ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (128)
  • Copernicus  (128)
  • 2010-2014  (128)
  • 1980-1984
  • 1965-1969
  • 1925-1929
  • 2013  (128)
  • Solid Earth Discussions  (64)
  • 133346
  • 1
    Publication Date: 2013-09-14
    Description: 3-D reflection seismic imaging of the Hontomín structure in the Basque-Cantabrian Basin (Spain) Solid Earth Discussions, 5, 1575-1614, 2013 Author(s): J. Alcalde, D. Martí, C. Juhlin, A. Malehmir, D. Sopher, E. Saura, I. Marzán, P. Ayarza, A. Calahorrano, A. Pérez-Estaún, and R. Carbonell The Basque-Cantabrian Basin of the Northern Iberia peninsula constitutes a unique example of a major deformation system, featuring a dome structure developed by extensional tectonics followed by compressional reactivation. The occurrence of natural resources in the area and the possibility of establishing a geological storage site for carbon dioxide motivated the acquisition of a 3-D seismic reflection survey in 2010, centered on the Jurassic Hontomín dome. The objectives of this survey were to obtain a geological model of the overall structure and to establish a baseline model for a possible geological CO 2 storage site. The 36 km 2 survey included approximately 5000 mixed (Vibroseis and explosives) source points recorded with a 25 m inline source and receiver spacing. The target reservoir is a saline aquifer, at approximately 1450 m depth, encased and sealed by carbonate formations. Acquisition and processing parameters were influenced by the rough topography and relatively complex geology. A strong near surface velocity inversion is evident in the data, affecting the quality of the data. The resulting 3-D image provides constraints on the key features of the geologic model. The Hontomín structure is interpreted to consist of an approximately 10 7 m 2 large elongated dome with two major W–E and NW–SE striking faults bounding it.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-09-17
    Description: Review of some significant claimed irregularities in Scandinavian postglacial uplift in time scales from tens to thousands of years: earthquakes? Solid Earth Discussions, 5, 1615-1640, 2013 Author(s): S. Gregersen The postglacial uplift/subsidence in Scandinavia is regular. And the phenomenon is similar in time scales of tens, hundreds and thousands of years studied via geodesy, seismology and geology. Searches for irregularities in the form of earthquakes claimed in the scientific literature have disclosed many earthquakes right after the Ice Age and some later cases for further evaluation. In a previous report the present author has mentioned doubts about the validity of some of the most significant claimed irregularities. In the present paper a review is made of these significant claimed irregularities in the southwestern flank of the Scandinavian postglacial uplift/subsidence via literature studies of geodetic and geological claims of earthquakes as well as discussions in the field. Geodetic observations exist for all of Scandinavia. Those describe the phenomenon in 10s–100s of years scale. Earthquake observations in seismology are of relevance in the same time scales. Geological studies of dated shore lines describe the postglacial vertical earth-surface motion in a quite different time scale of 100s–1000s of years. There is a need for integration of these observations geographically. This is happening in the various time scales in the DynaQlim project. The review finds the claims improbable about the following: (1) geodynamical motion in the Copenhagen area, (2) a paleo-earthquake in Læsø and (3) the recently proposed water level discrepancy in the southern part of Denmark. The assessment is less certain, but falls to improbable concerning (4) proposed paleo-earthquakes by Hallandsåsen in southwestern Sweden.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-06-08
    Description: 3-D geomechanical modelling of a gas reservoir in the North German Basin: workflow for model building and calibration Solid Earth Discussions, 5, 767-788, 2013 Author(s): K. Fischer and A. Henk The optimal use of conventional and unconventional hydrocarbon reservoirs depends, amongst others, on the local tectonic stress field. For example, wellbore stability, orientation of hydraulically induced fractures and – especially in fractured reservoirs – permeability anisotropies are controlled by the recent in situ stresses. Faults and lithological changes can lead to stress perturbations and produce local stresses that can significantly deviate from the regional stress field. Geomechanical reservoir models aim for a robust, ideally "pre-drilling" prediction of the local variations in stress magnitude and orientation. This requires a~numerical modelling approach that is capable to incorporate the specific geometry and mechanical properties of the subsurface reservoir. The workflow presented in this paper can be used to build 3-D geomechanical models based on the Finite Element Method (FEM) and ranging from field-scale models to smaller, detailed submodels of individual fault blocks. The approach is successfully applied to an intensively faulted gas reservoir in the North German Basin. The in situ stresses predicted by the geomechanical FE model were calibrated against stress data actually observed, e.g. borehole breakouts and extended leak-off tests. Such a validated model can provide insights into the stress perturbations in the inter-well space and undrilled parts of the reservoir. In addition, the tendency of the existing fault network to slip or dilate in the present-day stress regime can be addressed.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-01-16
