obtained from the isochore lines of intersection between T = 300–320 °C and pressure range of 60–180 MPa. The Haimur gold deposit was supposed to be derived from metamorphic fluids created by dehydration and decarbonation of ophiolitic mélange assemblages and volcano-sedimentary rocks, in which the gold was transported as Au(HS)2– complexes and precipitated in reduced environment. The strong linkage between the deformation and metamorphism triggered gold deposition in structurally favourable sites related to the Najd fault system.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2020-06-16
    Description: The Wulian complex is located on the northern margin of the Sulu orogenic belt, and was formed by collision between the North China Craton (NCC) to the north and South China Craton (SCC) to the south. It consists of the metasedimentary Wulian Group, gneissic granite and meta-diorite. The U–Pb analyses for the detrital zircons from the Wulian Group exhibit one predominant age population of 2600–2400 Ma with a peak at c. 2.5 Ga and several secondary age populations of 〉 3000, 3000–2800, 2800–2600, 2200–2000, 1900–1800, 1500–1300 and 1250–950 Ma; some metamorphic zircons have metamorphic ages of c. 2.7, 2.55–2.45, 2.1–2.0 and 1.95–1.80 Ga, which are consistent with magmatic-metamorphic events in the SCC. Additionally, the Wulian Group was intruded by the gneissic granite and meta-diorite at c. 0.76 Ga, attributed to Neoproterozoic syn-rifting bimodal magmatic activity in the SCC and derived from partial melting of Archaean continental crust and depleted mantle, respectively. The Wulian Group therefore has tectonic affinity to the SCC and was mainly sourced from the SCC. The detrital zircons have positive and negative ϵHf(t) values, indicating that their source rocks were derived from reworking of both ancient and juvenile crustal rocks. The major early Precambrian crustal growth took place during c. 3.4–2.5 Ga with a dominant peak at 2.96 Ga and several secondary peaks at 3.27, 2.74 and 2.52 Ga. The two oldest zircons with ages of 3307 and 3347 Ma record the recycling of ancient continental crust (〉 3.35 Ga) and crustal growth prior to c. 3.95 Ga in the SCC.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2020-06-24
    Description: We present the first comprehensive detrital zircon U–Pb age dataset from Palaeozoic sandstones of Saudi Arabia, which provides new insights into the erosion history of the East African Orogen and sediment recycling in northern Gondwana. Five main age populations are present in varying amounts in the zircon age spectra, with age peaks at ~625 Ma, ~775 Ma, ~980 Ma, ~1840 Ma and ~2480 Ma. Mainly igneous rocks of the Arabian–Nubian Shield are suggested to be the most prominent sources for the Ediacaran to middle Tonian zircon grains. Palaeoproterozoic and Archaean grains may be xenocrystic zircons or they have been recycled from older terrigenous sediment. A primary derivation from Palaeoproterozoic and Archaean basement is also possible, as rocks of such age occur in the vicinity. Approximately 4 % of the detrital zircons show Palaeozoic (340–541 Ma) ages. These grains are likely derived from Palaeozoic post-orogenic and anorogenic igneous rocks of NE Africa and Arabia. A few single grains gave up to Eoarchaean (3.6–4.0 Ga) ages, which are the oldest zircons yet described from Arabia and its vicinity. Their origin, however, is yet unknown. Detrital zircons with U–Pb ages of ~1.0 Ga are present in varying amounts in all of the samples and are a feature of terrigenous sediment belonging to the Gondwana super-fan system with an East African – Arabian zircon province.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2020-06-22
    Description: A correlation and interpretation of the sequence stratigraphy of the lower Cambrian strata of NW France is presented and used to characterize basin-wide controls on processes of sedimentation. Deposition occurred in two basins, as two third-order stratigraphic sequences. A northern basin in the Cotentin was dominated by deposition of marine siliciclastic sediments of Sequence 1 (Cambrian Stages 2–3). The primary sediment input was from the NW at La Hague. A middle Normandy basin, SW of Caen, was characterized by deposition of platform carbonates and fine-grained, offshore siliciclastics in Sequence 1 and fluvio-deltaic and marine siliciclastics in Sequence 2 (Cambrian Stages 3–4). Major sediment input points lay to the west in Brittany and to the NE of Caen (in Sequence 2). Lowstand and transgressive systems tract strata dominate both sequences, with local preservation of highstand deposits in basin-centre locations. Fluvial deposits occur at basin margins and display sandstone-dominated facies typical of prevegetation systems. Two styles of fluvially dominated siliciclastic delta are recognized, which show delta-front strata composed of fluvial channels overlying either wave-formed deposits or hyperpycnites. The former formed on shallow shelves, whereas the latter formed where basin bathymetry was steeper and commonly fault controlled. Fossil microbial life forms are conspicuous in Sequence 1, as are intervals of low-diversity bioturbation. The balance of life forms is consistent with the punctuated replacement of algal matgrounds with mixgrounds during early Cambrian time. Super-mature quartz arenites were formed by high-energy wave processes on slowly aggrading basin flanks following marine transgression.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2020-06-22
