ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (201)
  • Beilstein-Institut  (201)
  • American Chemical Society
  • Annual Reviews
  • Blackwell Publishing Ltd
  • The Royal Society
  • Wiley
  • Wiley-Blackwell
  • 2015-2019  (201)
  • 2005-2009
  • 1990-1994
  • 1980-1984
  • 1970-1974
  • 1950-1954
  • 1940-1944
  • 2016  (201)
  • 1983
  • Beilstein Journal of Nanotechnology. 2016; 7: 1-8. Published 2016 Jan 04. doi: 10.3762/bjnano.7.1.  (1)
  • Beilstein Journal of Nanotechnology. 2016; 7: 1010-1017. Published 2016 Jul 11. doi: 10.3762/bjnano.7.93.  (1)
  • Beilstein Journal of Nanotechnology. 2016; 7: 1018-1027. Published 2016 Jul 13. doi: 10.3762/bjnano.7.94.  (1)
  • Beilstein Journal of Nanotechnology. 2016; 7: 102-110. Published 2016 Jan 25. doi: 10.3762/bjnano.7.12.  (1)
  • Beilstein Journal of Nanotechnology. 2016; 7: 1028-1032. Published 2016 Jul 15. doi: 10.3762/bjnano.7.95.  (1)
  • Beilstein Journal of Nanotechnology. 2016; 7: 1033-1043. Published 2016 Jul 18. doi: 10.3762/bjnano.7.96.  (1)
  • Beilstein Journal of Nanotechnology. 2016; 7: 1044-1051. Published 2016 Jul 20. doi: 10.3762/bjnano.7.97.  (1)
  • Beilstein Journal of Nanotechnology. 2016; 7: 1052-1054. Published 2016 Jul 21. doi: 10.3762/bjnano.7.98.  (1)
  • Beilstein Journal of Nanotechnology. 2016; 7: 1055-1067. Published 2016 Jul 22. doi: 10.3762/bjnano.7.99.  (1)
  • Beilstein Journal of Nanotechnology. 2016; 7: 1068-1074. Published 2016 Jul 25. doi: 10.3762/bjnano.7.100.  (1)
  • Beilstein Journal of Nanotechnology. 2016; 7: 1075-1085. Published 2016 Jul 26. doi: 10.3762/bjnano.7.101.  (1)
  • Beilstein Journal of Nanotechnology. 2016; 7: 1086-1103. Published 2016 Jul 27. doi: 10.3762/bjnano.7.102.  (1)
  • Beilstein Journal of Nanotechnology. 2016; 7: 1104-1112. Published 2016 Jul 29. doi: 10.3762/bjnano.7.103.  (1)
  • Beilstein Journal of Nanotechnology. 2016; 7: 111-120. Published 2016 Jan 26. doi: 10.3762/bjnano.7.13.  (1)
  • Beilstein Journal of Nanotechnology. 2016; 7: 1113-1128. Published 2016 Aug 02. doi: 10.3762/bjnano.7.104.  (1)
  • Beilstein Journal of Nanotechnology. 2016; 7: 1129-1140. Published 2016 Aug 03. doi: 10.3762/bjnano.7.105.  (1)
  • Beilstein Journal of Nanotechnology. 2016; 7: 1141-1155. Published 2016 Aug 05. doi: 10.3762/bjnano.7.106.  (1)
  • Beilstein Journal of Nanotechnology. 2016; 7: 1156-1165. Published 2016 Aug 08. doi: 10.3762/bjnano.7.107.  (1)
  • Beilstein Journal of Nanotechnology. 2016; 7: 1166-1173. Published 2016 Aug 10. doi: 10.3762/bjnano.7.108.  (1)
  • 149269
  • Technology  (201)
Collection
  • Articles  (201)
Publisher
  • Beilstein-Institut  (201)
  • American Chemical Society
  • Annual Reviews
  • Blackwell Publishing Ltd
  • The Royal Society
  • +
Years
  • 2015-2019  (201)
  • 2005-2009
  • 1990-1994
  • 1980-1984
  • 1970-1974
  • +
Year
Journal
  • 1
    Publication Date: 2016-02-17
    Description: This report examines the assembly of chalcogenide organic molecules on various surfaces, focusing on cases when chemisorption is accompanied by carbon–chalcogen atom-bond scission. In the case of alkane and benzyl chalcogenides, this induces formation of a chalcogenized interface layer. This process can occur during the initial stages of adsorption and then, after passivation of the surface, molecular adsorption can proceed. The characteristics of the chalcogenized interface layer can be significantly different from the metal layer and can affect various properties such as electron conduction. For chalcogenophenes, the carbon–chalcogen atom-bond breaking can lead to opening of the ring and adsorption of an alkene chalcogenide. Such a disruption of the π-electron system affects charge transport along the chains. Awareness about these effects is of importance from the point of view of molecular electronics. We discuss some recent studies based on X-ray photoelectron spectroscopy that shed light on these aspects for a series of such organic molecules.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-06-29
    Description: It has recently been shown that ‘sub-atomic’ contrast can be observed during NC-AFM imaging of the Si(111)-7×7 substrate with a passivated tip, resulting in triangular shaped atoms [Sweetman et al. Nano Lett. 2014, 14, 2265]. The symmetry of the features, and the well-established nature of the dangling bond structure of the silicon adatom means that in this instance the contrast cannot arise from the orbital structure of the atoms, and it was suggested by simple symmetry arguments that the contrast could only arise from the backbonding symmetry of the surface adatoms. However, no modelling of the system has been performed in order to understand the precise origin of the contrast. In this paper we provide a detailed explanation for ‘sub-atomic’ contrast observed on Si(111)-7×7 using a simple model based on Lennard-Jones potentials, coupled with a flexible tip, as proposed by Hapala et al. [Phys. Rev. B 2014, 90, 085421] in the context of interpreting sub-molecular contrast. Our results show a striking similarity to experimental results, and demonstrate how ‘sub-atomic’ contrast can arise from a flexible tip exploring an asymmetric potential created due to the positioning of the surrounding surface atoms.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-07-04
    Description: Background: In nanoscale layered S/F1/N/F2/AF heterostructures, the generation of a long-range, odd-in-frequency spin-projection one triplet component of superconductivity, arising at non-collinear alignment of the magnetizations of F1 and F2, exhausts the singlet state. This yields the possibility of a global minimum of the superconducting transition temperature T c, i.e., a superconducting triplet spin-valve effect, around mutually perpendicular alignment. Results: The superconducting triplet spin valve is realized with S = Nb a singlet superconductor, F1 = Cu41Ni59 and F2 = Co ferromagnetic metals, AF = CoO x an antiferromagnetic oxide, and N = nc-Nb a normal conducting (nc) non-magnetic metal, which serves to decouple F1 and F2. The non-collinear alignment of the magnetizations is obtained by applying an external magnetic field parallel to the layers of the heterostructure and exploiting the intrinsic perpendicular easy-axis of the magnetization of the Cu41Ni59 thin film in conjunction with the exchange bias between CoO x and Co. The magnetic configurations are confirmed by superconducting quantum interference device (SQUID) magnetic moment measurements. The triplet spin-valve effect has been investigated for different layer thicknesses, d F1, of F1 and was found to decay with increasing d F1. The data is described by an empirical model and, moreover, by calculations using the microscopic theory. Conclusion: The long-range triplet component of superconducting pairing is generated from the singlet component mainly at the N/F2 interface, where the amplitude of the singlet component is suppressed exponentially with increasing distance d F1. The decay length of the empirical model is found to be comparable to twice the electron mean free path of F1 and, thus, to the decay length of the singlet component in F1. Moreover, the obtained data is in qualitative agreement with the microscopic theory, which, however, predicts a (not investigated) breakdown of the triplet spin-valve effect for d F1 smaller than 0.3 to 0.4 times the magnetic coherence length, ξF1.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-03-18
    Description: Silver nanoparticles (AgNPs) have increasingly gained importance as antibacterial agents with applications in several fields due to their strong, broad-range antimicrobial properties. AgNP synthesis by pulsed laser ablation in liquid (PLAL) permits the preparation of stable Ag colloids in pure solvents without capping or stabilizing agents, producing AgNPs more suitable for biomedical applications than those prepared with common, wet chemical preparation techniques. To date, only a few investigations into the antimicrobial effect of AgNPs produced by PLAL have been performed. These have mainly been performed by ablation in water with nanosecond pulse widths. We previously observed a strong surface-enhanced Raman scattering (SERS) signal from such AgNPs by “activating” the NP surface by the addition of a small quantity of LiCl to the colloid. Such surface effects could also influence the antimicrobial activity of the NPs. Their activity, on the other hand, could also be affected by other parameters linked to the ablation conditions, such as the pulse width. The antibacterial activity of AgNPs was evaluated for NPs obtained either by nanosecond (ns) or picosecond (ps) PLAL using a 1064 nm ablation wavelength, in pure water or in LiCl aqueous solution, withEscherichia coliandBacillus subtilisas references for Gram-negative and Gram-positive bacteria, respectively. In all cases, AgNPs with an average diameter less than 10 nm were obtained, which has been shown in previous works to be the most effective size for bactericidal activity. The measured zeta-potential values were very negative, indicating excellent long-term colloidal stability. Antibacterial activity was observed against both microorganisms for the four AgNP formulations, but the ps-ablated nanoparticles were shown to more effectively inhibit the growth of both microorganisms. Moreover, LiCl modified AgNPs were the most effective, showing minimum inhibitory concentration (MIC) values in a restricted range of 1.0–3.7 µg/mL. An explanation is proposed for this result based on the increased surface reactivity of the metal surface due to the presence of positively charged active sites.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-08-10
    Description: Background: The development of new antiviral drugs based on nucleic acids is under scrutiny. An important problem in this aspect is to find the most vulnerable conservative regions in the viral genome as targets for the action of these agents. Another challenge is the development of an efficient system for their delivery into cells. To solve this problem, we proposed a TiO2·PL–DNA nanocomposite consisting of titanium dioxide nanoparticles and polylysine (PL)-containing oligonucleotides. Results: The TiO2·PL–DNA nanocomposites bearing the DNA fragments targeted to different conservative regions of (−)RNA and (+)RNA of segment 5 of influenza A virus (IAV) were studied for their antiviral activity in MDCK cells infected with the H1N1, H5N1, and H3N2 virus subtypes. Within the negative strand of each of the studied strains, the efficiency of DNA fragments increased in the direction of its 3’-end. Thus, the DNA fragment aimed at the 3’-noncoding region of (−)RNA was the most efficient and inhibited the reproduction of different IAV subtypes by 3–4 orders of magnitude. Although to a lesser extent, the DNA fragments targeted at the AUG region of (+)RNA and the corresponding region of (−)RNA were also active. For all studied viral subtypes, the nanocomposites bearing the DNA fragments targeted to (−)RNA appeared to be more efficient than those containing fragments aimed at the corresponding (+)RNA regions. Conclusion: The proposed TiO2·PL–DNA nanocomposites can be successfully used for highly efficient and site-specific inhibition of influenza A virus of different subtypes. Some patterns of localization of the most vulnerable regions in IAV segment 5 for the action of DNA-based drugs were found. The (−)RNA strand of IAV segment 5 appeared to be more sensitive as compared to (+)RNA.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-07-22
    Description: We report on an experimental study of the charge transport through tunnel gaps formed by adjustable gold electrodes immersed into different solvents that are commonly used in the field of molecular electronics (ethanol, toluene, mesitylene, 1,2,4-trichlorobenzene, isopropanol, toluene/tetrahydrofuran mixtures) for the study of single-molecule contacts of functional molecules. We present measurements of the conductance as a function of gap width, conductance histograms as well as current–voltage characteristics of narrow gaps and discuss them in terms of the Simmons model, which is the standard model for describing transport via tunnel barriers, and the resonant single-level model, often applied to single-molecule junctions. One of our conclusions is that stable junctions may form from solvents as well and that both conductance–distance traces and current–voltage characteristics have to be studied to distinguish between contacts of solvent molecules and of molecules under study.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-07-18
    Description: Cantilever magnetometry is a measurement technique used to study magnetic nanoparticles. With decreasing sample size, the signal strength is significantly reduced, requiring advances of the technique. Ultrathin and slender cantilevers can address this challenge but lead to increased complexity of detection. We present an approach based on the co-resonant coupling of a micro- and a nanometer-sized cantilever. Via matching of the resonance frequencies of the two subsystems we induce a strong interplay between the oscillations of the two cantilevers, allowing for a detection of interactions between the sensitive nanocantilever and external influences in the amplitude response curve of the microcantilever. In our magnetometry experiment we used an iron-filled carbon nanotube acting simultaneously as nanocantilever and magnetic sample. Measurements revealed an enhancement of the commonly used frequency shift signal by five orders of magnitude compared to conventional cantilever magnetometry experiments with similar nanomagnets. With this experiment we do not only demonstrate the functionality of our sensor design but also its potential for very sensitive magnetometry measurements while maintaining a facile oscillation detection with a conventional microcantilever setup.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-10-26
    Description: The study of infrared absorption by linear gold nanoantennas fabricated on a Si surface with underlying SiO2 layers of various thicknesses allowed the penetration depth of localized surface plasmons into SiO2 to be determined. The value of the penetration depth derived experimentally (20 ± 10 nm) corresponds to that obtained from electromagnetic simulations (12.9–30.0 nm). Coupling between plasmonic excitations of gold nanoantennas and optical phonons in SiO2 leads to the appearance of new plasmon–phonon modes observed in the infrared transmission spectra the frequencies of which are well predicted by the simulations.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-08-30
    Description: Hollow carbon spheres (HCS) with a nanoporous shell are promising for the use in lithium–sulfur batteries because of the large internal void offering space for sulfur and polysulfide storage and confinement. However, there is an ongoing discussion whether the cavity is accessible for sulfur. Yet no valid proof of cavity filling has been presented, mostly due to application of unsuitable high-vacuum methods for the analysis of sulfur distribution. Here we describe the distribution of sulfur in hollow carbon spheres by powder X-ray diffraction and Raman spectroscopy along with results from scanning electron microscopy and nitrogen physisorption. The results of these methods lead to the conclusion that the cavity is not accessible for sulfur infiltration. Nevertheless, HCS/sulfur composite cathodes with areal sulfur loadings of 2.0 mg·cm−2 were investigated electrochemically, showing stable cycling performance with specific capacities of about 500 mAh·g−1 based on the mass of sulfur over 500 cycles.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-11-07