    Description: Quantification of magma ascent rate through rockfall monitoring at the growing/collapsing lava dome of Volcán de Colima, Mexico Solid Earth Discussions, 5, 1-39, 2013 Author(s): S. B. Mueller, N. R. Varley, U. Kueppers, P. Lesage, G. Á. Reyes Davila, and D. B. Dingwell The most recent eruptive phase of Volcán de Colima, Mexico, started in 1998 and was characterized by episodic dome growth with a variable effusion rate, interrupted intermittently by explosive eruptions. Between November 2009 and June 2011, growth at the dome was limited to a lobe on the western side where it had previously started overflowing the crater rim, leading to the generation of rockfall events. This meant that no significant increase in dome volume was perceivable and the rate of magma ascent, a crucial parameter for volcano monitoring and hazard assessment, could no longer be quantified via measurements of the dome's dimensions. Here, we present alternative approaches to quantify the magma ascent rate. We estimate the volume of individual rockfalls through the detailed analysis of sets of photographs (before and after individual rockfall events). The relationship between volume and infrared images of the freshly exposed dome surface and the seismic signals related to the rockfall events was then investigated. Larger events exhibited a correlation between the previously estimated volume of a rockfall and the surface temperature of the freshly exposed dome surface as well as the mean temperature of rockfall masses distributed over the slope. We showed that for larger events, the volume of the rockfall correlates with the maximum temperature at the newly formed cliff as well as the seismic energy. By calibrating the seismic signals using the volumes estimated from photographs, the count of rockfalls over a certain period was used to estimate the magma extrusion flux for the period investigated. Over the course of the measurement period, significant changes were observed in number of rockfalls, rockfall volume and hence averaged extrusion rate. The extrusion rate was not constant: it increased from 0.008 m 3 s −1 to 0.02 m 3 s −1 during 2010 and dropped down to 0.008 m 3 s −1 again in March 2011. In June 2011, magma extrusion had come to a halt. The methodology presented represents a reliable tool to constrain the growth rate of domes that are repeatedly affected by partial collapses. There is a good correlation between thermal and seismic energies and rockfall volume. Thus it is possible to calibrate the seismic records associated with the rockfalls (a continuous monitoring tool) to improve both volcano monitoring at volcanoes with active dome growth and hazard management associated with rockfalls specifically.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2013-01-17
    Description: Kinematics of the South Atlantic rift Solid Earth Discussions, 5, 41-116, 2013 Author(s): C. Heine, J. Zoethout, and R. D. Müller The South Atlantic rift basin evolved as branch of a large Jurassic-Cretaceous intraplate rift zone between the African and South American plates during the final breakup of western Gondwana. While the relative motions between South America and Africa for post-breakup times are well resolved, many issues pertaining to the fit reconstruction and particular the relation between kinematics and lithosphere dynamics during pre-breakup remain unclear in currently published plate models. We have compiled and assimilated data from these intraplated rifts and constructed a revised plate kinematic model for the pre-breakup evolution of the South Atlantic. Based on structural restoration of the conjugate South Atlantic margins and intracontinental rift basins in Africa and South America, we achieve a tight fit reconstruction which eliminates the need for previously inferred large intracontinental shear zones, in particular in Patagonian South America. By quantitatively accounting for crustal deformation in the Central and West African rift zone, we have been able to indirectly construct the kinematic history of the pre-breakup evolution of the conjugate West African-Brazilian margins. Our model suggests a causal link between changes in extension direction and velocity during continental extension and the generation of marginal structures such as the enigmatic Pre-salt sag basin and the São Paulo High. We model an initial E–W directed extension between South America and Africa (fixed in present-day position) at very low extensional velocities until Upper Hauterivian times (≈126 Ma) when rift activity along in the equatorial Atlantic domain started to increase significantly. During this initial ≈17 Myr-long stretching episode the Pre-salt basin width on the conjugate Brazilian and West African margins is generated. An intermediate stage between 126.57 Ma and Base Aptian is characterised by strain localisation, rapid lithospheric weakening in the equatorial Atlantic domain, resulting in both progressively increasing extensional velocities as well as a significant rotation of the extension direction to NE–SW. From Base Aptian onwards diachronous lithospheric breakup occurred along the central South Atlantic rift, first in the Sergipe-Alagoas/Rio Muni margin segment in the northernmost South Atlantic. Final breakup between South America and Africa occurred in the conjugate Santos–Benguela margin segment at around 113 Ma and in the Equatorial Atlantic domain between the Ghanaian Ridge and the Piauí-Ceará margin at 103 Ma. We conclude that such a multi-velocity, multi-directional rift history exerts primary control on the evolution of this conjugate passive margins systems and can explain the first order tectonic structures along the South Atlantic and possibly other passive margins.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-02-23