    Description: In the Transdanubian Range, Pannonian Basin, Hungary, karstic sinkholes on a planation surface of Triassic carbonates are filled by grey clayey–silty kaolin deposits. The provenance and accumulation age of these strongly altered terrestrial karst-filling sediments are constrained by X-ray powder diffraction, heavy mineral analysis and zircon U–Pb dating. The heavy minerals of the Southern Bakony Mountains samples are dominated by the ultra-stable zircon–rutile–tourmaline association. Zircon U–Pb data indicate accumulation between 20 and 16 Ma. Furthermore, Archaean to Palaeogene grains were also determined, reflecting the principally fluvial recycling of Eocene bauxites and their cover sequences. In contrast, the sample from the Keszthely Hills consists almost exclusively of airborne material including zircons of 18–14 Ma, reflecting a dominant contribution from the Carpathian–Pannonian Neogene volcanism. The shift in the Miocene age components is inferred to have been caused by the landscape evolution and burial history of the planation surface remnants controlled by local block tectonics.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2020-06-22
    Description: The almost complete skeleton of a fossil dreamer, identified as Oneirodes sp., is described from the middle–upper Miocene Kurasi Formation of southern Sakhalin Island, Russia. This is the second fossil skeletal record of oneirodid anglerfishes following those described from the Puente Formation of California, USA. The new specimen possesses morphological features very similar to those of the recent and fossil members of its genus, and cannot be separated from them at the species level. This finding confirms the idea of the high level of speciation of this fish family prior to the middle–late Miocene and demonstrates the wide geographic distribution of the genus Oneirodes already at this time.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2020-06-10
    Description: The Shyok Suture in western Himalaya preserves a record of the opening and closure of the Mesotethys Ocean between the Shyok ophiolite and Karakoram terrane prior to the India–Eurasia collision. The formation age of the Shyok ophiolite was unknown, which impeded correlation with similar rocks along the Shyok Suture in Pakistan and corresponding sutures in Tibet. We report the first zircon U–Pb ages of a newly documented suite, here named the Changmar Complex. The Changmar Complex gabbronorite and plagiogranite yielded SHRIMP U–Pb zircon Late Jurassic ages of 159.4 ± 0.9 Ma and 151.9 ± 1.5 Ma. Their highly positive initial εHf values (+14.9 to +16.9) indicate a juvenile mantle origin, without continental crust influence on the magma source. The Shyok ophiolite represents either: (1) a separate island arc that preceded formation of the Cretaceous–Eocene Ladakh Arc; or (2) the oldest magmatism and early stage of the Ladakh Arc. Intrusive and extrusive mafic rocks from the Shyok Suture analysed in this study have typical supra-subduction zone enrichment characteristics in their geochemistry and are classified as part of the volcanic-arc ophiolite. The U–Pb age and Hf isotopic signatures for the Shyok ophiolite are similar to the Late Jurassic Matum Das tonalite within the Kohistan Arc; we therefore suggest that they are part of the same intra-oceanic island-arc system that formed in the Mesotethys Ocean prior to Late Jurassic time.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2020-06-10
    Description: An integrated approach involving Sr–Nd isotope, trace and rare earth element analyses tracks multiple sources of the Mesozoic sediments of the Kutch Basin at the western continental margin of India. High (87Sr/86Sr)t (ratio at time of deposition), negative εNd and high concentrations of large-ion lithophile elements (LILEs) indicate the upper continental source. Ratios of Nb/Ta and Zr/Hf suggest sedimentary and felsic igneous sources of sediments. The moderate to high concentration of La, Th and Sc, light rare earth elements (LREE-) enrichment, weak negative Eu anomalies and the relationship between εNd(0) and Th/Sc indicate the dominantly felsic composition of source rocks. However, low contents of Th, low values of (87Sr/86Sr)t and depleted mantle model age TDM 〈 1600 Ma indicate input from a younger mafic source. Increasing concentrations of Zr, Hf and Nd isotopes and a gradual increase in mean TDM from the older to the younger formations indicate