    Description: Main aims of the study are a deepened understanding of the mechanically relevant (ultra-)structures and the mechanical behaviour of various arborescent and shrubby monocotyledons and obtaining the structure–function relationships of different structurally conspicuous parts in Dracaena marginata stems. The stems of five different “woody” monocotyledon species were dissected and the mechanical properties of the most noticeable tissues in the five monocotyledons and, additionally, of individual vascular bundles in D. marginata, were tested under tensile stress. Results for Young’s moduli and density of these tissues were assessed as well as the area, critical strain, Young’s modulus and tensile strength of the vascular bundles in Dracaena marginata. These analyses allowed for generating a model for the mechanical interaction of tissues and vascular bundles of the stem in D. marginata as well as filling major “white spots” in property charts for biological materials. Additionally we shortly discuss the potential significance of such studies for the development of branched and unbranched bio-inspired fibre-reinforced materials and structures with enhanced properties.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2016-12-05
    Description: The mucilage envelope of seeds has various functions including the provision of different ways for the dispersal of diaspores. Chemical composition and water content of the mucilage yield particular adhesive and frictional properties in the envelope that also influence the dispersal of seeds. To determine the physical properties ofPlantago lanceolataseed mucilage we studied (1) composition, (2) desiccation, (3) adhesion, and (4) friction properties of the mucilage under different hydration conditions. We revealed the presence of cellulose fibrils in the mucilage, which are responsible for a continuous and even distribution of the mucilaginous layer on the seed surface. The measured values of adhesive and frictional properties differed significantly in comparison to the previously studied pectic mucilage ofLinum usitatissimum. Also, the water loss from the cellulose mucilage was more rapid. The obtained different values can result from the presence of cellulose fibrils and their interaction with pectins in the mucilage. Because of this feature the mucilage ofP. lanceolatamay represent a more regularly ordered and stabile system than the pectic mucilage of flax, which lacks cellulose. In spite of the fact thatP. lanceolatamucilage revealed different adhesive and frictional properties than the pectic mucilage, it still demonstrates an effective system promoting zoochoric seed dispersal. Cellulose may additionally prevent the mucilage against loss from the seed surface.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2016-11-18
    Description: Zeolite pellets containing 5 wt % of binder (methylcellulose or sodium metasilicate) were formed with a hydraulic press. This paper describes a mathematical model to predict the mechanical properties (uniaxial and diametric compression) of these pellets for arbitrary dimensions (height and diameter) using a design of experiments (DOE) methodology. A second-degree polynomial equation including interactions was used to approximate the experimental results. This leads to an empirical model for the estimation of the mechanical properties of zeolite pellets with 5 wt % of binder. The model was verified by additional experimental tests including pellets of different dimensions created with different applied pressures. The optimum dimensions were found to be a diameter of 10–23 mm, a height of 1–3.5 mm and an applied pressure higher than 200 MPa. These pellets are promising for technological uses in molecular decontamination for aerospace-based applications.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2016-12-08
    Description: The sensing properties of electrodes chemically modified with PEDOT/PSS towards catechol and hydroquinone sensing have been successfully improved by combining layers of PEDOT/PSS with layers of a secondary electrocatalytic material such as gold nanoparticles (PEDOT/PSS/AuNPs), copper phthalocyanine (PEDOT/PSS/CuPc) or lutetium bisphthalocyanine (PEDOT/PSS/LuPc2). Layered composites exhibit synergistic effects that strongly enhance the electrocatalytic activity as indicated by the increase in intensity and the shift of the redox peaks to lower potentials. A remarkable improvement has been achieved using PEDOT/PSS/LuPc2, which exhibits excellent electrocatalytic activity towards the oxidation of catechol. The kinetic studies demonstrated diffusion-controlled processes at the electrode surfaces. The kinetic parameters such as Tafel slopes and charge transfer coefficient (α) confirm the improved electrocatalytic activity of the layered electron mediators. The peak currents increased linearly with concentration of catechol and hydroquinone over the range of 1.5 × 10−4 to 4.0 × 10−6 mol·L−1 with a limit of detection on the scale of μmol·L−1. The layered composite hybrid systems were also found to be excellent electron mediators in biosensors containing tyrosinase and laccase, and they combine the recognition and biocatalytic properties of biomolecules with the unique catalytic features of composite materials. The observed increase in the intensity of the responses allowed detection limits of 1 × 10−7 mol·L−1 to be attained.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2016-09-01
    Description: Resilin is an elastomeric protein typically occurring in exoskeletons of arthropods. It is composed of randomly orientated coiled polypeptide chains that are covalently cross-linked together at regular intervals by the two unusual amino acids dityrosine and trityrosine forming a stable network with a high degree of flexibility and mobility. As a result of its molecular prerequisites, resilin features exceptional rubber-like properties including a relatively low stiffness, a rather pronounced long-range deformability and a nearly perfect elastic recovery. Within the exoskeleton structures, resilin commonly forms composites together with other proteins and/or chitin fibres. In the last decades, numerous exoskeleton structures with large proportions of resilin and various resilin functions have been described. Today, resilin is known to be responsible for the generation of deformability and flexibility in membrane and joint systems, the storage of elastic energy in jumping and catapulting systems, the enhancement of adaptability to uneven surfaces in attachment and prey catching systems, the reduction of fatigue and damage in reproductive, folding and feeding systems and the sealing of wounds in a traumatic reproductive system. In addition, resilin is present in many compound eye lenses and is suggested to be a very suitable material for optical elements because of its transparency and amorphousness. The evolution of this remarkable functional diversity can be assumed to have only been possible because resilin exhibits a unique combination of different outstanding properties.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2016-02-10
    Description: We study the thermal stability of hollow copper nanowires using molecular dynamics simulation. We find that the plasticity-mediated structural evolution leads to transformation of the initial hollow structure to a solid wire. The process involves three distinct stages, namely, collapse, recrystallization and slow recovery. We calculate the time scales associated with different stages of the evolution process. Our findings suggest a plasticity-mediated mechanism of collapse and recrystallization. This contradicts the prevailing notion of diffusion driven transport of vacancies from the interior to outer surface being responsible for collapse, which would involve much longer time scales as compared to the plasticity-based mechanism.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2016-10-18
    Description: The attachment ability of ladybird beetles Coccinella septempunctata was systematically investigated on eight types of surface, each with different chemical and topographical properties. The results of traction force tests clearly demonstrated that chemical surface properties, such as static/dynamic de-wettability of water and oil caused by specific chemical compositions, had no significant effect on the attachment of the beetles. Surface roughness was found to be the dominant factor, strongly affecting the attachment ability of the beetles.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2016-10-25
    Description: We report on the use of combined heating and pulsed UV light activation of indium oxide gas sensors for enhancing their performance in the detection of nitrogen dioxide in air. Indium oxide nano-octahedra were synthesized at high temperature (900 °C) via vapour-phase transport and screen-printed onto alumina transducers that comprised interdigitated electrodes and a heating resistor. Compared to the standard, constant temperature operation of the sensor, mild heating (e.g., 100 °C) together with pulsed UV light irradiation employing a commercially available, 325 nm UV diode (square, 1 min period, 15 mA drive current signal), results in an up to 80-fold enhancement in sensitivity to nitrogen dioxide. Furthermore, this combined operation method allows for making savings in power consumption that range from 35% to over 80%. These results are achieved by exploiting the dynamics of sensor response under pulsed UV light, which convey important information for the quantitative analysis of nitrogen dioxide.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2016-11-22
    Description: A vertical diode structure comprising homogeneous monolayer epitaxial graphene on silicon carbide is fabricated by thermal decomposition of a Si-face 4H-SiC wafer in argon atmosphere. Current–voltage characteristics of the graphene/SiC Schottky junction were analyzed by applying the thermionic-emission theory. Extracted values of the Schottky barrier height and the ideality factor are found to be 0.4879 ± 0.013 eV and 1.01803 ± 0.0049, respectively. Deviations of these parameters from average values are smaller than those of previously observed literature data, thereby implying uniformity of the Schottky barrier height over the whole diode area, a stable rectifying behaviour and a good quality of ohmic palladium–graphene contacts. Keeping in mind the strong sensitivity of graphene to analytes we propose the possibility to use the graphene/SiC Schottky diode as a sensing platform for the recognition of toxic heavy metals. Using density functional theory (DFT) calculations we gain insight into the nature of the interaction of cadmium, mercury and lead with graphene as well as estimate the work function and the Schottky barrier height of the graphene/SiC structure before and after applying heavy metals to the sensing material. A shift of the I–V characteristics of the graphene/SiC-based sensor has been proposed as an indicator of presence of the heavy metals. Since the calculations suggested the strongest charge transfer between Pb and graphene, the proposed sensing platform was characterized by good selectivity towards lead atoms and slight interferences from cadmium and mercury. The dependence of the sensitivity parameters on the concentration of Cd, Hg and Pb is studied and discussed.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2016-05-04
    Description: Although the Venus flytrap (Dionaea muscipula) can be considered as one of the most extensively investigated carnivorous plants, knowledge is still scarce about diversity of the snap-trap motion, the functionality of snap traps under varying environmental conditions, and their opening motion. By conducting simple snap-trap closure experiments in air and under water, we present striking evidence that adult Dionaea snaps similarly fast in aerial and submersed states and, hence, is potentially able to gain nutrients from fast aquatic prey during seasonal inundation. We reveal three snapping modes of adult traps, all incorporating snap buckling, and show that millimeter-sized, much slower seedling traps do not yet incorporate such elastic instabilities. Moreover, opening kinematics of young and adult Dionaea snap traps reveal that reverse snap buckling is not performed, corroborating the assumption that growth takes place on certain trap lobe regions. Our findings are discussed in an evolutionary, biomechanical, functional–morphological and biomimetic context.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2016-11-21
    Description: We demonstrate a relatively simple route for three-dimensional (3D) printing of complex-shaped biocompatible structures based on sodium alginate and calcium phosphate (CP) for bone tissue engineering. The fabrication of 3D composite structures was performed through the synthesis of inorganic particles within a biopolymer macromolecular network during 3D printing process. The formation of a new CP phase was studied through X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. Both the phase composition and the diameter of the CP particles depend on the concentration of a liquid component (i.e., the “ink”). The 3D printed structures were fabricated and found to have large interconnected porous systems (mean diameter ≈800 μm) and were found to possess compressive strengths from 0.45 to 1.0 MPa. This new approach can be effectively applied for fabrication of biocompatible scaffolds for bone tissue engineering constructions.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2016-09-27
    Description: Magnetic nanocrystals with a narrow size distribution hold promise for many applications in different areas ranging from biomedicine to electronics and energy storage. Herein, the microwave-assisted sol–gel synthesis and thorough characterization of size-monodisperse zinc ferrite nanoparticles of spherical shape is reported. X-ray diffraction, 57Fe Mössbauer spectroscopy and X-ray photoelectron spectroscopy all show that the material is both chemically and phase-pure and adopts a partially inverted spinel structure with Fe3+ ions residing on tetrahedral and octahedral sites according to (Zn0.32Fe0.68)tet[Zn0.68Fe1.32]octO4±δ. Electron microscopy and direct-current magnetometry confirm the size uniformity of the nanocrystals, while frequency-dependent alternating-current magnetic susceptibility measurements indicate the presence of a superspin glass state with a freezing temperature of about 22 K. Furthermore, as demonstrated by galvanostatic charge–discharge tests and ex situ X-ray absorption near edge structure spectroscopy, the as-prepared zinc ferrite nanocrystals can be used as a high-capacity anode material for Li-ion batteries, showing little capacity fade – after activation – over hundreds of cycles. Overall, in addition to the good material characteristics, it is remarkable that the microwave-based synthetic route is simple, easily reproducible and scalable.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2016-09-16