    Description: Land-use change effects on soil quality in Montilla-Moriles DO, Southern Spain Solid Earth Discussions, 5, 163-187, 2013 Author(s): M. Martín-Carrillo, L. Parras-Alcántara, and B. Lozano-García The agricultural Mediterranean areas are dedicated to arable crops (AC), but in the last few decades, a significant number of AC has a land use change (LUC) to olive grove cultivations (OG) and vineyards (V). A field study was conducted to determine the long-term effects (46 yr) of LUC (AC by OG and V) and to determine soil organic carbon (SOC), total nitrogen (TN), C:N ratio and their stratification across the soil entire profile, in Montilla-Moriles denomination of origin (DO), in Calcic-Chromic Luvisols (LVcc/cr), an area under semiarid Mediterranean conditions. The experimental design consisted of studying the LUC on one farm between 1965 and 2011. Originally, only AC was farmed in 1965, but OG and V were farmed up to now (2011). This LUC principally affected the thickness horizon, texture, bulk density, pH, organic matter, organic carbon, total nitrogen and C:N ratio. The LUC had a negative impact in the soil, affecting the SOC and TN stocks. The conversion from AC to V and OG involved the loss of the SOC stock (52.7% and 64.9% to V and OG, respectively) and the loss of the TN stock (42.6% and 38.1% to V and OG, respectively). With respect to the soil quality, the effect was opposite; 46\,yr after LUC improved the soil quality, increasing the stratification ratio (in V and OG) of SOC, TN and C:N ratio.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2013-02-15
    Description: Energy of plate tectonics calculation and projection Solid Earth Discussions, 5, 135-161, 2013 Author(s): N. H. Swedan Mathematics and observations suggest that the energy of the geological activities resulting from plate tectonics is equal to the latent heat of melting, calculated at mantle's pressure, of the new ocean crust created at midocean ridges following sea floor spreading. This energy varies with the temperature of ocean floor, which is correlated with surface temperature. The objective of this manuscript is to calculate the force that drives plate tectonics, estimate the energy released, verify the calculations based on experiments and observations, and project the increase of geological activities with surface temperature rise caused by climate change.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-12-10
    Description: Practical analytical solutions for benchmarking of 2-D and 3-D geodynamic Stokes problems with variable viscosity Solid Earth Discussions, 5, 2203-2281, 2013 Author(s): I. Yu. Popov, I. S. Lobanov, S. I. Popov, A. I. Popov, and T. V. Gerya Geodynamic modeling often involves challenging computations involving solution of Stokes and continuity equations under condition of highly variable viscosity. Based on new analytical approach we developed generalized analytical solutions for 2-D and 3-D incompressible Stokes flows with both linearly and exponentially variable viscosity. We demonstrated how these generalized solutions can be converted into 2-D and 3-D test problems suitable for benchmarking numerical codes aimed at modeling various mantle convection and lithospheric dynamics problems. Main advantage of this new generalized approach is that large variety of benchmark solutions can be generated including relatively complex cases with open model boundaries, non-vertical gravity and variable gradients of viscosity and density fields, which are not parallel to Cartesian axes. Examples of respective 2-D and 3-D MatLab codes are provided with this paper.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-12-10
    Description: Modelling complex geological angular data with the Projected Normal distribution and mixtures of von Mises distributions Solid Earth Discussions, 5, 2181-2202, 2013 Author(s): R. M. Lark, D. Clifford, and C. N. Waters Angular data are commonly encountered in the earth sciences and statistical descriptions and inferences about such data are necessary in structural geology. In this paper we compare two statistical distributions appropriate for complex angular data sets: the mixture of von Mises and the projected normal distribution. We show how the number of components in a mixture of von Mises distribution may be chosen, and how one may chose between the projected normal distribution and mixture of von Mises for a particular data set. We illustrate these methods with some structural geological data, showing how the fitted models can complement geological interpretation and permit statistical inference. One of our data sets suggests a special case of the projected normal distribution which we discuss briefly.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-10-08
    Description: Seismic structure of the lithosphere beneath the ocean islands near the mid-oceanic ridges Solid Earth Discussions, 5, 1641-1657, 2013 Author(s): C. Haldar, P. Kumar, and M. Ravi Kumar Deciphering the seismic character of the young lithosphere near the mid-oceanic ridges (MOR) is a challenging endeavor. In this study, we determine the seismic structure of the oceanic plate near the MORs, using the P -to- s conversions isolated from good quality data recorded at 5 broadband seismological stations situated on the ocean Islands in their vicinity. Estimates of the crustal and lithospheric thickness values from waveform modeling of the P receiver function stacks reveal that the crustal thickness varies between 6 and 8 km with the corresponding depths to the lithosphere asthenosphere boundary (LAB) varying between 43 and 68 km. However, the depth to the LAB at Macquire Island is intriguing in view of the observation of a thick (~ 87 km) lithosphere beneath a relatively young crust. At three other stations i.e., Ascension Island, Sao Jorge and Easter Island, we find evidence for an additional deeper low velocity layer probably related to the presence of a hotspot.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2013-10-17