erosional unroofing at the source terrain. The increasing (87Sr/86Sr)t through time relates to increased weathering of the source rock. The overwhelmingly southwesterly palaeocurrent direction of current-generated sedimentary structures, and the mean TDM ages trace suggest source areas of the Kutch Basin to Precambrian rocks in the north and NE of this basin. The TDM ages highlight the dominance of late Palaeoproterozoic source rocks. Nd isotope composition indicates that Proterozoic rocks of Marwar Supergroup and Erinpura Granite, in particular, served as main sediment contributors for the Mesozoic sediments in Kutch. We therefore conclude that the Mesozoic sediments in the Kutch Basin are predominantly of late Palaeoproterozoic age with lesser inputs from rocks of early Mesoproterozoic and early Palaeoproterozoic age.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2020-06-10
    Description: Results of in situ U–Pb dating of calcite spherulites, cone-in-cone (CIC) calcite and calcite fibres from a calcareous concretion of the upper Ediacaran of Finnmark, Arctic Norway, are reported. Calcite spherulites from the innermost layers of the concretion yielded a lower intercept age of 563 ± 70 Ma, which, although imprecise, is within uncertainty of the age of sedimentation based on fossil assemblages. Non-deformed CIC calcite from the bottom part of the concretion yielded an age of 475 ± 25 Ma, which is interpreted as the age of CIC calcite formation during a period of fluid overpressure induced during burial of the sediments. Deformed CIC calcite from the top part of the concretion yielded an age of 418 ± 23 Ma, which overlaps with a known Caledonian tectono-metamorphic event, and indicates a potential post-depositional overprint at this time. Calcite fibres that grew in small fissures along spherulite rims, which are interpreted as a recrystallization feature during deformation and formation of a cleavage, gave an imprecise age of 486 ± 161 Ma. Our results show that U–Pb dating of calcite can provide age constraints for ancient carbonates and syn- to post-depositional processes that operated during burial and metamorphic overprinting.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2020-06-01
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2020-06-16
    Description: Chemostratigraphic units require consistent definitions and unambiguous names. So-called TOCE (Top of Cambrian Excursion) is used as an uppermost Cambrian δ13Ccarb negative excursion although it was proposed without documentation, is ambiguously defined, and variably correlated into four Laurentian trilobite zones. TOCE, a nihilartikel, is regularly substituted to the exclusion of the earlier named, precisely documented and geochronologically older HERB (Hellnmaria-Red Tops Boundary) Event. HERB allows late Cambrian global correlation; its onset is close to the lowest occurrence of the conodont Eoconodontus notchpeakensis at the base of a proposed replacement (Lawsonian Stage) of Cambrian Stage 10. TOCE must be retired from use and abandoned as a synonym of the HERB Event.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2020-06-16
    Description: Most skarns are found near the pluton or in lithologies containing at least some limestone. However, recent research has shown that neither a pluton nor limestone is necessarily required to form a skarn deposit. The newly discovered Bagenheigeqier Pb–Zn skarn deposit is located in NE China. The skarn and Pb–Zn orebodies occur in volcanic lithologies of the Baiyin’gaolao Formation and are controlled by NE–SW-trending faults. The nearest pluton is a granite porphyry, at a distance of 20–250 m from the orebodies. Five paragenetic stages at Bagenheigeqier are recognized: (I) skarn; (II) oxide; (III) early sulphide; (IV) late sulphide; and (V) late quartz–calcite. The fluid inclusions from stages II to V homogenized at temperatures of 402–452, 360–408, 274–319 and 167–212°C, respectively. The hydrogen and oxygen isotope compositions (δ18OH2O, –12.4‰ to +9.3‰; δDH2O, –156.5‰ to –99.1‰) indicate that the ore-fluids were primarily of magmatic origin, with the proportion of meteoric water increasing during the progression of ore formation. Sulphur isotope values (δ34SVCDT, 1.4–5.5‰), lead isotope values (206Pb/204Pb, 18.184–18.717; 207Pb/204Pb, 15.520–15.875; 208Pb/204Pb, 37.991–38.379) and the initial 187Os/188Os ratios of the pyrite (0.307 ± 0.06) suggest that the ore metals were derived from the granite porphyry and Baiyin’gaolao Formation. Re–Os dating of pyrite intergrown with galena and sphalerite yielded a well-constrained isochron age of 151.2 ± 4.7 Ma, which is coeval with the laser ablation – inductively coupled plasma – mass spectrometry zircon U–Pb age of 154 ± 1 Ma for the granite porphyry. The deposit was therefore formed during Late Jurassic time.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2020-09-25