    Description: For any living cell the exchange with its environment is vital. Therefore, many different kinds of cargo are able to enter cells via energy-dependent or -independent routes. Nanoparticles are no exemption. It is known that small silica nanoparticles with a diameter below 50 nm are taken up by cells and that their uptake exerts pronounced toxic effects beyond a certain concentration threshold. However, neither the exact uptake mechanism of these particles nor the actual reason for their toxicity has yet been elucidated. In this study we examined the uptake of silica nanoparticles with a diameter of 7, 12 and 22 nm by means of transmission electron microscopy, accompanied by toxicological assays. We show that for every particle diameter tested a different membrane morphology during uptake can be observed and that the amount of particles entering in one event is different for the three sizes. Silica particles with a diameter of 22 nm show single-particle internalization with a membrane wrapped around the particles in the cytosol, whereas 12 nm particles display row-like multi-particle uptake into elongated membrane structures and those with a diameter of 7 nm or less end up in tubular endocytic structures containing many particles. These membrane morphologies proved to be highly reproducible as we found them in five different cell lines. Additionally, we performed ATP and LDH assays to determine particle toxicity. Exceeding a certain concentration threshold the nanoparticles showed a high toxic potential both in the biochemical assay measurements and from morphological findings. We could not find any hint at the induction of apoptosis, neither morphologically nor biochemically. In this regard we discuss membrane damage and consumption as one possible mechanism of toxicity, linking morphological observations to toxicological findings to bridge the gap in understanding the mechanism of toxicity of small nanoparticles.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2016-12-22
    Description: A series of SnO2–ZnO composite nanostructured (thin) films with different amounts of SnO2 (from 0 to 50 wt %) was prepared and deposited on a miniaturized porous alumina transducer using the sol–gel and dip coating method. The transducer, developed by our research group, contains Au interdigital electrodes on one side and a Pt heater on the other side. The sensing films were characterized using SEM and AFM techniques. Highly toxic and flammable gases (CO, CO2, CH4, and C3H8) were tested under lab conditions (carrier gas was dry air) using a special gas sensing cell developed by our research group. The gas concentrations varied between 5 and 2000 ppm and the optimum working temperatures were in the range of 210–300 °C. It was found that the sensing performance was influenced by the amount of oxide components present in the composite material. Improved sensing performance was achieved for the ZnO (98 wt %)–SnO2 (2 wt %) composite as compared to the sensors containing only the pristine oxides. The sensor response, cross-response and recovery characteristics of the analyzed materials are reported. The high sensitivity (R S = 1.21) to low amounts of CO (5 ppm) was reported for the sensor containing a composite sensitive film with ZnO (98 wt %)–SnO2 (2 wt %). This sensor response to CO was five times higher as compared to its response to CO2, CH4, and C3H8, thus the sensor is considered to be selective for CO under these test conditions.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2016-01-08
    Description: A one-step electrochemical method based on sacrificial anode electrolysis (SAE) was used to deposit stabilized gold nanoparticles (Au NPs) directly on the surface of nanostructured ZnO powders, previously synthesized through a sol–gel process. The effect of thermal annealing temperatures (300 and 550 °C) on chemical, morphological, and structural properties of pristine and Au-doped ZnO nancomposites (Au@ZnO) was investigated. Transmission and scanning electron microscopy (TEM and SEM), as well as X-ray photoelectron spectroscopy (XPS), revealed the successful deposition of nanoscale gold on the surface of spherical and rod-like ZnO nanostructures, obtained after annealing at 300 and 550 °C, respectively. The pristine ZnO and Au@ZnO nanocomposites are proposed as active layer in chemiresistive gas sensors for low-cost processing. Gas-sensing measurements towards NO2 were collected at 300 °C, evaluating not only the Au-doping effect, but also the influence of the different ZnO nanostructures on the gas-sensing properties.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2016-06-01
    Description: A series of NaTaO3 photocatalysts were prepared with Ta2O5 and NaOH via a hydrothermal method. CuO was loaded onto the surface of NaTaO3 as a cocatalyst by successive impregnation and calcination. The obtained photocatalysts were characterized by XRD, SEM, UV–vis, EDS and XPS and used to photocatalytically reduce CO2 in isopropanol. This worked to both absorb CO2 and as a sacrificial reagent to harvest CO2 and donate electrons. Methanol and acetone were generated as the reduction product of CO2 and the oxidation product of isopropanol, respectively. NaTaO3 nanocubes loaded with 2 wt % CuO and synthesized in 2 mol/L NaOH solution showed the best activity. The methanol and acetone yields were 137.48 μmol/(g·h) and 335.93 μmol/(g·h), respectively, after 6 h of irradiation. Such high activity could be attributed to the good crystallinity, morphology and proper amount of CuO loading, which functioned as reductive sites for selective formation of methanol. The reaction mechanism was also proposed and explained by band theory.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2016-04-29
    Description: Titanium dioxide nanoparticles (TiO2 NPs) possess unique characteristics and are widely used in many fields. Numerous in vivo studies, exposing experimental animals to these NPs through systematic administration, have suggested that TiO2 NPs can accumulate in the brain and induce brain dysfunction. Nevertheless, the exact mechanisms underlying the neurotoxicity of TiO2 NPs remain unclear. However, we have concluded from previous studies that these mechanisms mainly consist of oxidative stress (OS), apoptosis, inflammatory response, genotoxicity, and direct impairment of cell components. Meanwhile, other factors such as disturbed distributions of trace elements, disrupted signaling pathways, dysregulated neurotransmitters and synaptic plasticity have also been shown to contribute to neurotoxicity of TiO2 NPs. Recently, studies on autophagy and DNA methylation have shed some light on possible mechanisms of nanotoxicity. Therefore, we offer a new perspective that autophagy and DNA methylation could contribute to neurotoxicity of TiO2 NPs. Undoubtedly, more studies are needed to test this idea in the future. In short, to fully understand the health threats posed by TiO2 NPs and to improve the bio-safety of TiO2 NPs-based products, the neurotoxicity of TiO2 NPs must be investigated comprehensively through studying every possible molecular mechanism.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2016-04-19
    Description: The atomistic mechanisms active during plastic deformation of nanocrystalline metals are still a subject of controversy. The recently developed approach of combining automated crystal orientation mapping (ACOM) and in situ straining inside a transmission electron microscope was applied to study the deformation of nanocrystalline Pd x Au1− x thin films. This combination enables direct imaging of simultaneously occurring plastic deformation processes in one experiment, such as grain boundary motion, twin activity and grain rotation. Large-angle grain rotations with ≈39° and ≈60° occur and can be related to twin formation, twin migration and twin–twin interaction as a result of partial dislocation activity. Furthermore, plastic deformation in nanocrystalline thin films was found to be partially reversible upon rupture of the film. In conclusion, conventional deformation mechanisms are still active in nanocrystalline metals but with different weighting as compared with conventional materials with coarser grains.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2016-10-20
    Description: Recent results in the field of carbon nanotube–silicon solar cells have suggested that the best performance is obtained when the nanotube film provides good coverage of the silicon surface and when the nanotubes in the film are aligned parallel to the surface. The recently developed process of dry shear aligning – in which shear force is applied to the surface of carbon nanotube thin films in the dry state, has been shown to yield nanotube films that are very flat and in which the surface nanotubes are very well aligned in the direction of shear. It is thus reasonable to expect that nanotube films subjected to dry shear aligning should outperform otherwise identical films formed by other processes. In this work, the fabrication and characterisation of carbon nanotube–silicon solar cells using such films is reported, and the photovoltaic performance of devices produced with and without dry shear aligning is compared.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2016-11-30
    Description: Phosphoric acid is an inorganic acid used for producing graphene sheets by delaminating graphite in (electro-)chemical baths. The observed phenomenology during the electrochemical treatment in phosphoric acid solution is partially different from other acidic solutions, such as sulfuric and perchloric acid solutions, where the graphite surface mainly forms blisters. In fact, the graphite surface is covered by a thin layer of modified (oxidized) material that can be observed when an electrochemical potential is swept in the anodic current regime. We characterize this particular surface evolution by means of a combined electrochemical, atomic force microscopy and Raman spectroscopy investigation.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2016-11-18
    Description: Biohybrid materials based on the intercalation of zein, the major storage protein in corn, into sodium-exchanged montmorillonite were prepared following two synthesis strategies. The first one made use of zein dissolved in 80% (v/v) ethanol/water solution, the usual solvent for this protein, while the second method is new and uses a sequential process that implies the previous separation of zein components in absolute ethanol. This treatment of zein with ethanol renders a soluble yellow phase and an agglomerate of insoluble components, which are able to intercalate the layered silicate when an aqueous dispersion of montmorillonite is added to the ethanol medium containing both phases. The diverse steps in this second route were investigated individually in order to understand the underlying mechanism that drives to the intercalation of this complex hydrophobic biomacromolecule into the hydrophilic interlayer space of sodium-exchanged montmorillonite. In addition to physicochemical characterization of the resulting materials, these biohybrid interfaces were also evaluated as biofillers in the preparation of diverse ecofriendly nanocomposites.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2016-09-26
    Description: Ce-doped ZnO (ZnO:Ce) nanorods have been prepared through a solvothermal method and the effects of Ce-doping on the structural, optical and electronic properties of ZnO rods were studied. ZnO:Ce rods were characterized by XRD, SEM, TEM, XPS, BET, DRS and Raman spectroscopy. 5% Ce-doped ZnO rods with an average length of 130 nm and a diameter of 23 nm exhibit the highest photocatalytic activity for the degradation of the Orange II dye under solar light irradiation. The high photocatalytic activity is ascribed to the substantially enhanced light absorption in the visible region, to the high surface area of ZnO:Ce rods and to the effective electron–hole pair separation originating from Ce doping. The influence of various experimental parameters like the pH, the presence of salts and of organic compounds was investigated and no marked detrimental effect on the photocatalytic activity was observed. Finally, recyclability experiments demonstrate that ZnO:Ce rods are a stable solar-light photocatalyst.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2016-03-08
    Description: In this review the recent progress in molecular platforms that form rigid and well-defined contact to a metal surface are discussed. Most of the presented examples have at least three anchoring units in order to control the spatial arrangement of the protruding molecular subunit. Another interesting feature is the lateral orientation of these foot structures which, depending on the particular application, is equally important as the spatial arrangement of the molecules. The numerous approaches towards assembling and organizing functional molecules into specific architectures on metal substrates are reviewed here. Particular attention is paid to variations of both, the core structures and the anchoring groups. Furthermore, the analytical methods enabling the investigation of individual molecules as well as monomolecular layers of ordered platform structures are summarized. The presented multipodal platforms bearing several anchoring groups form considerably more stable molecule–metal contacts than corresponding monopodal analogues and exhibit an enlarged separation of the functional molecules due to the increased footprint, as well as restrict tilting of the functional termini with respect to the metal surface. These platforms are thus ideally suited to tune important properties of the molecule–metal interface. On a single-molecule level, several of these platforms enable the control over the arrangement of the protruding rod-type molecular structures (e.g., molecular wires, switches, rotors, sensors) with respect to the surface of the substrate.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2016-04-07
    Description: During the past five years, it has been shown that carbon nanotubes act as an exceptional reinforcement for composites. For this reason, a large number of investigations have been devoted to analysis of fundamental, structural behavior of solid structures made of carbon-nanotube-reinforced composites (CNTRC). The present research, as an extension of the available works on the vibration analysis of CNTRC structures, examines the free vibration characteristics of plates containing a cutout that are reinforced with uniform or nonuniform distribution of carbon nanotubes. The first-order shear deformation plate theory is used to estimate the kinematics of the plate. The solution method is based on the Ritz method with Chebyshev basis polynomials. Such a solution method is suitable for arbitrary in-plane and out-of-plane boundary conditions of the plate. It is shown that through a functionally graded distribution of carbon nanotubes across the thickness of the plate, the fundamental frequency of a rectangular plate with or without a cutout may be enhanced. Furthermore, the frequencies are highly dependent on the volume fraction of carbon nanotubes and may be increased upon using more carbon nanotubes as reinforcement.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2016-11-04