    Description: Seismogenic frictional melting in the magmatic column Solid Earth Discussions, 5, 1659-1686, 2013 Author(s): J. E. Kendrick, Y. Lavallée, K.-U. Hess, S. De Angelis, A. Ferk, H. E. Gaunt, D. B. Dingwell, and R. Leonhardt Lava dome eruptions subjected to high extrusion rates commonly evolve from endogenous to exogenous growth and limits to their structural stability hold catastrophic potential as explosive eruption triggers. In the conduit, strain localisation in magma, accompanied by seismogenic failure, marks the onset of brittle magma ascent dynamics. The rock record of exogenous dome structures preserves vestiges of cataclastic processes (Cashman et al., 2008; Kennedy and Russell, 2011) and of thermal anomalies (Kendrick et al., 2012), key to unravelling subsurface processes. Here, a combined structural, thermal and magnetic investigation of a shear band crosscutting a large block erupted in 2010 at Soufrière Hills volcano (SHV) reveals evidence of faulting and frictional melting within the magmatic column. The mineralogy of this pseudotachylyte vein offers confirmation of complete recrystallisation with an isothermal remanent magnetisation signature that typifies local electric currents in faults. The pseudotachylyte presents an impermeable barrier, which is thought to have influenced the degassing pathway. Such melting events may be linked to the step-wise extrusion of magma accompanied by repetitive long-period (LP) drumbeat seismicity at SHV (Neuberg et al., 2006). Frictional melting of SHV andesite in a high velocity rotary shear apparatus highlights the small slip distances ( 〈 15 cm) required to bring 800 °C magma to melting point at upper conduit stress conditions (10 MPa). We conclude that frictional melting is an inevitable consequence of seismogenic, conduit-dwelling magma fracture during dome building eruptions and that it may have an important influence on magma ascent dynamics.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2013-10-25
    Description: Testing the effects of the numerical implementation of water migration on models of subduction dynamics Solid Earth Discussions, 5, 1771-1815, 2013 Author(s): M. E. T. Quinquis and S. J. H. Buiter Subduction of oceanic lithosphere brings water into Earth's upper mantle. Previous numerical studies have shown how slab dehydration and mantle hydration can impact the dynamics of a subduction system by allowing a more vigorous mantle flow and promoting localisation of deformation in lithosphere and mantle. The depths at which dehydration reactions occur in the hydrated portions of the slab are well constrained in these models by thermodynamic calculations. However, the mechanism by which free water migrates in the mantle is incompletely known. Therefore, models use different numerical schemes to model the migration of free water. We aim to show the influence of the numerical scheme of free water migration on the dynamics of the upper mantle and more specifically the mantle wedge. We investigate the following three migration schemes with a finite-element model: (1) element-wise vertical migration of free water, occurring independent of the material flow; (2) an imposed vertical free water velocity; and (3) a Darcy velocity, where the free water velocity is calculated as a function of the pressure gradient between water and the surrounding rocks. In addition, the material flow field also moves the free water in the imposed vertical velocity and Darcy schemes. We first test the influence of the water migration scheme using a simple Stokes flow model that simulates the sinking of a cold hydrated cylinder into a hot dry mantle. We find that the free water migration scheme has only a limited impact on the water distribution after 1 Myr in these models. We next investigate slab dehydration and mantle hydration with a thermomechanical subduction model that includes brittle behaviour and viscous water-dependent creep flow laws. Our models show how the bound water distribution is not greatly influenced by the water migration scheme whereas the free water distribution is. We find that a water-dependent creep flow law results in a broader area of hydration in the mantle wedge which feeds back to the dynamics of the system by the associated weakening. This supports using dynamic time evolution models to investigate the effects of (de)hydration. We also show that hydrated material can be transported down to the base of the upper mantle at 670 km. Although (de)hydration processes influence subduction dynamics, we find that the exact numerical implementation of free water migration is not important. This implies that a simple implementation of water migration would be sufficient for studies that focus on larger-scale features of subduction dynamics.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2013-10-23