    Description: Detrital zircon U–Pb ages for sediments in and around the Palaeo-Tethyan convergence zone in northern Thailand provide constraints for tectonic interpretations of the Indochina Block, the Sibumasu Block, the Inthanon Zone accretionary complex and the Nan Back-arc Basin during the Triassic. In sedimentary rocks of the Indochina Block, almost all of the Palaeozoic and Triassic zircons were sourced from the collision zone between the Indochina and South China blocks, and an active continental margin in the western Indochina Block. Sediments of the Sibumasu Block were supplied by erosion of Archaean basement and from the Grenville and the Pan African orogenies, but show no record of Permian to Triassic igneous activity. Accretionary complex sediments have provenances of both the Sukhothai Arc and the Indochina and South China blocks, with detrital zircons of various ages being supplied from crustal uplift and erosion related to the Indosinian I orogeny. Sedimentary rocks of the Nan Back-arc Basin are widely distributed not only in the Nan–Uttaradit but also in northern Sukhothai areas. The origin of the Pha Som Metamorphic Complex and associated formations can be traced to basin-filling sediments in the Nan Back-arc Basin. These detrital zircon U–Pb ages have also allowed identification of the changing tectonic setting in the Palaeo-Tethys convergence zone from the ‘erosion of Proterozoic continental basement’ to ‘Palaeozoic active continental margin in the western Indochina Block’ and ‘Palaeozoic, Permian to Triassic collision zone between the South China and Indochina blocks’ through to ‘Triassic active Sukhothai Arc’.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2020-08-13
    Description: Since Plio-Pleistocene time, southward migration of shortening in the eastern part of the Greater Caucasus into the Kura foreland basin has progressively formed the Kura fold–thrust belt and Alazani piggyback basin, which separates the Kura fold–thrust belt from the Greater Caucasus. Previous work argued for an eastward propagation of the Kura fold–thrust belt, but this hypothesis was based on coarse geological maps and speculative ages for units within the Kura fold–thrust belt. Here we investigate the initiation of deformation within the Gombori range in the western Kura fold–thrust belt and evaluate this eastward propagation hypothesis. Sediments exposed in the Gombori range have a Greater Caucasus source, despite the modern drainage network in the NE Gombori range, which is dominated by NE-flowing rivers. Palaeocurrent analyses of the oldest and youngest syntectonic units indicate a switch happened between ~2.7 Ma and 1 Ma from dominantly SW-directed flow to palaeocurrents more similar to the modern drainage network. A single successful 26Al–10Be burial date indicates the youngest syntectonic sediments are 1.0 ± 1.0 Ma, which, while not a precise age, is consistent with original mapping suggesting these sediments are of Akchagylian–Apsheronian (2.7–0.88 Ma) age. These results, along with recent updated dating of thrust initiation in the eastern Kura fold–thrust belt, suggest that deformation within the Kura fold–thrust belt initiated synchronously or nearly synchronously along-strike. We additionally use topographic analyses to show that the Gombori range continues to be a zone of active deformation.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2020-07-30
    Description: A suite of Jurassic–Cretaceous migmatites was newly identified in the Liaodong Peninsula of the eastern North China Craton (NCC). Anatexis is commonly associated with crustal thickening. However, the newly identified migmatites were formed during strong lithospheric thinning accompanied by voluminous magmatism and intense deformation. Field investigations show that the migmatites are spatially associated with low-angle detachment faults. Numerous leucosomes occur either as isolated lenses or thin layers (dykes), parallel to or cross-cutting the foliation. Peritectic minerals such as titanite and sillimanite are distributed mainly along the boundaries of reactant minerals or are accumulated along the foliation. Most zircons show distinct core–rim structures, and the rims have low Th/U ratios (0.01–0.24). Zircon U–Pb dating results indicate that the protoliths of the migmatites were either the Late Triassic (224–221 Ma) diorites or metasedimentary rocks deposited sometime after c. 1857 Ma. The zircon overgrowth rims record crystallization ages of 173–161 Ma and 125 Ma, which represent the formation time of leucosomes. These ages are consistent with those reported magmatic events in the Liaodong Peninsula and surrounding areas. The leucosomes indicate a strong anatectic event during the Jurassic–Cretaceous period. Partial melting occurred through the breakdown of muscovite and biotite with the presence of water-rich fluid under a thermal anomaly regime. The possible mechanism that caused the 173–161 Ma and 125 Ma anatectic events was intimately related to the regional crustal extension during the lithospheric thinning of the NCC. Meanwhile, the newly generated melts further weakened the rigidity of the crust and enhanced the extension.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2020-08-14