    Description: Hydroxyapatite (HAp) nanoparticles of tunable diameter were obtained by the precipitation method at room temperature and by microwave hydrothermal synthesis (MHS). The following parameters of the obtained nanostructured HAp were determined: pycnometric density, specific surface area, phase purity, lattice parameters, particle size, particle size distribution, water content, and structure. HAp nanoparticle morphology and structure were determined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). X-ray diffraction measurements confirmed crystalline HAp was synthesized, which was pure in terms of phase. It was shown that by changing the synthesis parameters, the diameter of HAp nanoparticles could be controlled. The average diameter of the HAp nanoparticles was determined by Scherrer’s equation via the Nanopowder XRD Processor Demo web application, which interprets the results of specific surface area and TEM measurements using the dark-field technique. The obtained nanoparticles with average particle diameter ranging from 8–39 nm were characterized by having homogeneous morphology with a needle shape and a narrow particle size distribution. Strong similarities were found when comparing the properties of some types of nanostructured hydroxyapatite with natural occurring apatite found in animal bones and teeth.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2016-05-06
    Description: Since nanoparticles are now widely applied as food additives, in cosmetics and other industries, especially in medical therapy and diagnosis, we ask here whether nanoparticles can cause several adverse effects to human health. In this review, based on research on nanotoxicity, we mainly discuss the negative influence of nanoparticles on blood vessels in several aspects and the potential mechanism for nanoparticles to penetrate endothelial layers of blood vessels, which are the sites of phosphorylation of tight junction proteins (claudins, occludins, and ZO (Zonula occludens)) proteins, oxidative stress and shear stress. We propose a connection between the presence of nanoparticles and the regulation of the tight junction, which might be the key approach for nanoparticles to penetrate endothelial layers and then have an impact on other tissues and organs.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2016-01-21
    Description: The enantiomers poly(D-lactic acid) (PDLA) and poly(L-lactic acid) (PLLA) were alternately adsorbed directly on calcium carbonate (CaCO3) templates and on poly(styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) multilayer precursors in order to fabricate a novel layer-by-layer (LBL) assembly. A single layer of poly(L-lysine) (PLL) was used as a linker between the (PDLA/PLLA) n stereocomplex and the cores with and without the polymeric (PSS/PAH) n /PLL multilayer precursor (PEM). Nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC) were used to characterize the chemical composition and molecular weight of poly(lactic acid) polymers. Both multilayer structures, with and without polymeric precursor, were firstly fabricated and characterized on planar supports. A quartz crystal microbalance (QCM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and ellipsometry were used to evaluate the thickness and mass of the multilayers. Then, hollow, spherical microcapsules were obtained by the removal of the CaCO3 sacrificial template. The chemical composition of the obtained microcapsules was confirmed by differential scanning calorimetry (DSC) and wide X-ray diffraction (WXRD) analyses. The microcapsule morphology was evaluated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) measurements. The experimental results confirm the successful fabrication of this innovative system, and its full biocompatibility makes it worthy of further characterization as a promising drug carrier for sustained release.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2016-01-14
    Description: The charge behavior of organic light emitting diode (OLED) is investigated by steady-state current–voltage technique and impedance spectroscopy at various temperatures to obtain activation energies of charge injection and transport processes. Good agreement of activation energies obtained by steady-state and frequency-domain was used to analyze their contributions to the charge injection and transport. We concluded that charge is injected into the OLED device mostly through the interfacial states at low voltage region, whereas the thermionic injection dominates in the high voltage region. This comparison of experimental techniques demonstrates their capabilities of identification of major bottleneck of charge injection and transport.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2016-03-03
    Description: The main physical features and operating principles of isothermal nanomachines in the microworld, common to both classical and quantum machines, are reviewed. Special attention is paid to the dual, constructive role of dissipation and thermal fluctuations, the fluctuation–dissipation theorem, heat losses and free energy transduction, thermodynamic efficiency, and thermodynamic efficiency at maximum power. Several basic models are considered and discussed to highlight generic physical features. This work examines some common fallacies that continue to plague the literature. In particular, the erroneous beliefs that one should minimize friction and lower the temperature for high performance of Brownian machines, and that the thermodynamic efficiency at maximum power cannot exceed one-half are discussed. The emerging topic of anomalous molecular motors operating subdiffusively but very efficiently in the viscoelastic environment of living cells is also discussed.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2016-04-15
    Description: Significant progress has been accomplished in the development of experimental contact-mode and dynamic-mode atomic force microscopy (AFM) methods designed to measure surface material properties. However, current methods are based on one-dimensional (1D) descriptions of the tip–sample interaction forces, thus neglecting the intricacies involved in the material behavior of complex samples (such as soft viscoelastic materials) as well as the differences in material response between the surface and the bulk. In order to begin to address this gap, a computational study is presented where the sample is simulated using an enhanced version of a recently introduced model that treats the surface as a collection of standard-linear-solid viscoelastic elements. The enhanced model introduces in-plane surface elastic forces that can be approximately related to a two-dimensional (2D) Young’s modulus. Relevant cases are discussed for single- and multifrequency intermittent-contact AFM imaging, with focus on the calculated surface indentation profiles and tip–sample interaction force curves, as well as their implications with regards to experimental interpretation. A variety of phenomena are examined in detail, which highlight the need for further development of more physically accurate sample models that are specifically designed for AFM simulation. A multifrequency AFM simulation tool based on the above sample model is provided as supporting information.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2016-06-06
    Description: Herein, we present the formation of gold nanorods (GNRs) on novel gold–poly(methyl methacrylate) (Au–PMMA) nanocomposite substrates with unprecedented growth control through the polymer molecular weight (M w) and gold-salt-to-polymer weight ratio. For the first time, GNRs have been produced by seed-mediated direct growth on surfaces that were pre-coated with polymer-immobilised gold seeds. A Au–PMMA nanocomposite formed by UV photoreduction has been used as the gold seed. The influence of polymer M w and gold concentration on the formation of GNRs has been investigated and discussed. The polymer nanocomposite formed with a lower M w PMMA and 20 wt % gold salt provides a suitable medium for growing well-dispersed GNRs. In this sample, the average dimension of produced GNRs is 200 nm in length with aspect ratios up to 10 and a distribution of GNRs to nanoparticles of nearly 22%. Suitable characterization techniques such as AFM and SEM have been used to support concept of the proposed growth method.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2016-07-29
    Description: A simple and sensitive poly(gallic acid)/multiwalled carbon nanotube modified glassy carbon electrode (PGA/MWCNT/GCE) electrochemical sensor was prepared for direct determination of the total phenolic content (TPC) as gallic acid equivalent. The GCE working electrode was electrochemically modified and characterized using scanning electron microscope (SEM), cyclic voltammetry (CV), chronoamperometry and chronocoulometry. It was found that gallic acid (GA) exhibits a superior electrochemical response on the PGA/MWCNT/GCE sensor in comparison with bare GCE. The results reveal that a PGA/MWCNT/GCE sensor can remarkably enhance the electro-oxidation signal of GA as well as shift the peak potentials towards less positive potential values. The dependence of peak current on accumulation potential, accumulation time and pH were investigated by square-wave voltammetry (SWV) to optimize the experimental conditions for the determination of GA. Using the optimized conditions, the sensor responded linearly to a GA concentration throughout the range of 4.97 × 10−6 to 3.38 × 10−5 M with a detection limit of 3.22 × 10−6 M (S/N = 3). The fabricated sensor shows good selectivity, stability, repeatability and (101%) recovery. The sensor was successfully utilized for the determination of total phenolic content in fresh pomegranate juice without interference of ascorbic acid, fructose, potassium nitrate and barbituric acid. The obtained data were compared with the standard Folin–Ciocalteu spectrophotometric results.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2016-10-11
    Description: Nanocrystals develop in amorphous alloys usually during annealing treatments with growth- or nucleation-controlled mechanisms. An alternative processing route is intense deformation and nanocrystals have been shown to develop in shear bands during the deformation process. Some controversy surrounded the idea of adiabatic heating in shear bands during their genesis, but specific experiments have revealed that the formation of nanocrystals in shear bands has to be related to localized deformation rather than thermal effects. A much less debated issue has been the spatial distribution of deformation in the amorphous alloys during intense deformation. The current work examines the hypothesis that intense deformation affects the regions outside shear bands and even promotes nanocrystal formation in those regions upon annealing. Melt-spun amorphous Al88Y7Fe5 alloy was intensely cold rolled. Microcalorimeter measurements at 60 °C indicated a slight but observable growth of nanocrystals in shear bands over the annealing time of 10 days. When the cold-rolled samples were annealed at 210 °C for one hour, transmission electron images did not show any nanocrystals for as-spun ribbons, but nanocrystals developed outside shear bands for the cold rolled samples. X-ray analysis indicated an increase in intensity of the Al peaks following the 210 °C annealing while the as-spun sample remained “X-ray amorphous”. These experimental observations strongly suggest that cold rolling affects regions (i.e., spatial heterogeneities) outside shear bands and stimulates the formation of nanocrystals during annealing treatments at temperatures well below the crystallization temperature of undeformed ribbons.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2016-08-02
    Description: Secondary ion mass spectrometry (SIMS) on the helium ion microscope (HIM) promises higher lateral resolution than on classical SIMS instruments. However, full advantage of this new technique can only be obtained when the interaction of He+ or Ne+ primary ions with the sample is fully controlled. In this work we investigate how He+ and Ne+ bombardment influences roughness formation and preferential sputtering for polymer samples and how they compare to Ar+ primary ions used in classical SIMS by combining experimental techniques with Molecular Dynamics (MD) simulations and SD_TRIM_SP modelling. The results show that diffusion coefficients for He, Ne and Ar in polymers are sufficiently high to prevent any accumulation of rare gas atoms in the polymers which could lead to some swelling and bubble formation. Roughness formation was also not observed. Preferential sputtering is more of a problem, with enrichment of carbon up to surface concentrations above 80%. In general, the preferential sputtering is largely depending on the primary ion species and the impact energies. For He+ bombardment, it is more of an issue for low keV impact energies and for the heavier primary ion species the preferential sputtering is sample dependent. For He+ steady state conditions are reached for fluences much higher than 1018 ions/cm2. For Ne+ and Ar+, the transient regime extends up to fluences of 1017–1018 ions/cm2. Hence, preferential sputtering needs to be taken into account when interpreting images recorded under He+ or Ne+ bombardment on the HIM.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2016-12-09
    Description: Nanocomposites of Li1.4Ni0.5Mn0.5O2+ x and amorphous carbon were obtained by the pyrolysis of linear and cross-linked poly(vinyl alcohol) (PVA) in presence of Li1.4Ni0.5Mn0.5O2+ x . In the case of linear PVA, the formation of nanostructured carbon coatings on Li1.4Ni0.5Mn0.5O2+ x particles is observed, while for cross-linked PVA islands of mesoporous carbon are located on the boundaries of Li1.4Ni0.5Mn0.5O2+ x particles. The presence of the carbon framework leads to a decrease of the polarization upon cycling and of the charge transfer resistance and to an increase in the apparent Li+ diffusion coefficient from 10−16 cm2·s−1 (pure Li1.4Ni0.5Mn0.5O2+ x ) to 10−13 cm2·s−1. The nanosized carbon coatings also reduce the deep electrochemical degradation of Li1.4Ni0.5Mn0.5O2+ x during electrochemical cycling. The nanocomposite obtained by the pyrolysis of linear PVA demonstrates higher values of the apparent lithium diffusion coefficient, a higher specific capacity and lower values of charge transfer resistance, which can be related to the more uniform carbon coatings and to the significant content of sp2-hybridized carbon detected by XPS and by Raman spectroscopy.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2016-11-14
    Description: We report efficient vortex pinning in thickness-modulated tungsten–carbon-based (W–C) nanostructures grown by focused ion beam induced deposition (FIBID). By using FIBID, W–C superconducting films have been created with thickness modulation properties exhibiting periodicity from 60 to 140 nm, leading to a strong pinning potential for the vortex lattice. This produces local minima in the resistivity up to high magnetic fields (2.2 T) in a broad temperature range due to commensurability effects between the pinning potential and the vortex lattice. The results show that the combination of single-step FIBID fabrication of superconducting nanostructures with built-in artificial pinning landscapes and the small intrinsic random pinning potential of this material produces strong periodic pinning potentials, maximizing the opportunities for the investigation of fundamental aspects in vortex science under changing external stimuli (e.g., temperature, magnetic field, electrical current).