    Description: The location of lithospheric-scale transfer faults and their control on the Cu-Au deposits of New Guinea Solid Earth Discussions, 5, 1687-1720, 2013 Author(s): L. T. White, M. P. Morse, and G. S. Lister The location of major Cu-Au deposits on the island of New Guinea are considered to be controlled by a series of transfer faults that strike N–S to NE–SW, perpendicular to the long axis of the island. The premise is that these faults dilate perpendicular to the regional stress field, forming conduits for metalliferous bearing fluids and gas to deposit. However, the data on which this idea was first proposed was often not presented, or when it was, is of poor quality or low resolution. We therefore present a review of the existing structural interpretations and compare these with several recently published geophysical datasets (gravity, magnetics and seismic tomography) to determine if the Cu-Au controlling transfer faults could be observed. These data were used to produce a new lineament map of New Guinea. A comparison of the lineaments with the location of major Cu-Au deposits indicates there is a link between the arc-normal structures and mineralization. However, it is only those deposits that are less than 4.5 million years old that could be associated with these structures. Gravity and seismic tomography data indicate that some of these structures could penetrate deep levels of the lithosphere, providing some support to the earlier idea that the arc-normal transfer faults act as conduits for the younger mineral deposits of New Guinea. The gravity data can also be used to infer the location of igneous intrusions at depth, which could have brought metal-bearing fluids and gases closer to the Earth's surface. These regions might be of interest for future exploration campaigns, particularly those areas that are crosscut by deep, vertical faults. However, new exploration models are needed to explain the location of the deposits that are older than 5 Ma.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2013-09-04
    Description: The enigmatic Zerelia twin-lakes (Thessaly, Central Greece): two potential meteorite impact Craters Solid Earth Discussions, 5, 1511-1573, 2013 Author(s): V. J. Dietrich, E. Lagios, E. Reusser, V. Sakkas, E. Gartzos, and K. Kyriakopoulos Two circular permanent lakes of 150 and 250 m diameter and 6–8 m depth to an unconsolidated muddy bottom occur 250 m apart from each other in the agricultural fields SW of the town of Almiros (Thessaly, central Greece). The age of the lakes is assumed to be Late Pliocene to Early Holocene with a minimum age of approx. 7000 yr BP. The abundant polymict, quartz-rich carbonate breccia and clasts with a clay rich matrix in the shallow embankments of the lakes show weak stratification but no volcanic structures. The carbonate clasts and particles often display spheroidal shapes and consist of calcite aggregates with feathery, arborescent, variolitic to micro-sparitic textures and spheroidal fabrics, recrystallized and deformed glass-shaped fragments, calcite globules in quartz; thus indications of possible carbonate melting, quenching and devitrification. The carbonatic matrix includes small xenomorphic phases, such as chromspinel, zircon with blurred granular and skeletal textures, skeletal rutile and ilmenite, which are interpreted as relicts of partial melting and quenching under high temperatures of 1240–1800 °C. Only a few quartz fragments exhibit indistinct planar fractures. In several cases they include exotic Al-Si- and sulfur bearing Fe-phases, 〈 1–10 μm as globules. The modeled "Residual Gravity" profiles through the lakes indicate negative gravity anomalies of bowl-type structures down to 150 m for the eastern lake and down to 250 m for the larger western lake. Several hypotheses can be drawn upon to explain the origin of these enigmatic twin-lakes: (a) Maar-type volcanic craters; (b) hydrothermal or CO 2 /hydrocarbon gas explosion craters; (c) and (d) doline holes due to karstification; or (e) small meteorite impact craters, the latter being a plausible explanation due to geologic, petrologic, and geophysical evidence. The morphology and dimensions of the lakes as well as the density contrast tomography of the bedrock favor a meteorite impact hypothesis of a projectile, which may has split into two fragments before reaching the surface.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2013-07-24
    Description: Fully probabilistic seismic source inversion – Part 1: Efficient parameterisation Solid Earth Discussions, 5, 1125-1162, 2013 Author(s): S. C. Stähler and K. Sigloch Seismic source inversion is a non-linear problem in seismology where not just the earthquake parameters themselves, but also estimates of their uncertainties are of great practical importance. Probabilistic source inversion (Bayesian inference) is very adapted to this challenge, provided that the parameter space can be chosen small enough to make Bayesian sampling computationally feasible. We propose a framework for PRobabilistic Inference of Source Mechanisms (PRISM) that parameterises and samples earthquake depth, moment tensor, and source time function efficiently by using information from previous non-Bayesian inversions. The source time function is expressed as a weighted sum of a small number of empirical orthogonal functions, which were derived from a catalogue of 〉1000 STFs by a principal component analysis. We use a likelihood model based on the cross-correlation misfit between observed and predicted waveforms. The resulting ensemble of solutions provides full uncertainty and covariance information for the source parameters, and permits to propagate these source uncertainties into travel time estimates used for seismic tomography. The computational effort is such that routine, global estimation of earthquake mechanisms and source time functions from teleseismic broadband waveforms is feasible.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2013-07-20