    Description: The formation of magmatic plumbing systems in the crust involves mass and heat transfer from deep to shallow levels. This process modifies the local geotherm and increases the thermal maturation of the crust, affecting the rheological state of the host rock and the composition of magma. Here, we report a petrological, geochemical, isotopic and geochronological integrated study of the Huaco (~354 Ma) and Sanagasta (~353 Ma, from a new U–Pb zircon age) units from the Carboniferous (Lower Mississippian) Huaco Intrusive Complex, NW Argentina. Similar values of ϵNd t and δ18O, of −3.2 ± 0.7 and +11.2‰ ± 0.3‰ (V-SMOW), respectively, for both units indicate that they shared the same source, as a result of mixing and later homogenization of a crustal component at the Late Devonian (~378 to 366 Ma), with metasomatized mantle-derived melts. Slightly higher contents of TiO2, FeO, MgO, CaO and rare earth elements for the Sanagasta unit in comparison with the Huaco unit suggest an increase in the degree of partial melting, which may have been caused by a higher temperature at the lower crust. In addition, the previous structural model of the Huaco Intrusive Complex points to an increase in thermal maturation in the upper crust, which drives a change in the emplacement style from tabular subhorizontal (Huaco) to vertically elongated (Sanagasta) bodies. Therefore, the evolution of the intrusive complex may reflect a generalized thermal maturation of the complete magmatic column, at both upper and lower crustal levels.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2020-08-03
    Description: Ediacaran rangeomorphs were the first substantially macroscopic organisms to appear in the fossil record, but their underlying biology remains problematic. Although demonstrably heterotrophic, their current interpretation as osmotrophic consumers of dissolved organic carbon (DOC) is incompatible with the inertial (high Re) and advective (high Pe) fluid dynamics accompanying macroscopic length scales. The key to resolving rangeomorph feeding and physiology lies in their underlying construction. Taphonomic analysis of three-dimensionally preserved Charnia from the White Sea identifies the presence of large, originally water-filled compartments that served both as a hydrostatic exoskeleton and semi-isolated digestion chambers capable of processing recalcitrant substrates, most likely in conjunction with a resident microbiome. At the same time, the hydrodynamically exposed outer surface of macroscopic rangeomorphs would have dramatically enhanced both gas exchange and food delivery. A bag-like epithelium filled with transiently circulated seawater offers an exceptionally efficient means of constructing a simple, DOC-consuming, multicellular heterotroph. Such a body plan is broadly comparable to that of anthozoan cnidarians, minus such derived features as muscle, tentacles and a centralized mouth. Along with other early bag-like fossils, rangeomorphs can be reliably identified as total-group eumetazoans, potentially colonial stem-group cnidarians.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2020-08-20
    Description: Southern China is affected by multi-stage tectonic activities, with strong fold deformation, complex fault systems and poor shale gas preservation conditions. Here, we used shale samples from the lower Silurian Longmaxi shale in the complex tectonic area of Southern China, to study the relationship between differential structural deformation, and pore structure and adsorption capacity. According to the deformation mechanism of the shale, it is further divided into brittle-slip rheological deformation (BD) and ductile-slip rheological deformation (DD). The results show that all micro-fractures can be observed under scanning electron microscopy in deformed shale samples, but in shale samples with different types of rheological deformation, the micro-fractures have large differences in scale, fracture length and lateral connectivity. The micro-fractures developed in DD shales are small in scale and short in fracture length, but have strong local connectivity. In contrast, brittle minerals are more developed in BD shales, and interlayer shearing has formed micro-fractures with large fracture length and good lateral connectivity, which is beneficial for later fracturing. In these two types of deformed shales, pores in organic matter are rare, and sporadic organic pores have small pore size and poor connectivity. The total pore volume (1.8–2.4 × 10−2 cm3 g–1) of BD shale samples is higher than that of DD shale samples (0.8–1.6 × 10−2 cm3 g–1). There is a positive correlation between total pore volume and quartz content. In addition, the specific surface area (12–18 m2 g–1) of DD shale samples is larger than that of BD shale samples (6–12 m2 g–1).