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2016-11-10
    Description: Chemical spray pyrolysis (CSP) is a fast wet-chemical deposition method in which an aerosol is guided by carrier gas onto a hot substrate where the decomposition of the precursor chemicals occurs. The aerosol is produced using an ultrasonic oscillator in a bath of precursor solution and guided by compressed air. The use of the ultrasonic CSP resulted in the growth of homogeneous and well-adhered layers that consist of submicron crystals of single-phase Sb2S3 with a bandgap of 1.6 eV if an abundance of sulfur source is present in the precursor solution (SbCl3/SC(NH2)2 = 1:6) sprayed onto the substrate at 250 °C in air. Solar cells with glass-ITO-TiO2-Sb2S3-P3HT-Au structure and an active area of 1 cm2 had an open circuit voltage of 630 mV, short circuit current density of 5 mA/cm2, a fill factor of 42% and a conversion efficiency of 1.3%. Conversion efficiencies up to 1.9% were obtained from solar cells with smaller areas.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2016-02-09
    Description: Background: DNA hybridization is at the basis of most current technologies for genotyping and sequencing, due to the unique properties of DNA base-pairing that guarantee a high grade of selectivity. Nonetheless the presence of single base mismatches or not perfectly matched sequences can affect the response of the devices and the major challenge is, nowadays, to distinguish a mismatch of a single base and, at the same time, unequivocally differentiate devices read-out of fully and partially matching sequences. Results: We present here two platforms based on different sensing strategies, to detect mismatched and/or perfectly matched complementary DNA strands hybridization into ssDNA oligonucleotide monolayers. The first platform exploits atomic force microscopy-based nanolithography to create ssDNA nano-arrays on gold surfaces. AFM topography measurements then monitor the variation of height of the nanostructures upon biorecognition and then follow annealing at different temperatures. This strategy allowed us to clearly detect the presence of mismatches. The second strategy exploits the change in capacitance at the interface between an ssDNA-functionalized gold electrode and the solution due to the hybridization process in a miniaturized electrochemical cell. Through electrochemical impedance spectroscopy measurements on extended ssDNA self-assembled monolayers we followed in real-time the variation of capacitance, being able to distinguish, through the difference in hybridization kinetics, not only the presence of single, double or triple mismatches in the complementary sequence, but also the position of the mismatched base pair with respect to the electrode surface. Conclusion: We demonstrate here two platforms based on different sensing strategies as sensitive and selective tools to discriminate mismatches. Our assays are ready for parallelization and can be used in the detection and quantification of single nucleotide mismatches in microRNAs or in genomic DNA.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2016-07-20
    Description: In this work, the fabrication of single titanium oxide nanodot (ND) resistive sensors for NO gas sensing at room temperature is reported. Two atomic force microscopy nanolithography methods, nanomachining and nano-oxidation, are employed. A single titanium nanowire (NW) is created first along with contact electrodes and a single titanium oxide ND is subsequently produced in the NW. Gas sensing is realized by the photo-activation and the photo-recovery approaches. It is found that a sensor with a smaller ND has better performance than a larger one. A response of 31%, a response time of 91 s, and a recovery time of 184 s have been achieved at a concentration of 10 ppm for a ND with a size of around 80 nm. The present work demonstrates the potential application of single metal oxide NDs for gas sensing with a performance that is comparable with that of metal oxide nanowire gas sensors.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2016-06-23
    Description: The diving beetles (Dytiscidae, Coleoptera) are families of water beetles. When they see light, they fly to the light source directly from the water. Their hind wings are thin and fragile under the protection of their elytra (forewings). When the beetle is at rest the hind wings are folded over the abdomen of the beetle and when in flight they unfold to provide the necessary aerodynamic forces. In this paper, the unfolding process of the hind wing of Cybister japonicus Sharp (order: Coleoptera) was investigated. The motion characteristics of the blood in the veins of the structure system show that the veins have microfluidic control over the hydraulic mechanism of the unfolding process. A model is established, and the hind wing extending process is simulated. The blood flow and pressure changes are discussed. The driving mechanism for hydraulic control of the folding and unfolding actions of beetle hind wings is put forward. This can assist the design of new deployable micro air vehicles and bioinspired deployable systems.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2016-02-24
    Description: Using standard microelectromechanical system (MEMS) processes to coat a microcantilever with a piezoelectric layer results in a versatile transducer with inherent self-sensing capabilities. For applications in multifrequency atomic force microscopy (MF-AFM), we illustrate that a single piezoelectric layer can be simultaneously used for multimode excitation and detection of the cantilever deflection. This is achieved by a charge sensor with a bandwidth of 10 MHz and dual feedthrough cancellation to recover the resonant modes that are heavily buried in feedthrough originating from the piezoelectric capacitance. The setup enables the omission of the commonly used piezoelectric stack actuator and optical beam deflection sensor, alleviating limitations due to distorted frequency responses and instrumentation cost, respectively. The proposed method benefits from a more than two orders of magnitude increase in deflection to strain sensitivity on the fifth eigenmode leading to a remarkable signal-to-noise ratio. Experimental results using bimodal AFM imaging on a two component polymer sample validate that the self-sensing scheme can therefore be used to provide both the feedback signal, for topography imaging on the fundamental mode, and phase imaging on the higher eigenmode.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2016-11-17
    Description: The analysis of polymers by secondary ion mass spectrometry (SIMS) has been a topic of interest for many years. In recent years, the primary ion species evolved from heavy monatomic ions to cluster and massive cluster primary ions in order to preserve a maximum of organic information. The progress in less-damaging sputtering goes along with a loss in lateral resolution for 2D and 3D imaging. By contrast the development of a mass spectrometer as an add-on tool for the helium ion microscope (HIM), which uses finely focussed He+ or Ne+ beams, allows for the analysis of secondary ions and small secondary cluster ions with unprecedented lateral resolution. Irradiation induced damage and depth profiling capabilities obtained with these light rare gas species have been far less investigated than ion species used classically in SIMS. In this paper we simulated the sputtering of multi-layered polymer samples using the BCA (binary collision approximation) code SD_TRIM_SP to study preferential sputtering and atomic mixing in such samples up to a fluence of 1018 ions/cm2. Results show that helium primary ions are completely inappropriate for depth profiling applications with this kind of sample materials while results for neon are similar to argon. The latter is commonly used as primary ion species in SIMS. For the two heavier species, layers separated by 10 nm can be distinguished for impact energies of a few keV. These results are encouraging for 3D imaging applications where lateral and depth information are of importance.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2016-12-19
    Description: Gastric cancer (GC) is the second leading cause of cancer-related deaths all over the world. miR-106a is a circulatory oncogenic microRNA (miRNA), which overexpresses in various malignancies, especially in GC. In this study, an ultrasensitive electrochemical nanobiosensor was developed for the detection of miR-106a using a double-specific probe methodology and a gold–magnetic nanocomposite as tracing tag. The successful modification of the electrode and hybridization with the target miRNA were confirmed by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) methods. Differential pulse voltammetry (DPV) was used for quantitative evaluation of miR-106a via recording the reduction peak current of gold nanoparticles. The electrochemical signal had a linear relationship with the concentration of the target miRNA ranging from 1 × 10−3 pM to 1 × 103 pM, and the detection limit was 3 × 10−4 pM. The proposed miRNA-nanobiosensor showed remarkable selectivity, high specificity, agreeable storage stability, and great performance in real sample investigation with no pretreatment or amplification. Consequently, our biosensing strategy offers such a promising application to be used for clinical early detection of GC and additionally the screen of any miRNA sequence.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2016-02-05
    Description: This work addresses the formation and the internal morphology of polyelectrolyte layers obtained by the layer-by-layer method. A multimodal characterization showed the absence of stratification of the films formed by the alternate deposition of poly(diallyldimethylammonium chloride) and poly(sodium 4-styrenesulfonate). Indeed the final organization might be regarded as three-dimensional solid-supported inter-polyelectrolyte films. The growth mechanism of the multilayers, followed using a quartz crystal microbalance, evidences two different growth trends, which show a dependency on the ionic strength due to its influence onto the polymer conformation. The hydration state does not modify the multilayer growth, but it contributes to the total adsorbed mass of the film. The water associated with the polyelectrolyte films leads to their swelling and plastification. The use of X-ray photoelectron spectroscopy has allowed for deeper insights on the internal structure and composition of the polyelectrolyte multilayers.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2016-06-09
    Description: We report fast and simple green synthesis of plasmonic silver nanoparticles in the epidermal cells of onions after incubation with AgNO3 solution. The biological environment supports the generation of silver nanostructures in two ways. The plant tissue delivers reducing chemicals for the initial formation of small silver clusters and their following conversion to plasmonic particles. Additionally, the natural morphological structures of the onion layers, in particular the extracellular matrix provides a biological template for the growth of plasmonic nanostructures. This is indicated by red glowing images of extracellular spaces in dark field microscopy of onion layers a few hours after AgNO3 exposure due to the formation of silver nanoparticles. Silver nanostructures generated in the extracellular space of onion layers and within the epidermal cell walls can serve as enhancing plasmonic structures for one- and two-photon-excited spectroscopy such as surface enhanced Raman scattering (SERS) and surface enhanced hyper-Raman scattering (SEHRS). Our studies demonstrate a templated green preparation of enhancing plasmonic nanoparticles and suggest a new route to deliver silver nanoparticles as basic building blocks of plasmonic nanosensors to plants by the uptake of solutions of metal salts.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2016-10-13
    Description: Wastewater cleaning strategies based on the adsorption of materials are being increasingly considered, but the wide variety of organic pollutants at low concentrations still makes their removal a challenge. The hybrid material proposed here consists of a zwitterionic polyethylenimine polymer coating a magnetic core. Polyethylenimine is phosphonated at different percentages by a one-step process and used to coat maghemite nanoparticles. It selectively extracts high amounts of cationic and anionic contaminants over a wide range of pH values, depending on the adjustable number of phosphonate groups introduced on the polymer. After recovering the nanoparticles with a magnet, pollutants are quantitatively released by repeated washing with low amounts of pH-adjusted water. The material can be reused many times without noticeable loss of efficiency and is designed to resist high temperatures, oxidation and harsh conditions.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2016-04-21
    Description: Texture formation and epitaxy of thin metal films and oriented growth of nanoparticles (NPs) on single crystal supports are of general interest for improved physical and chemical properties especially of anisotropic materials. In the case of FePt, the main focus lies on its highly anisotropic magnetic behavior and its catalytic activity, both due to the chemically ordered face-centered tetragonal (fct) L10 phase. If the c-axis of the tetragonal system can be aligned normal to the substrate plane, perpendicular magnetic recording could be achieved. Here, we study the orientation of FePt NPs and films on a-SiO2/Si(001), i.e., Si(001) with an amorphous (a-) native oxide layer on top, on MgO(001), and on sapphire(0001) substrates. For the NPs of an approximately equiatomic composition, two different sizes were chosen: “small” NPs with diameters in the range of 2–3 nm and “large” ones in the range of 5–8 nm. The 3 nm thick FePt films, deposited by pulsed laser deposition (PLD), served as reference samples. The structural properties were probed in situ, particularly texture formation and epitaxy of the specimens by reflection high-energy electron diffraction (RHEED) and, in case of 3 nm nanoparticles, additionally by high-resolution transmission electron microscopy (HRTEM) after different annealing steps between 200 and 650 °C. The L10 phase is obtained at annealing temperatures above 550 °C for films and 600 °C for nanoparticles in accordance with previous reports. On the amorphous surface of a-SiO2/Si substrates we find no preferential orientation neither for FePt films nor nanoparticles even after annealing at 630 °C. On sapphire(0001) supports, however, FePt nanoparticles exhibit a clearly preferred (111) orientation even in the as-prepared state, which can be slightly improved by annealing at 600–650 °C. This improvement depends on the size of NPs: Only the smaller NPs approach a fully developed (111) orientation. On top of MgO(001) the effect of annealing on particle orientation was found to be strongest. From a random orientation in the as-prepared state observed for both, small and large FePt NPs, annealing at 650 °C for 30 min reorients the small particles towards a cube-on-cube epitaxial orientation with a minor fraction of (111)-oriented particles. In contrast, large FePt NPs keep their as-prepared random orientation even after doubling the annealing period at 650 °C to 60 min.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2016-12-15
    Description: Increasing attention has been devoted to the design of layered double hydroxide (LDH)-based hybrid materials. In this work, we demonstrate the intercalation by anion exchange process of poly(acrylic acid) (PAA) and three different hydrophilic random copolymers of acrylic acid (AA) and n-butyl acrylate (BA) with molar masses ranging from 2000 to 4200 g mol−1 synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization, into LDH containing magnesium(II) and aluminium(III) intralayer cations and nitrates as counterions (MgAl-NO3 LDH). At basic pH, the copolymer chains (macroRAFT agents) carry negative charges which allowed the establishment of electrostatic interactions with the LDH interlayer and their intercalation. The resulting hybrid macroRAFT/LDH materials displayed an expanded interlamellar domain compared to pristine MgAl-NO3 LDH from 1.36 nm to 2.33 nm. Depending on the nature of the units involved into the macroRAFT copolymer (only AA or AA and BA), the intercalation led to monolayer or bilayer arrangements within the interlayer space. The macroRAFT intercalation and the molecular structure of the hybrid phases were further characterized by Fourier transform infrared (FTIR) and solid-state 13C, 1H and 27Al nuclear magnetic resonance (NMR) spectroscopies to get a better description of the local structure.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2016-07-25
    Description: Magnetic force microscopy (MFM) is a widely used technique for magnetic imaging. Besides its advantages such as the high spatial resolution and the easy use in the characterization of relevant applied materials, the main handicaps of the technique are the lack of control over the tip stray field and poor lateral resolution when working under standard conditions. In this work, we present a convenient route to prepare high-performance MFM probes with sub-10 nm (sub-25 nm) topographic (magnetic) lateral resolution by following an easy and quick low-cost approach. This allows one to not only customize the tip stray field, avoiding tip-induced changes in the sample magnetization, but also to optimize MFM imaging in vacuum (or liquid media) by choosing tips mounted on hard (or soft) cantilevers, a technology that is currently not available on the market.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2016-03-07