    Description: The permeability and elastic moduli of tuff from Campi Flegrei, Italy: implications for ground deformation modelling Solid Earth Discussions, 5, 1081-1123, 2013 Author(s): M. J. Heap, P. Baud, P. G. Meredith, S. Vinciguerra, and T. Reuschlé The accuracy of ground deformation modelling at active volcanoes is a principal requirement in volcanic hazard mitigation. However, the reliability of such models relies on the accuracy of the rock physical property (permeability and elastic moduli) input parameters. Unfortunately, laboratory-derived values on representative rocks are usually rare. To this end we have performed a systematic laboratory study of the influence of pressure and temperature on the permeability and elastic moduli of the two most widespread tuffs from the Campi Flegrei volcanic district, Italy. Our data show that the water permeability of Neapolitan Yellow Tuff and a tuff from the Campanian Ignimbrite differ by about two orders of magnitude, highlighting the heterogeneous nature of the tuffs at Campi Flegrei. As pressure (depth) increases beyond the critical point for inelastic pore collapse (at an effective pressure of 10–15 MPa, or a depth of about 750 m), permeability and porosity decrease significantly, and ultrasonic wave velocities and dynamic elastic moduli increase significantly. Increasing the thermal stressing temperature increases the permeability and decreases the ultrasonic wave velocities and dynamic elastic moduli of the Neapolitan Yellow Tuff; whereas the tuff from the Campanian Ignimbrite remains unaffected. This difference is due the presence of thermally unstable zeolites within the Neapolitan Yellow Tuff. For both rocks we also find, under the same pressure conditions, that the dynamic (calculated from ultrasonic wave velocities) and static (calculated from triaxial stress-strain data) elastic moduli differ significantly. The choice of elastic moduli in ground deformation modelling is therefore an important consideration. While we urge that these new laboratory data should be considered in routine ground deformation modelling, we highlight the heterogeneous nature of the rocks that comprise the caldera at Campi Flegrei.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2013-07-05
    Description: Time dependent properties of sandstones and their effects on mine stability Solid Earth Discussions, 5, 897-916, 2013 Author(s): M. Alber Large scale stress redistribution around longwall panels in coal mines puts rock masses in the vicinity of the underground excavations close to failure. While immediate failure is reflected for example by instantaneous seismic events, there is also a delayed response of the rock mass as noted from decaying seismicity during non-operating times. Sandstone samples from the hanging wall of a coal seam in the Ruhr coal mining district in Germany have been subjected to conventional strength, creep and relaxation tests. From creep and relaxation tests estimates of time dependent strength properties are derived. Numerical modeling was employed to delineate zones of states of stress around underground excavations which are prone to time dependent failure.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2013-07-09
    Description: Full-fit reconstruction of the Labrador Sea and Baffin Bay Solid Earth Discussions, 5, 917-962, 2013 Author(s): M. Hosseinpour, R. D. Müller, S. E. Williams, and J. M. Whittaker Reconstructing the opening of the Labrador Sea and Baffin Bay between Greenland and North America remains controversial. Recent seismic data suggest that magnetic lineations along the margins of the Labrador Sea, originally interpreted as seafloor spreading anomalies, may lie within the crust of the continent–ocean transition. These data also suggest a more seaward extent of continental crust within the Greenland margin near the Davis Strait than assumed in previous full-fit reconstructions. Our study focuses on reconstructing the full-fit configuration of Greenland and North America using an approach that considers continental deformation in a quantitative manner. We use gravity inversion to map crustal thickness across the conjugate margins, and assimilate observations from available seismic profiles and potential field data to constrain the likely extent of different crustal types. We derive end-member continental margin restorations following alternative interpretations of published seismic profiles. The boundaries between continental and oceanic crust (COB) are restored to their pre-stretching locations along small circle motion paths across the region of Cretaceous extension. Restored COBs are fitted quantitatively to compute alternative total-fit reconstructions. A preferred full-fit model is chosen based on the strongest compatibility with geological and geophysical data. Our preferred model suggests that (i) the COB lies oceanward of magnetic lineations interpreted as magnetic anomaly 31 (70 Ma) in the Labrador Sea, (ii) all previously identified magnetic lineations landward of anomaly 27 reflect intrusions into continental crust, and (iii) the Ungava fault zone in Davis Strait acted as a leaky transform fault during rifting. This robust plate reconstruction reduces gaps and overlaps in the Davis Strait and suggests that there is no need for alternative models proposed for reconstructions of this area including additional plate boundaries in North America or Greenland. Our favored model implies that break up and formation of continent–ocean transition (COT) first started in the southern Labrador Sea and Davis Strait around 88 Ma and then propagated north and southwards up to onset of real seafloor spreading at 63 Ma in the Labrador Sea. In the Baffin Bay, continental stretching lasted longer and actual break up and seafloor spreading started around 61 Ma (Chron 26).