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2020-08-20
    Description: Carbonatite melts derived from the mantle are enriched in CO2- and H2O-bearing fluids. This melt can metasomatize the peridotitic lithosphere and liberate a considerable amount of CO2. Experimental studies have also shown that a CO2–H2O-rich fluid can form Fe- and Mg-rich carbonate by reacting with olivine. The Sung Valley carbonatite of NE India is related to the Kerguelen plume and is characterized by rare occurrences of olivine. Our study shows that this olivine is resorbed forsterite of xenocrystic nature. This olivine bears inclusions of Fe-rich magnesite. Accessory apatite in the host carbonatite contains CO2–H2O fluid inclusions. Carbon and oxygen isotopic analyses indicate that the carbonatites are primary igneous carbonatites and are devoid of any alteration or fractionation. We envisage that the forsterite is a part of the lithospheric mantle that was reprecipitated in a carbonatite reservoir through dissolution–precipitation. Carbonation of this forsterite, during interaction between the lithospheric mantle and carbonatite melt, formed Fe-rich magnesite. CO2–H2O-rich fluid derived from the carbonatite magma and detected within accessory apatite caused this carbonation. Our study suggests that a significant amount of CO2 degassed from the mantle by carbonatitic magma can become entrapped in the lithosphere by forming Fe- and Mg-rich carbonates.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2020-08-19
    Description: The North Qilian orogenic belt in North China has been defined as a subduction–collision zone between the Alxa Block and the Qilian Block. We present petrography, zircon U–Pb geochronology, major- and trace-element geochemistry, and Sr–Nd–Pb–Hf isotope analysis for the Yushigou diabase from the Longshoushan area, which is located SW of the Alxa Block, aiming to understand its petrogenetic link to subduction processes. The Yushigou diabase belongs to the tholeiite series, and shows enrichment in light rare earth and large-ion lithophile elements, and a depletion in heavy rare earth and high-field-strength elements. Laser ablation – inductively coupled plasma – mass spectrometry U–Pb zircon dating yielded an emplacement age of 414 ± 9 Ma, with an ϵHf(t) value in the range of −10.3 to 1.8. The whole-rock initial 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios of the diabase range over 16.811–17.157, 15.331–15.422 and 37.768–37.895, respectively. The (87Sr/86Sr)i ratios vary between 0.7086 and 0.7106, and ϵNd(t) values vary between −14.4 and −13.4, which are significantly higher than the ϵHf(t) value (Nd–Hf decoupling). An interpretation of the elemental and isotopic data suggests that the Yushigou diabase was derived from partial melting of an enriched mantle I (EM-I) -type lithospheric mantle in the spinel–garnet transitional zone. Based on the geochemical features and previous regional geological data, we propose that the Silurian magmatism was most likely triggered by slab break-off after the closure of the North Qilian Ocean, and ancient continental materials from the subduction slab metasomatized the overlying lithospheric mantle during exhumation.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2020-08-19
    Description: Precise U–Pb zircon dating using the chemical abrasion – isotope dilution – thermal ionization mass spectrometry (CA-ID-TIMS) method constrains the age of the Central Sudetic Ophiolite (CSO) in the Variscan Belt of Europe. A felsic gabbro from the Ślęża Massif contains zircon xenocrysts dated at 404.8 ± 0.3 Ma and younger crystals dated at 402.6 ± 0.2 Ma that determine the final crystallization age of the gabbro. An identical age of 402.7 ± 0.3 Ma was determined for plagiogranite from the Nowa Ruda–Słupiec Massif, and plagiogranite from the Braszowice–Brzeźnica Massif yields a similar, but less reliable, age of 〉 401.2 Ma. The different massifs in the CSO are therefore considered as tectonically dismembered fragments of a single oceanic domain formed at c. 402.6–402.7 Ma (Early Devonian – Emsian). The magmatic activity recorded in the CSO was contemporaneous with the high-temperature/high-pressure metamorphism of granulites and peridotites in the Góry Sowie Massif, separating dismembered parts of the CSO. This suggests geodynamic coupling between the continental subduction recorded in the Góry Sowie and the oceanic spreading recorded in the CSO. Regional geological data indicate that the CSO was obducted before c. 383 Ma, less than 20 Ma after its formation at an oceanic spreading centre. The CSO is shown to be one of the oldest and first obducted among the Devonian ophiolites of the Variscan Belt. The CSO probably originated in an evolved back-arc basin in which the influence of subduction-related fluids and melts increased with time, from negligible during the formation of predominant mid-ocean-ridge-type magmatic rocks to strong at later stages, when rodingites, epidosites and other minor lithologies formed.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2020-08-20