    Description: Proteases, including matrix metalloproteinases (MMPs), tissue serine proteases, and cathepsins (CTS) exhibit numerous functions in tumor biology. Solid tumors are characterized by changes in protease expression levels by tumor and surrounding tissue. Therefore, monitoring protease levels in tissue samples and liquid biopsies is a vital strategy for early cancer detection. Water-dispersable Fe/Fe3O4-core/shell based nanoplatforms for protease detection are capable of detecting protease activity down to sub-femtomolar limits of detection. They feature one dye (tetrakis(carboxyphenyl)porphyrin (TCPP)) that is tethered to the central nanoparticle by means of a protease-cleavable consensus sequence and a second dye (Cy 5.5) that is directly linked. Based on the protease activities of urokinase plasminogen activator (uPA), MMPs 1, 2, 3, 7, 9, and 13, as well as CTS B and L, human breast cancer can be detected at stage I by means of a simple serum test. By monitoring CTS B and L stage 0 detection may be achieved. This initial study, comprised of 46 breast cancer patients and 20 apparently healthy human subjects, demonstrates the feasibility of protease-activity-based liquid biopsies for early cancer diagnosis.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2016-11-23
    Description: Raman and IR investigations indicated the presence of reduced graphene oxide (rGO)-like residues on ceria nanoparticles after solvothermal treatment in ethanol. The appearance of such structures is closely related to cerium tert-butoxide as precursor and ethanol as solvothermal solvent. The rGO-like residues improve the catalytic CO oxidation activity. This was also confirmed by introduction of “external” graphene oxide during sol–gel processing, by which the rGO structures and the catalytic activity were enhanced.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2016-10-19
    Description: Inkjet printing of spherical gold nanoparticles is widely applied in the fabrication of analytical and diagnostics tools. These methods could be extended to non-spherical gold nanoparticles that can efficiently release heat locally when irradiated in the near infrared (NIR) wavelength region, due to localized surface plasmon resonance (LSPR). However, this promising application requires the ability to maintain high efficiency and tunability of the NIR LSPR of the printed nanoparticles. In this study stable inks containing PEGylated gold nanostars (GNS) were fabricated and successfully inkjet-printed onto differently coated paper substrates with different porosity and permeability. A pronounced photothermal effect was observed under NIR excitation of LSPR of the printed GNS patterns even at low laser intensities. It was found that beside the direct role of the laser intensity, this effect depends appreciably on the printing parameters, such as drop density (δ, drops/mm2) and number of printed layers, and, critically, on the permeability of the coated paper substrates. These results will promote the development of GNS-based printed platforms for local photothermal therapy.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2016-04-26
    Description: Rare-earth-doped optical materials are important for light sources in optoelectronics, as well as for efficient optical amplification elements and other elements of photonics. On the basis of the previously developed method of anhydrous, low-temperature synthesis of Er/Yb oxides from their chlorides we fabricated proper nanoparticles with defined parameters and used them for the development of optically transparent, luminescent polymer nanocomposite with low optical scattering, suitable for direct, light-induced formation of photonic elements. Introduction of preformed gold nanoparticles in such a nanocomposite was also performed and an enhancement of luminescence due to the influence of plasmon effects was detected.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2016-08-08
    Description: The applicability of nulling-based ellipsometric mapping as a complementary method next to Brewster angle microscopy (BAM) and imaging ellipsometry (IE) is presented for the characterization of ultrathin films at the air–water interface. First, the methodology is demonstrated for a vertically nonmoving Langmuir layer of star-shaped, 4-arm poly(ω-pentadecalactone) (PPDL-D4). Using nulling-based ellipsometric mapping, PPDL-D4-based inhomogeneously structured morphologies with a vertical dimension in the lower nm range could be mapped. In addition to the identification of these structures, the differentiation between a monolayer and bare water was possible. Second, the potential and limitations of this method were verified by applying it to more versatile Langmuir layers of telechelic poly[(rac-lactide)-co-glycolide]-diol (PLGA). All ellipsometric maps were converted into thickness maps by introduction of the refractive index that was derived from independent ellipsometric experiments, and the result was additionally evaluated in terms of the root mean square roughness, R q. Thereby, a three-dimensional view into the layers was enabled and morphological inhomogeneity could be quantified.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2016-07-21
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2016-01-18
    Description: Background: The adsorption of organic molecules on metal surfaces has a broad array of applications, from device engineering to medical diagnosis. The most extensively investigated class of metal–molecule complexes is the adsorption of thiols on gold. Results: In the present manuscript, we investigate the dependence of methylthiol adsorption structures and energies on the degree of unsaturation at the metal binding site. We designed an Au20 cluster with a broad range of metal site coordination numbers, from 3 to 9, and examined the binding conditions of methylthiol at the various sites. Conclusion: We found that despite the small molecular size, the dispersive interactions of the backbone are a determining factor in the molecular affinity for various sites. Kink sites were preferred binding locations due to the availability of multiple surface atoms for dispersive interactions with the methyl groups, whereas tip sites experienced low affinity, despite having low coordination numbers.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2016-09-14
    Description: A novel network of spindle-like carbon nanofibers was fabricated via a simplified synthesis involving electrospinning followed by preoxidation in air and postcarbonization in Ar. Not only was the as-obtained carbon network comprised of beads of spindle-like nanofibers but the cubic MnO phase and N elements were successfully anchored into the amorphous carbon matrix. When directly used as a binder-free anode for lithium-ion batteries, the network showed excellent electrochemical performance with high capacity, good rate capacity and reliable cycling stability. Under a current density of 0.2 A g−1, it delivered a high reversible capacity of 875.5 mAh g−1 after 200 cycles and 1005.5 mAh g−1 after 250 cycles with a significant coulombic efficiency of 99.5%.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2016-08-22
    Description: The sequence of phase transformations during Sr2FeMoO6−x crystallization by the citrate–gel method was studied for powders synthesized with initial reagent solutions with pH values of 4, 6 and 9. Scanning electron microscopy revealed that the as-produced and annealed powders had the largest Sr2FeMoO6−x agglomerates with diameters in the range of 0.7–1.2 µm. The average grain size of the powders in the dispersion grows from 250 to 550 nm with increasing pH value. The X-ray diffraction analysis of the powders annealed at different temperatures between 770 and 1270 K showed that the composition of the initially formed Sr2FeMoO6−x changes and the molybdenum content increases with further heating. This leads to a change in the Sr2FeMoO6−x crystal lattice parameters and a contraction of the cell volume. An optimized synthesis procedure based on an initial solution of pH 4 allowed a single-phase Sr2FeMoO6−x compound to be obtained with a grain size in the range of 50–120 nm and a superstructural ordering of iron and molybdenum cations of 88%.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2016-11-01
    Description: The label-free nature of surface plasmon resonance techniques (SPR) enables a fast, specific, and sensitive analysis of molecular interactions. However, detection of highly diluted concentrations and small molecules is still challenging. It is shown here that in contrast to continuous gold films, gold nanohole arrays can significantly improve the performance of SPR devices in angle-dependent measurement mode, as a signal amplification arises from localized surface plasmons at the nanostructures. This leads consequently to an increased sensing capability of molecules bound to the nanohole array surface. Furthermore, a reduced graphene oxide (rGO) sensor surface was layered over the nanohole array. Reduced graphene oxide is a 2D nanomaterial consisting of sp2-hybridized carbon atoms and is an attractive receptor surface for SPR as it omits any bulk phase and therefore allows fast response times. In fact, it was found that nanohole arrays demonstrated a higher shift in the resonance angle of 250–380% compared to a continuous gold film. At the same time the nanohole array structure as characterized by its diameter-to-periodicity ratio had minimal influence on the binding capacity of the sensor surface. As a simple and environmentally highly relevant model, binding of the plasticizer diethyl phthalate (DEP) via π-stacking was monitored on the rGO gold nanohole array realizing a limit of detection of as low as 20 nM. The concentration-dependent signal change was studied with the best performing rGO-modified nanohole arrays. Compared to continuous gold films a diameter-to-periodicity ratio (D/P) of 0.43 lead to a 12-fold signal enhancement. Finally, the effect of environmental waters on the sensor was evaluated using samples from sea, lake and river waters spiked with analytically relevant amounts of DEP during which significant changes in the SPR signal are observed. It is expected that this concept can be successfully transferred to enhance the sensitivity in SPR sensors.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2016-07-27
    Description: Magnetic resonance imaging (MRI) is one of the most commonly used tomography techniques in medical diagnosis due to the non-invasive character, the high spatial resolution and the possibility of soft tissue imaging. Contrast agents, such as gadolinium complexes and superparamagnetic iron oxides, are administered to spotlight certain organs and their pathologies. Many new models have been proposed that reduce side effects and required doses of these already clinically approved contrast agents. These new candidates often possess additional functionalities, e.g., the possibility of bioactivation upon action of particular stimuli, thus serving as smart molecular probes, or the coupling with therapeutic agents and therefore combining both a diagnostic and therapeutic role. Nanomaterials have been found to be an excellent scaffold for contrast agents, among which carbon nanotubes offer vast possibilities. The morphology of multiwalled carbon nanotubes (MWCNTs), their magnetic and electronic properties, the possibility of different functionalization and the potential to penetrate cell membranes result in a unique and very attractive candidate for a new MRI contrast agent. In this review we describe the different issues connected with MWCNT hybrids designed for MRI contrast agents, i.e., their synthesis and magnetic and dispersion properties, as well as both in vitro and in vivo behavior, which is important for diagnostic purposes. An introduction to MRI contrast agent theory is elaborated here in order to point to the specific expectations regarding nanomaterials. Finally, we propose a promising, general model of MWCNTs as MRI contrast agent candidates based on the studies presented here and supported by appropriate theories.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2016-10-17
    Description: The optimization of etchant parameters in wet etching plays an important role in the fabrication of semiconductor devices. Wet etching of tetramethylammonium hydroxide (TMAH)/isopropyl alcohol (IPA) on silicon nanowires fabricated by AFM lithography is studied herein. TMAH (25 wt %) with different IPA concentrations (0, 10, 20, and 30 vol %) and etching time durations (30, 40, and 50 s) were investigated. The relationships between etching depth and width, and etching rate and surface roughness of silicon nanowires were characterized in detail using atomic force microscopy (AFM). The obtained results indicate that increased IPA concentration in TMAH produced greater width of the silicon nanowires with a smooth surface. It was also observed that the use of a longer etching time causes more unmasked silicon layers to be removed. Importantly, throughout this study, wet etching with optimized parameters can be applied in the design of the devices with excellent performance for many applications.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2016-11-16
    Description: In this paper, we demonstrate an active and fast control of the charge state and hence of the optical and electronic properties of single and near-surface nitrogen-vacancy centres (NV centres) in diamond. This active manipulation is achieved by using a two-dimensional Schottky-diode structure from diamond, i.e., by using aluminium as Schottky contact on a hydrogen terminated diamond surface. By changing the applied potential on the Schottky contact, we are able to actively switch single NV centres between all three charge states NV+, NV0 and NV− on a timescale of 10 to 100 ns, corresponding to a switching frequency of 10–100 MHz. This switching frequency is much higher than the hyperfine interaction frequency between an electron spin (of NV−) and a nuclear spin (of 15N or 13C for example) of 2.66 kHz. This high-frequency charge state switching with a planar diode structure would open the door for many quantum optical applications such as a quantum computer with single NVs for quantum information processing as well as single 13C atoms for long-lifetime storage of quantum information. Furthermore, a control of spectral emission properties of single NVs as a single photon emitters – embedded in photonic structures for example – can be realized which would be vital for quantum communication and cryptography.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2016-05-19
    Description: Mn-doped zinc oxide nanoparticles were prepared by using the microwave solvothermal synthesis (MSS) technique. The nanoparticles were produced from a solution of zinc acetate dihydrate and manganese(II) acetate tetrahydrate using ethylene glycol as solvent. The content of Mn2+ in Zn1− x Mn x O ranged from 1 to 25 mol %. The following properties of the nanostructures were investigated: skeleton density, specific surface area (SSA), phase purity (XRD), lattice parameters, dopant content, average particle size, crystallite size distribution, morphology. The average particle size of Zn1− x Mn x O was determined using Scherrer’s formula, the Nanopowder XRD Processor Demo web application and by converting the specific surface area results. X-ray diffraction of synthesized samples shows a single-phase wurtzite crystal structure of ZnO without any indication of additional phases. Spherical Zn1− x Mn x O particles were obtained with monocrystalline structure and average particle sizes from 17 to 30 nm depending on the content of dopant. SEM images showed an impact of the dopant concentration on the morphology of the nanoparticles.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2016-01-26
    Description: We study the linear and nonlinear optical properties of hybrid metallic–dielectric plasmonic gap nanoantennas. Using a two-step-aligned electron beam lithography process, we demonstrate the ability to selectively and reproducibly fill the gap region of nanoantennas with dielectric nanoparticles made of lithium niobate (LiNbO3) with high efficiency. The linear optical properties of the antennas are modified due to the large refractive index of the material. This leads to a change in the coupling strength as well as an increase of the effective refractive index of the surrounding. The combination of these two effects causes a red- or blue-shift of the plasmonic modes, respectively. We find that the nonlinear optical properties of the combined system are only modified in the range of one order of magnitude. The observed changes in our experiments in the nonlinear emission can be traced to the changed dielectric environment and thus the modified linear optical properties. The intrinsic nonlinearity of the dielectric used is in fact small when compared to the nonlinearity of the metallic part of the hybrid antennas. Thus, the nonlinear signals generated by the antenna itself are dominant in our experiments. We demonstrate that the well-known nonlinear response of bulk dielectric materials cannot always straightforwardly be used to boost the nonlinear response of nanoscale antenna systems. Our results significantly deepen the understanding of these interesting hybrid systems and offer important guidelines for the design of nanoscale, nonlinear light sources.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2016-10-21