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2013-07-17
    Description: Petrophysical constraints on the seismic properties of the Kaapvaal craton mantle root Solid Earth Discussions, 5, 963-1005, 2013 Author(s): V. Baptiste and A. Tommasi We calculated the seismic properties of 47 mantle xenoliths from 9 kimberlitic pipes in the Kaapvaal craton based on their modal composition, the crystal preferred orientations (CPO) of olivine, ortho- and clinopyroxene, and garnet, the Fe content of olivine, and the pressures and temperatures at which the rocks were equilibrated. These data allow constraining the variation of seismic anisotropy and velocities with depth. The fastest P wave and fast split shear wave (S1) polarization direction is always close to olivine [100] maximum. Changes in olivine CPO symmetry result in minor variations in the seismic anisotropy patterns. Seismic anisotropy is higher for high olivine contents and stronger CPO. Maximum P waves azimuthal anisotropy (AV p ) ranges between 2.5 and 10.2% and S waves polarization anisotropy (AV s ) between 2.7 and 8%. Seismic properties averaged in 20 km thick intervals depth are, however, very homogeneous. Based on these data, we predict the anisotropy that would be measured by SKS, Rayleigh ( S V ) and Love ( S H ) waves for 5 end-member orientations of the foliation and lineation. Comparison to seismic anisotropy data in the Kaapvaal shows that the coherent fast directions, but low delay times imaged by SKS studies and the low azimuthal anisotropy and S H faster than S V measured using surface waves may only be consistently explained by dipping foliations and lineations. The strong compositional heterogeneity of the Kaapvaal peridotite xenoliths results in up to 3% variation in density and in up to 2.3% of variation V p , V s and the V p / V s ratio. Fe depletion by melt extraction increases V p and V s , but decreases the V p / V s ratio and density. Orthopyroxene enrichment decreases the density and V p , but increases V s , strongly reducing the V p / V s ratio. Garnet enrichment increases the density, and in a lesser manner V p and the V p / V s ratio, but it has little to no effect on V s . These compositionally-induced variations are slightly higher than the velocity perturbations imaged by body-wave tomography, but cannot explain the strong velocity anomalies reported by surface wave studies. Comparison of density and seismic velocity profiles calculated using the xenoliths' compositions and equilibrium conditions to seismological data in the Kaapvaal highlights that: (i) the thickness of the craton is underestimated in some seismic studies and reaches at least 180 km, (ii) the deep sheared peridotites represent very local modifications caused and oversampled by kimberlites, and (iii) seismological models probably underestimate the compositional heterogeneity in the Kaapvaal mantle root, which occurs at a scale much smaller than the one that may be sampled seismologically.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2013-04-09
    Description: Short wavelength undulatory extinction in quartz recording coseismic deformation in the middle crust – an experimental study Solid Earth Discussions, 5, 281-314, 2013 Author(s): C. A. Trepmann and B. Stöckhert Deformation experiments are carried out on natural vein quartz in a modified Griggs-type solid medium apparatus to explore the preservation potential of microfabrics created by crystal-plastic deformation at high stress, overprinted during subsequent creep at lower stress. a corresponding stress history is expected for the upper plastosphere, where fault slip during an earthquake causes quasi-instantaneous loading to high stress, followed by stress relaxation. The question is whether evidence of crystal-plastic deformation at high stress, hence an indicator of past seismic activity, can still be identified in the microstructure after overprint by creep at lower stresses. Firstly, quartz samples are deformed at a temperature of 400 °C and constant strain rate of 10 −4 s −1 ("kick"), and then held at 900 to 1000 °C at residual stress ("creep"). In quartz exclusively subject to high-stress deformation, lamellar domains of slightly differing crystallographic orientation (misorientation angle
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2013-03-21
    Description: Study on the limitations of traveltime inversion in the presence of extreme velocity anomalies Solid Earth Discussions, 5, 189-226, 2013 Author(s): I. Flecha, R. Carbonell, and R. W. Hobbs The difficulties of seismic imaging beneath high velocity structures are widely recognised. In this setting, theoretical analysis of synthetic wide-angle seismic reflection data indicates that velocity models are not well constrained. A two-dimensional velocity model was built to simulate a simplified structural geometry given by a basaltic wedge placed within a sedimentary sequence. This model reproduces the geological setting in areas of special interest for the oil industry as the Faroe-Shetland Basin. A wide-angle synthetic dataset was calculated on this model using an elastic finite difference scheme. This dataset provided travel times for tomographic inversions. Results show that the original model can not be completely resolved without considering additional information. The resolution of nonlinear inversions lacks a functional mathematical relationship, therefore, statistical approaches are required. Stochastical tests based on Metropolis techniques support the need of additional information to properly resolve subbasalt structures.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2013-04-04
    Description: Managing soil nitrate with cover crops and buffer strips in Sicilian vineyards Solid Earth Discussions, 5, 257-279, 2013 Author(s): A. Novara, L. Gristina, F. Guaitoli, A. Santoro, and A. Cerdà When soil nitrate levels are inadequate, plants suffer nitrogen deficiency but when the levels are excessive, nitrates (NO 3 -N) can pollute surface and subsurface waters. Strategies to reduce the nitrate pollution are necessary to reach a sustainable use of resources such as soil, water and plant. Buffer strips and cover crops can contribute to the management of soil nitrates, but little is known of their effectiveness in semiarid vineyards plantations. The experimental site, a 10 m wide and 80 m long area at the bottom of a vineyard was selected in Sicily. The soil between vine rows and upslope of the buffer strip (seeded with Lolium perenne ) and non-buffer strips (control) was managed conventionally and with one of two cover crops ( Triticum durum and Vicia sativa cover crop). Soil nitrate was measured monthly and nitrate movement was monitored by application of a 15 N tracer to a narrow strip between the bottom of vineyard and the buffer and non-buffer strips. L. perenne biomass yield in the buffer strips and its isotopic nitrogen content were monitored. V. sativa cover crop management contribute with an excess of nitrogen, and the soil management determined the nitrogen content at the buffer areas. A 6 m buffer strip reduce the nitrate by 42% with and by 46% with a 9 m buffer strip.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2013-05-24