    Description: The Jhalida porphyritic granitoid pluton is exposed in a regional shear zone belonging to the Chhotanagpur Gneissic Complex of the Satpura Orogen (c. 1.0 Ga), regarded as the collisional suture between the South and North Indian blocks. The pluton intruded the migmatitic gneisses, metapelites, calc-silicate rocks and amphibolites belonging to the amphibolite facies. The mineral assemblage indicates the calc-alkaline nature of the granitoids. Mafic (Pl–Qz–Bt±Hbl) schists occur as xenoliths within the pluton. The granitoids are classified as alkali-calcic to alkalic, dominantly magnesian grading to ferroan, metaluminous to slightly peraluminous, and shoshonitic to ultrapotassic. Geochemically, the granitoids are enriched in large-ion lithophile elements (LILE), particularly K, and light rare earth elements (LREE), but are comparatively depleted in Nb, Ta, and heavy rare earth elements (HREE). The strong negative correlation between SiO2 and P2O5, metaluminous to weakly peraluminous character, high liquidus temperature (798–891°C) and high fO2 (ΔQFM +0.8 to +1.6) of the melt suggest their I-type nature. Field relations and tectonic discrimination diagrams imply their post-collisional emplacement. Low Nb/U (average 8.5), Ce/Pb (average 9.0), and Al2O3/(Al2O3 + FeO(t) + MgO + TiO2) ratios and relatively low Mg number (average 0.15) of these granitoids indicate a crustal mafic source. Batch melting (at 825–950°C) of 10–20% of an old, incompatible elements-rich high-K high-alumina hornblende granulite can generate the porphyritic granite melt. The heat source for melting was an upwelling of the asthenospheric mantle in the post-collisional set-up. Textural and chemical characteristics of the mafic xenoliths show that invading porphyritic granitoid magma metasomatized the amphibolite protoliths.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2020-08-19
    Description: The Late Jurassic – earliest Cretaceous time interval was characterized by a widespread distribution of dysoxiс–anoxiс environments in temperate- and high-latitude epicontinental seas, which could be defined as a shelf dysoxic–anoxic event (SDAE). In contrast to black shales related to oceanic anoxic events, deposits generated by the SDAE were especially common in shelf sites in the Northern Hemisphere. The onset and termination of the SDAE was strongly diachronous across different regions. The SDAE was not associated with significant disturbances of the carbon cycle. Deposition of organic-carbon-rich sediment and the existence of dysoxic–anoxic conditions during the SDAE lasted up to c. 20 Ma, but this event did not cause any remarkable biotic extinction. Temperate- and high-latitude black shale occurrences across the Jurassic–Cretaceous boundary have been reviewed. Two patterns of black shale deposition during the SDAE are recognized: (1) Subboreal type, with numerous thin black shale beds, bounded by sediments with very low total organic carbon (TOC) values; and (2) Boreal type, distinguished by predominantly thick black shale successions showing high TOC values and prolonged anoxic–dysoxic conditions. These types appear to be unrelated to differences in accommodation space, and can be clearly recognized irrespective of the thickness of shale-bearing units. Black shales in high-latitude areas in the Southern Hemisphere strongly resemble Boreal types of black shale by their mode of occurrence. The causes of this SDAE are linked to long-term warming and changes in oceanic circulation. Additionally, the long-term disturbance of planktonic communities may have triggered overall increased productivity in anoxia-prone environments.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2020-08-13
    Description: Most tonalite–trondhjemite–granodiorite (TTG) suites are Archean–Palaeoproterozoic in age, but those of Neoproterozoic–Phanerozoic age are scarce. A rare Ediacaran high-Al TTG suite has been identified at the Fannani Igneous Complex (FIC) in the northern Arabian–Nubian Shield, which is essentially composed of amalgamated Neoproterozoic island-arc Pan-African composite terranes that contain several ophiolitic sutures. The FIC exhibits a wide range of SiO2, Al2O3, Sr and Zr, shows moderate rare earth element (REE) enrichment, and K, Ti, Nb, Y and heavy REE depletion. It is a subsolvus suite with clear orogenic affinities and strong arc-geochemical signatures. The precise U–Pb zircon thermal ionization mass spectrometry age obtained (607.4 ± 1.95 Ma) indicates oceanic subduction extended to late stages of the East African Orogeny. The FIC exhibits 87Sr/86Sr compositions of 0.70346–0.71091 (Sr(i) ratio, 0.70284), and 143Nd/144Nd of 0.51254–0.51270 (ϵNd(t) = +5.12 to +7.16), typical of modern oceanic-arc rocks (as Japan-arc basalts), and suggestive of mantle sources and island-arc settings. The FIC possesses low values of Yb (1.55 ppm), Nb (14 ppm) and Y (24 ppm), and high ratios of Sr/Y (27), Zr/Sm (46) and Nb/Ta (11.8), typical of magmas produced by anatexis of a basaltic slab. Partial melting models show that the FIC magma was generated by melting (F = 0.25–0.50) of a subducted oceanic crust transformed into eclogite, leaving 10–25% garnet in the residue. The FIC and similar complexes produced via slab melting during the closure of the Mozambique Ocean formed large juvenile belts along the East African Orogen that sutured East and West Gondwana together into a united supercontinent.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2020-08-04