    Description: Obtaining high-quality materials, based on nanocrystals, at low temperatures is one of the current challenges for opening new paths in improving and developing functional devices in nanoscale electronics and optoelectronics. Here we report a detailed investigation of the optimization of parameters for the in situ synthesis of thin films with high Ge content (50 %) into SiO2. Crystalline Ge nanoparticles were directly formed during co-deposition of SiO2 and Ge on substrates at 300, 400 and 500 °C. Using this approach, effects related to Ge–Ge spacing are emphasized through a significant improvement of the spatial distribution of the Ge nanoparticles and by avoiding multi-step fabrication processes or Ge loss. The influence of the preparation conditions on structural, electrical and optical properties of the fabricated nanostructures was studied by X-ray diffraction, transmission electron microscopy, electrical measurements in dark or under illumination and response time investigations. Finally, we demonstrate the feasibility of the procedure by the means of an Al/n-Si/Ge:SiO2/ITO photodetector test structure. The structures, investigated at room temperature, show superior performance, high photoresponse gain, high responsivity (about 7 AW−1), fast response time (0.5 µs at 4 kHz) and great optoelectronic conversion efficiency of 900% in a wide operation bandwidth, from 450 to 1300 nm. The obtained photoresponse gain and the spectral width are attributed mainly to the high Ge content packed into a SiO2 matrix showing the direct connection between synthesis and optical properties of the tested nanostructures. Our deposition approach put in evidence the great potential of Ge nanoparticles embedded in a SiO2 matrix for hybrid integration, as they may be employed in structures and devices individually or with other materials, hence the possibility of fabricating various heterojunctions on Si, glass or flexible substrates for future development of Si-based integrated optoelectronics.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2016-04-08
    Description: In this work the interactions of an anticancer drug daunorubicin (DNR) with model thiolipid layers composed of 1,2-dipalmitoyl-sn-glycero-3-phosphothioethanol (DPPTE) were investigated using Langmuir technique. The results obtained for a free drug were compared with the results recorded for DNR attached to SWCNTs as potential drug carrier. Langmuir studies of mixed DPPTE–SWCNTs-DNR monolayers showed that even at the highest investigated content of the nanotubes in the monolayer, the changes in the properties of DPPTE model membranes were not as significant as in case of the incorporation of a free drug, which resulted in a significant increase in the area per molecule and fluidization of the thiolipid layer. The presence of SWCNTs-DNR in the DPPTE monolayer at the air–water interface did not change the organization of the lipid molecules to such extent as the free drug, which may be explained by different types of interactions playing crucial role in these two types of systems. In the case of the interactions of free DNR the electrostatic attraction between positively charged drug and negatively charged DPPTE monolayer play the most important role, while in the case of SWCNTs-DNR adducts the hydrophobic interactions between nanotubes and acyl chains of the lipid seem to be prevailing. Electrochemical studies performed for supported model membranes containing the drug delivered in the two investigated forms revealed that the surface concentration of the drug-nanotube adduct in supported monolayers is comparable to the reported surface concentration of the free DNR incorporated into DPPTE monolayers on gold electrodes. Therefore, it may be concluded that the application of carbon nanotubes as potential DNR carrier allows for the incorporation of comparable amount of the drug into model membranes with simultaneous decrease in the negative changes in the membrane structure and organization, which is an important aspect in terms of side effects of the drug.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2016-03-04
    Description: Hybrid nanoparticle (NP) structures containing organic building units such as polymers, peptides, DNA and proteins have great potential in biosensor and electronic applications. The nearly free modification of the polymer chain, the variation of the protein and DNA sequence and the implementation of functional moieties provide a great platform to create inorganic structures of different morphology, resulting in different optical and magnetic properties. Nevertheless, the design and modification of a protein structure with functional groups or sequences for the assembly of biohybrid materials is not trivial. This is mainly due to the sensitivity of its secondary, tertiary and quaternary structure to the changes in the interaction (e.g., hydrophobic, hydrophilic, electrostatic, chemical groups) between the protein subunits and the inorganic material. Here, we use hemolysin coregulated protein 1 (Hcp1) from Pseudomonas aeruginosa as a building and gluing unit for the formation of biohybrid structures by implementing cysteine anchoring points at defined positions on the protein rim (Hcp1_cys3). We successfully apply the Hcp1_cys3 gluing unit for the assembly of often linear, hybrid structures of plasmonic gold (Au NP), magnetite (Fe3O4 NP), and cobalt ferrite nanoparticles (CoFe2O4 NP). Furthermore, the assembly of Au NPs into linear structures using Hcp1_cys3 is investigated by UV–vis spectroscopy, TEM and cryo-TEM. One key parameter for the formation of Au NP assembly is the specific ionic strength in the mixture. The resulting network-like structure of Au NPs is characterized by Raman spectroscopy, showing surface-enhanced Raman scattering (SERS) by a factor of 8·104 and a stable secondary structure of the Hcp1_cys3 unit. In order to prove the catalytic performance of the gold hybrid structures, they are used as a catalyst in the reduction reaction of 4-nitrophenol showing similar catalytic activity as the pure Au NPs. To further extend the functionality of the Hcp1_cys3 gluing unit, Fe3O4 and CoFe2O4 NPs are aligned in a magnetic field and connected by utilization of cysteine-modified Hcp1. After lyophilization, a fiber-like material of micrometer scale length can be observed. The Fe3O4 Hcp1_cys3 fibers show superparamagnetic behavior with a decreasing blocking temperature and an increasing remanent magnetization leading to a higher squareness value of the hysteresis curve. Thus the Hcp1_cys3 unit is shown to be very versatile in the formation of new biohybrid materials with enhanced magnetic, catalytic and optical properties.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2016-07-08
    Description: The phenalenyl-based dysprosium complexes [Dy(PLN)2(HPLN)Cl(EtOH)] (1), [Dy(PLN)3(HPLN)]·[Dy(PLN)3(EtOH)]·2EtOH (2) and [Dy(PLN)3(H2O)2]·H2O (3), HPLN being 9-hydroxy-1H-phenalen-1-one, have been synthesized. All compounds were fully characterized by means of single crystal X-ray analysis, paramagnetic 1H NMR, MALDI-TOF mass spectrometry, UV–vis spectrophotometry and magnetic measurements. Both static (dc) and dynamic (ac) magnetic properties of these complexes have been investigated, showing slow relaxation of magnetization, indicative of single molecule magnet (SMM) behavior. Attempts to synthesize sublimable phenalenyl-based dysprosium complexes have been made by implementing a synthetic strategy under anhydrous conditions. The sublimed species were characterized and their thermal stability was confirmed. This opens up the possibility to deposit phenalenyl-based lanthanides complexes by sublimation onto surfaces, an important prerequisite for ongoing studies in molecular spintronics.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2016-07-11
    Description: This work describes the formation of reduced graphene oxide-coated copper oxide and copper nanoparticles (rGO-Cu2ONPs, rGO-CuNPs) on the surface of a copper foil supporting graphene oxide (GO) at annealing temperatures of 200–1000 °C, under an Ar atmosphere. These hybrid nanostructures were developed from bare copper oxide nanoparticles which grew at an annealing temperature of 80 °C under nitrogen flux. The predominant phase as well as the particle size and shape strongly depend on the process temperature. Characterization with transmission electron microscopy and scanning electron microscopy indicates that Cu or Cu2O nanoparticles take rGO sheets from the rGO network to form core–shell Cu–rGO or Cu2O–rGO nanostructures. It is noted that such ones increase in size from 5 to 800 nm as the annealing temperature increases in the 200–1000 °C range. At 1000 °C, Cu nanoparticles develop a highly faceted morphology, displaying arm-like carbon nanorods that originate from different facets of the copper crystal structure.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2016-06-30
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2016-07-15
    Description: Sandwich-like layer-by-layer thin films consisting of polyelectrolytes and gold nanoparticles were utilized to construct surface-enhanced Raman scattering (SERS) substrates with tunable SERS properties. It is found that both the size of the nanoparticles in the layers and the interlayer distance significantly influence the SERS performance of the multilayered thin film. These simple, low-cost, easily processable and controllable SERS substrates have a promising future in the field of molecular sensing.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2016-07-01
    Description: DNA nanostructures are promising construction materials to bridge the gap between self-assembly of functional molecules and conventional top-down fabrication methods in nanotechnology. Their positioning onto specific locations of a microstructured substrate is an important task towards this aim. Here we study manipulation and positioning of pristine and of gold nanoparticle-conjugated tubular DNA origami structures using ac dielectrophoresis. The dielectrophoretic behavior was investigated employing fluorescence microscopy. For the pristine origami, a significant dielectrophoretic response was found to take place in the megahertz range, whereas, due to the higher polarizability of the metallic nanoparticles, the nanoparticle/DNA hybrid structures required a lower electrical field strength and frequency for a comparable trapping at the edges of the electrode structure. The nanoparticle conjugation additionally resulted in a remarkable alteration of the DNA structure arrangement. The growth of linear, chain-like structures in between electrodes at applied frequencies in the megahertz range was observed. The long-range chain formation is caused by a local, gold nanoparticle-induced field concentration along the DNA nanostructures, which in turn, creates dielectrophoretic forces that enable the observed self-alignment of the hybrid structures.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2016-06-03
    Description: Self-assembled donor–acceptor dyads are used as model nanostructured heterojunctions for local investigations by noncontact atomic force microscopy (nc-AFM) and Kelvin probe force microscopy (KPFM). With the aim to probe the photo-induced charge carrier generation, thin films deposited on transparent indium tin oxide substrates are investigated in dark conditions and upon illumination. The topographic and contact potential difference (CPD) images taken under dark conditions are analysed in view of the results of complementary transmission electron microscopy (TEM) experiments. After in situ annealing, it is shown that the dyads with longer donor blocks essentially lead to standing acceptor–donor lamellae, where the acceptor and donor groups are π-stacked in an edge-on configuration. The existence of strong CPD and surface photo-voltage (SPV) contrasts shows that structural variations occur within the bulk of the edge-on stacks. SPV images with a very high lateral resolution are achieved, which allows for the resolution of local photo-charging contrasts at the scale of single edge-on lamella. This work paves the way for local investigations of the optoelectronic properties of donor–acceptor supramolecular architectures down to the elementary building block level.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2016-01-04
    Description: The sonochemical technique has already been proven as one of the best coating methods for stable functionalization of substrates over a wide range of applications. Here, we report for the first time on the simultaneous sonochemical dyeing and coating of textiles with antibacterial metal oxide (MO) nanoparticles. In this one-step process the antibacterial nanoparticles are synthesized in situ and deposited together with dye nanoparticles on the fabric surface. It was shown that the antibacterial behavior of the metal oxides was not influenced by the presence of the dyes. Higher K/S values were achieved by sonochemical deposition of the dyes in comparison to a dip-coating (exhaustion) process. The stability of the antibacterial properties and the dye fastness was studied for 72 h in saline solution aiming at medical applications.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2016-06-13
    Description: Copper(II) oxalate grown on carboxy-terminated self-assembled monolayers (SAM) using a step-by-step approach was used as precursor for the electron-induced synthesis of surface-supported copper nanoparticles. The precursor material was deposited by dipping the surfaces alternately in ethanolic solutions of copper(II) acetate and oxalic acid with intermediate thorough rinsing steps. The deposition of copper(II) oxalate and the efficient electron-induced removal of the oxalate ions was monitored by reflection absorption infrared spectroscopy (RAIRS). Helium ion microscopy (HIM) reveals the formation of spherical nanoparticles with well-defined size and X-ray photoelectron spectroscopy (XPS) confirms their metallic nature. Continued irradiation after depletion of oxalate does not lead to further particle growth giving evidence that nanoparticle formation is primarily controlled by the available amount of precursor.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2016-12-27
    Description: Highly uniform samples of carbon nanofoam from hydrothermal sucrose carbonization were studied by helium ion microscopy (HIM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Foams with different densities were produced by changing the process temperature in the autoclave reactor. This work illustrates how the geometrical structure, electron core levels, and the vibrational signatures change when the density of the foams is varied. We find that the low-density foams have very uniform structure consisting of micropearls with ≈2–3 μm average diameter. Higher density foams contain larger-sized micropearls (≈6–9 μm diameter) which often coalesced to form nonspherical μm-sized units. Both, low- and high-density foams are comprised of predominantly sp2-type carbon. The higher density foams, however, show an advanced graphitization degree and a stronger sp3-type electronic contribution, related to the inclusion of sp3 connections in their surface network.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2016-06-02
    Description: We have investigated the potential of polymers containing precisely spaced side-branches for thin film applications, particularly in the context of organic electronics. Upon crystallization, the side-branches were excluded from the crystalline core of a lamellar crystal. Thus, the surfaces of these crystals were covered by side-branches. By using carboxyl groups as side-branches, which allow for chemical reactions, we could functionalize the crystal with semiconducting molecules. Here, we compare properties of crystals differing in size: small nanocrystals and large single crystals. By assembling nanocrystals on a Langmuir trough, large areas could be covered by monolayers consisting of randomly arranged nanocrystals. Alternatively, we used a method based on local supersaturation to grow large area single crystals of the precisely side-branched polymer from solution. Attachment of the semiconducting molecules to the lamellar surface of large single crystals was possible, however, only after an appropriate annealing procedure. As a function of the duration of the grafting process, the morphology of the resulting layer of semiconducting molecules changed from patchy to compact.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2016-03-30
    Description: Micro- and nanocantilevers are employed in atomic force microscopy (AFM) and in micro- and nanoelectromechanical systems (MEMS and NEMS) as sensing elements. They enable nanomechanical measurements, are essential for the characterization of nanomaterials, and form an integral part of many nanoscale devices. Despite the fact that numerous methods described in the literature can be applied to determine the static flexural spring constant of micro- and nanocantilever sensors, experimental techniques that do not require contact between the sensor and a surface at some point during the calibration process are still the exception rather than the rule. We describe a noncontact method using a microfluidic force tool that produces accurate forces and demonstrate that this, in combination with a thermal noise spectrum, can provide the static flexural spring constant for cantilever sensors of different geometric shapes over a wide range of spring constant values (≈0.8–160 N/m).