    Description: 40Ar/39Ar and U–Pb data from five structural domains constrain the late Neoproterozoic – early Palaeozoic tectonothermal history of the eastern part of the East African–Antarctic Orogen in Sør Rondane. A total of 27 new Ar/Ar ages span 570–474 Ma, roughly corresponding to the age range of three generations of syn- to post-tectonic granitoids. The ages are distinct for the five structural domains. The oldest cooling ages come from the weakly deformed southern part of the SW Terrane of Sør Rondane (SW Terrane S), a sliver of a Tonian island arc, which escaped much of the late Neoproterozoic accretionary deformation. This terrane was intruded by the oldest and largest granitoid complex at c. 640–620 Ma. The oldest Ar/Ar amphibole and biotite ages of 570–524 Ma are from the Main Shear Zone, along the northern margin of the SW Terrane S sliver. It hosts granites of age c. 584–570 Ma strung out along the shear zone. Two younger granitoid phases are recorded in the adjacent four terranes to the west, north and east of the SW Terrane S, and correlate with the younger group of Ar/Ar biotite ages spanning 513–474 Ma. We interpret the magmatic and cooling history of duration 〉 150 Ma to reflect repeated phases of accretion, magmatism and reactivation, that is, collage-style tectonism, partly pre-dating the incorporation of Sør Rondane into Gondwana. The study area first accreted to the cryptic Valkyrie Craton in Tonian times, was then ‘sandwiched’ between the Kalahari and Indo-Antarctica cratons, and experienced extensional tectonics and elevated heat flux due to lithospheric delamination, which resulted in slow cooling during the Pan-African Orogeny.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2020-09-24
    Description: Beothukis mistakensis from the Ediacaran System of Newfoundland, Canada demonstrates complex fractal-like morphology through the development of primary-, secondary- and tertiary-order Rangea-like units. The primary-order rangeomorph units observed in B. mistakensis are tightly juxtaposed, show no evidence of being independent of one another and are made up of chamber-like secondary-order – probably mesoglea-filled – units. The growth of these rangeomorph units demonstrates that the frond developed from the tip towards the basal region through ontogeny. The tertiary-order units of Beothukis are considered to represent surface morphology on the secondary-order units. This is in contrast to palaeobiological reconstructions of Beothukis that invoke three-dimensional fractal-like branches with independent units, which has been used to infer an osmotrophic mode of life. It is considered here that the fractal-like morphology of the lower surface of B. mistakensis was an adaptation to increase surface area to volume ratio. The quilted morphology of Beothukis proposed here is consistent with a sessile, reclining, phagocytotic and/or chemosymbiotic mode of life similar to that invoked for the reclining rangeomorph Fractofusus.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2020-09-14
    Description: The northern Alxa orogenic belt, located in the middle segment of the Central Asian Orogenic Belt, is a junction between the North China Craton, Tarim Craton and Mongolian microcontinents. However, its Permo-Carboniferous tectono-palaeogeographic evolution has not been well established. In this study, new zircon U–Pb–Hf isotopic data for the Permo-Carboniferous clastic rocks were used to address the above issue. Based on our dating work and fossil assemblages, we confirmed that the Amushan, Maihanhada, Aqide and Haersuhai formations were formed in the late Carboniferous to early Permian, early to middle Permian, middle Permian and late Permian periods, respectively. The Amushan Formation sandstone in the Zhusileng area contains abundant Palaeozoic zircons (with age peaks at 440 Ma, 475 Ma and 539 Ma) and some Precambrian zircons. These zircon ages and the southeast transgressive direction suggest the provenance to be the local Zhusileng–Hangwula block and the nearby Yagan continental margin. The zircon age pattern with a high proportion of detrital zircons much older than the depositional time and no detrital zircons close to the depositional time suggest an extensional basin depositional setting. The clastic rocks of the Maihanhada, Aqide and Haersuhai formations inherited the source for the Amushan Formation, with a greatly increased input of Permo-Carboniferous volcanic rocks with post-collision or intraplate chemical affinity. Accordingly, a Permo-Carboniferous extensional stage was suggested. Finally, a tectono-palaeogeographic model was reconstructed for the northern Alxa orogenic belt, evolving from a late Carboniferous transgression with crustal extension to early to middle Permian rapid basin filling and a late Permian marine regression.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...