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2016-05-09
    Description: We have studied the finite-size effect on the dynamic behavior of graphene resonators and their applications in atomic mass detection using a continuum elastic model such as modified plate theory. In particular, we developed a model based on von Karman plate theory with including the edge stress, which arises from the imbalance between the coordination numbers of bulk atoms and edge atoms of graphene. It is shown that as the size of a graphene resonator decreases, the edge stress depending on the edge structure of a graphene resonator plays a critical role on both its dynamic and sensing performances. We found that the resonance behavior of graphene can be tuned not only through edge stress but also through nonlinear vibration, and that the detection sensitivity of a graphene resonator can be controlled by using the edge stress. Our study sheds light on the important role of the finite-size effect in the effective design of graphene resonators for their mass sensing applications.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2016-04-13
    Description: Background: A versatile strategy for protein–surface coupling in biochips exploits the affinity for polyhistidine of the nitrilotriacetic acid (NTA) group loaded with Ni(II). Methods based on optical reflectivity measurements such as spectroscopic ellipsometry (SE) allow for label-free, non-invasive monitoring of molecule adsorption/desorption at surfaces. Results: This paper describes a SE study about the interaction of hexahistidine (His6) on gold substrates functionalized with a thiolate self-assembled monolayer bearing the NTA end group. By systematically applying the difference spectra method, which emphasizes the small changes of the ellipsometry spectral response upon the nanoscale thickening/thinning of the molecular film, we characterized different steps of the process such as the NTA-functionalization of Au, the adsorption of the His6 layer and its eventual displacement after reaction with competitive ligands. The films were investigated in liquid, and ex situ in ambient air. The SE investigation has been complemented by AFM measurements based on nanolithography methods (nanografting mode). Conclusion: Our approach to the SE data, exploiting the full spectroscopic potential of the method and basic optical models, was able to provide a picture of the variation of the film thickness along the process. The combination of δΔ i +1 ,i (λ), δΨ i +1 ,i (λ) (layer-addition mode) and δΔ† i ', i +1(λ), δΨ† i ', i +1(λ) (layer-removal mode) difference spectra allowed us to clearly disentangle the adsorption of His6 on the Ni-free NTA layer, due to non specific interactions, from the formation of a neatly thicker His6 film induced by the Ni(II)-loading of the NTA SAM.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2016-03-24
    Description: Active microrheology is a valuable tool to determine viscoelastic properties of polymer networks. Observing the response of the beads to the excitation of a reference leads to dynamic and morphological information of the material. In this work we present an expansion of the well-known active two-point microrheology. By measuring the response of multiple particles in a viscoelastic medium in response to the excitation of a reference particle, we are able to determine the force propagation in the polymer network. For this purpose a lock-in technique is established that allows for extraction of the periodical motion of embedded beads. To exert a sinusoidal motion onto the reference bead an optical tweezers setup in combination with a microscope is used to investigate the motion of the response beads. From the lock-in data the so called transfer tensor can be calculated, which is a direct measure for the ability of the network to transmit mechanical forces. We also take a closer look at the influence of noise on lock-in measurements and state some simple rules for improving the signal-to-noise ratio.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2016-03-15
    Description: Frequency-modulation atomic force microscopy has turned into a well-established method to obtain atomic resolution on flat surfaces, but is often limited to ultra-high vacuum conditions and cryogenic temperatures. Measurements under ambient conditions are influenced by variations of the dew point and thin water layers present on practically every surface, complicating stable imaging with high resolution. We demonstrate high-resolution imaging in air using a length-extension resonator operating at small amplitudes. An additional slow feedback compensates for changes in the free resonance frequency, allowing stable imaging over a long period of time with changing environmental conditions.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2016-11-21
    Description: Reflectance anisotropy spectroscopy (RAS) equipment is applied to monitor dry-etch processes (here specifically reactive ion etching (RIE)) of monocrystalline multilayered III–V semiconductors in situ. The related accuracy of etch depth control is better than 16 nm. Comparison with results of secondary ion mass spectrometry (SIMS) reveals a deviation of only about 4 nm in optimal cases. To illustrate the applicability of the reported method in every day settings for the first time the highly etch depth sensitive lithographic process to form a film lens on the waveguide ridge of a broad area laser (BAL) is presented. This example elucidates the benefits of the method in semiconductor device fabrication and also suggests how to fulfill design requirements for the sample in order to make RAS control possible.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2016-11-17
    Description: Control of liquid crystal (LC) orientation using a proper SiO2 alignment layer is essential for the optimization of vertically aligned nematic (VAN) displays. With this aim, we studied the optical anisotropy of thin SiO2 films by generalized ellipsometry as a function of deposition angle. The columnar SiO2 structure orientation measured by a noninvasive ellipsometry technique is reported for the first time, and its morphology influence on the LC alignment is demonstrated for large deposition angles.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2016-11-14
    Description: The comparative analysis of the electrochemical deposition of Ni and Ni–Fe nanowires (NWs) into ordered porous alumina templates is presented. The method developed allows for obtaining NWs of 50 ± 5 nm in diameter and 25 μm in length, i.e., with an aspect ratio of 500. XRD data demonstrate the polycrystalline nature of Ni and Ni–Fe in a face-centered cubic close-packed lattice. Both fabricated materials, Ni and Ni–Fe, have shown ferromagnetic properties. The specific magnetization value of Ni–Fe NWs in the alumina template is higher than that of the Ni sample and bulk Ni, also the Curie temperature of the Ni–Fe sample (790 K) is higher than that of the Ni sample one or bulk Ni.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2016-11-10
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2016-03-18
    Description: Background: Soft nanosystems are electronic nanodevices, such as suspended carbon nanotubes or molecular junctions, whose transport properties are modulated by soft internal degrees of freedom, for example slow vibrational modes. Effects of the electron–vibration coupling on the charge and heat transport of soft nanoscopic systems are theoretically investigated in the presence of time-dependent perturbations, such as a forcing antenna or pumping terms between the leads and the nanosystem. A well-established approach valid for non-equilibrium adiabatic regimes is generalized to the case where external time-dependent perturbations are present. Then, a number of relevant applications of the method are reviewed for systems composed by a quantum dot (or molecule) described by a single electronic level coupled to a vibrational mode. Results: Before introducing time-dependent perturbations, the range of validity of the adiabatic approach is discussed showing that a very good agreement with the results of an exact quantum calculation is obtained in the limit of low level occupation. Then, we show that the interplay between the low frequency vibrational modes and the electronic degrees of freedom affects the thermoelectric properties within the linear response regime finding out that the phonon thermal conductance provides an important contribution to the figure of merit at room temperature. Our work has been stimulated by recent experimental results on carbon nanotube electromechanical devices working in the semiclassical regime (resonator frequencies in the megahertz range compared to an electronic hopping frequency of the order of tens of gigahertz) with extremely high quality factors. The nonlinear vibrational regime induced by the external antenna in such systems has been discussed within the non-perturbative adiabatic approach reproducing quantitatively the characteristic asymmetric shape of the current–frequency curves. Within the same set-up, we have proved that the antenna is able to pump sufficient charge close to the mechanical resonance making single-parameter adiabatic charge pumping feasible in carbon nanotube resonators. The pumping mechanism that we observe is different from that acting in the two parameter pumping and, instead, it is based on an important dynamic adjustment of the mechanical motion of the nanotube to the external drive in the weakly nonlinear regime. Finally, stochastic forces induced by quantum and thermal fluctuations due to the electron charging of the quantum dot are shown to affect in a significant way a Thouless charge pump realized with an elastically deformable quantum dot. In this case, the pumping mechanism is also shown to be magnified when the frequency of the external drive is resonant with the proper frequency of the deformable quantum dot. In this regime, the pumping current is not strongly reduced by the temperature, giving a measurable effect. Conclusion: Aim of this review has been to discuss common features of different soft nanosystems under external drive. The most interesting effects induced by time-dependent perturbations are obtained when the external forcing is nearly resonant with the slow vibrational modes. Indeed, not only the external forcing can enhance the electronic response, but it also induces nonlinear regimes where the interplay between electronic and vibrational degrees of freedom plays a major role.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2016-03-11
    Description: As a sanity test for the theoretical method employed, studies on (steady-state) charge transport through molecular devices usually confine themselves to check whether the method in question satisfies the charge conservation. Another important test of the theory’s correctness is to check that the computed current does not depend on the choice of the central region (also referred to as the “extended molecule”). This work addresses this issue and demonstrates that the relevant transport and transport-related properties are indeed invariant upon changing the size of the extended molecule, when the embedded molecule can be described within a general single-particle picture (namely, a second-quantized Hamiltonian bilinear in the creation and annihilation operators). It is also demonstrates that the invariance of nonequilibrium properties is exhibited by the exact results but not by those computed approximately within ubiquitous wide- and flat-band limits (WBL and FBL, respectively). To exemplify the limitations of the latter, the phenomenon of negative differential resistance (NDR) is considered. It is shown that the exactly computed current may exhibit a substantial NDR, while the NDR effect is absent or drastically suppressed within the WBL and FBL approximations. The analysis done in conjunction with the WBLs and FBLs reveals why general studies on nonequilibrium properties require a more elaborate theoretical than studies on linear response properties (e.g., ohmic conductance and thermopower) at zero temperature. Furthermore, examples are presented that demonstrate that treating parts of electrodes adjacent to the embedded molecule and the remaining semi-infinite electrodes at different levels of theory (which is exactly what most NEGF-DFT approaches do) is a procedure that yields spurious structures in nonlinear ranges of current–voltage curves.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2016-03-10
    Description: Photothermal excitation is a cantilever excitation method that enables stable and accurate operation for dynamic-mode AFM measurements. However, the low excitation efficiency of the method has often limited its application in practical studies. In this study, we propose a method for improving the photothermal excitation efficiency by coating cantilever backside surface near its fixed end with colloidal graphite as a photothermal conversion (PTC) layer. The excitation efficiency for a standard cantilever of PPP-NCHAuD with a spring constant of ≈40 N/m and a relatively stiff cantilever of AC55 with a spring constant of ≈140 N/m were improved by 6.1 times and 2.5 times, respectively, by coating with a PTC layer. We experimentally demonstrate high stability of the PTC layer in liquid by AFM imaging of a mica surface with atomic resolution in phosphate buffer saline solution for more than 2 h without any indication of possible contamination from the coating. The proposed method, using a PTC layer made of colloidal graphite, greatly enhances photothermal excitation efficiency even for a relatively stiff cantilever in liquid.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2016-03-09
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2016-02-26
    Description: The functional fusion of “living” biomaterial (such as cells) with synthetic systems has developed into a principal ambition for various scientific disciplines. In particular, emerging fields such as bionics and nanomedicine integrate advanced nanomaterials with biomolecules, cells and organisms in order to develop novel strategies for applications, including energy production or real-time diagnostics utilizing biomolecular machineries “perfected” during billion years of evolution. To date, hardware–wetware interfaces that sample or modulate bioelectric potentials, such as neuroprostheses or implantable energy harvesters, are mostly based on microelectrodes brought into the closest possible contact with the targeted cells. Recently, the possibility of using electrochemical gradients of the inner ear for technical applications was demonstrated using implanted electrodes, where 1.12 nW of electrical power was harvested from the guinea pig endocochlear potential for up to 5 h (Mercier, P.; Lysaght, A.; Bandyopadhyay, S.; Chandrakasan, A.; Stankovic, K. Nat. Biotech. 2012, 30, 1240–1243). More recent approaches employ nanowires (NWs) able to penetrate the cellular membrane and to record extra- and intracellular electrical signals, in some cases with subcellular resolution (Spira, M.; Hai, A. Nat. Nano. 2013, 8, 83–94). Such techniques include nanoelectric scaffolds containing free-standing silicon NWs (Robinson, J. T.; Jorgolli, M.; Shalek, A. K.; Yoon, M. H.; Gertner, R. S.; Park, H. Nat Nanotechnol. 2012, 10, 180–184) or NW field-effect transistors (Qing, Q.; Jiang, Z.; Xu, L.; Gao, R.; Mai, L.; Lieber, C. Nat. Nano. 2013, 9, 142–147), vertically aligned gallium phosphide NWs (Hällström, W.; Mårtensson, T.; Prinz, C.; Gustavsson, P.; Montelius, L.; Samuelson, L.; Kanje, M. Nano Lett. 2007, 7, 2960–2965) or individually contacted, electrically active carbon nanofibers. The latter of these approaches is capable of recording electrical responses from oxidative events occurring in intercellular regions of neuronal cultures (Zhang, D.; Rand, E.; Marsh, M.; Andrews, R.; Lee, K.; Meyyappan, M.; Koehne, J. Mol. Neurobiol. 2013, 48, 380–385). Employing monocrystalline gold, nanoelectrode interfaces, we have now achieved stable, functional access to the electrochemical machinery of individual Physarum polycephalum slime mold cells. We demonstrate the “symbionic” union, allowing for electrophysiological measurements, functioning as autonomous sensors and capable of producing nanowatts of electric power. This represents a further step towards the future development of groundbreaking, cell-based technologies, such as bionic sensory systems or miniaturized energy sources to power various devices, or even “intelligent implants”, constantly refueled by their surrounding nutrients.
    Electronic ISSN: 2190-4286
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics , Technology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...