    Description: Seismic LAB or LID? The Baltic Shield case Solid Earth Discussions, 5, 699-736, 2013 Author(s): M. Grad, T. Tiira, S. Olsson, and K. Komminaho The problem of the asthenosphere for old Precambrian cratons, including East European Craton and its part – the Baltic Shield, is still discussed. To study the seismic lithosphere-asthenosphere boundary (LAB) beneath the Baltic Shield we used records of 9 local events with magnitudes in the range 2.7–5.9. The relatively big number of seismic stations in the Baltic Shield with a station spacing of 30–100 km permits for relatively dense recordings, and is sufficient in lithospheric scale. For modelling of the lower lithosphere and asthenosphere, the original data were corrected for topography and the Moho depth for each event and each station location, using a reference model with a 46 km thick crust. Observed P and S arrivals are significantly earlier than those predicted by the iasp91 model, which clearly indicates that lithospheric P and S velocities beneath the Baltic Shield are higher than in the global iasp91 model. For two northern events at Spitsbergen and Novaya Zemlya we observe a low velocity layer, 60–70 km thick asthenosphere, and the LAB beneath Barents Sea was found at depth of about 200 km. Sections for other events show continous first arrivals of P waves with no evidence for "shadow zone" in the whole range of registration, which could be interpreted as absence of asthenosphere beneath the central part of the Baltic Shield, or that LAB in this area occurs deeper (〉200 km). The relatively thin low velocity layer found beneath southern Sweden, 15 km below the Moho, could be interpreted as small scale lithospheric inhomogeneities, rather than asthenosphere. Differentiation of the lid velocity beneath the Baltic Shield could be interpreted as regional inhomogeneity. It could also be interpreted as anisotropy of the Baltic Shield lithosphere, with fast velocity close to the east-west direction, and slow velocity close to the south-north direction.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2013-05-18
    Description: Indications for different types of brittle failure due to active coal mining using waveform similarities of induced seismic events Solid Earth Discussions, 5, 655-698, 2013 Author(s): S. Wehling-Benatelli, D. Becker, M. Bischoff, W. Friederich, and T. Meier Longwall mining activity in the Ruhr-coal mining district leads to mining-induced seismicity. For detailed studies seismicity of a single longwall panel beneath the town of Hamm-Herringen in the eastern Ruhr area was monitored between June 2006 and July 2007 with a dense temporary array of 15 seismic stations. More than 7000 seismic events with magnitudes between −1.7 ≤ M L ≤ 2.0 were detected and localized in this period. Most of the events occurred in the vicinity of the moving longwall face. In order to find possible differences in the brittle failure types of these events an association of the events to distinct clusters based on their waveform characteristics is performed. This task is carried out using a new clustering algorithm utilizing a network similarity matrix which is created by combining all available 3-component single station similarity matrices. The resultant network matrix is then sorted with respect to the similarity of its rows leading to a sorted matrix immediately indicating the clustering of the event catalogue. Finally, clusters of similar events are extracted by visual inspection. This approach results in the identification of several large clusters which are distinct with respect to their spatial and temporal characteristics as well as their frequency magnitude distributions. Comparable clusters are also found with a conventional single linkage approach, however, the new routine seems to be able to associate more events to specific clusters without merging the clusters. The nine largest observed clusters can be tentatively divided into three different groups that indicate different types of brittle failure. The first group consists of the two largest clusters which constitute more than half of all recorded events. Results of a relative relocation using cross correlation data suggest that these events are confined to the extent of the mined out longwall and cluster close to the edges of the active longwall at the depth of active mining. These events occur in lockstep with the longwall advance and exhibit a high b-value of the Gutenberg-Richter relation of about 1.5–2.5 and consist of small magnitude events. Thus, these events represent the immediate energy release adjacent to the mined out area. The second group consists of clusters locating either slightly above or below the depth of active mining occurring at the current position of the longwall face within the confines of the longwall. They consist of generally stronger events and do not follow a Gutenberg-Richter relation. This activity might be linked to the failure of more competent layers above and below the mined out seam resulting in larger events. Finally, one cluster represents seismic activity with a rather low b-value below 1 and events located partly towards the north of the longwall which are delayed with respect to the advance of the longwall face. These events are interpreted brittle failure on pre-existing tectonic structures reactivated by the mining activity.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2013-06-20
    Description: Can vesicle size distributions predict eruption intensity during volcanic activity? Solid Earth Discussions, 5, 789-810, 2013 Author(s): A. LaRue, D. R. Baker, M. Polacci, P. Allard, and N. Sodini We studied three-dimensional (3-D) vesicle size distributions by X-ray microtomography in scoria collected during the relatively quiescent Phase II of the 2010 eruption at Eyjafjallajökull volcano, Iceland. Our goal was to compare the vesicle size distributions (VSDs) measured in these samples with those found in Stromboli volcano, Italy. Stromboli was chosen because its VSDs are well-characterized and show a correlation with eruption intensity: typical Strombolian activity produces VSDs with power-law exponents near 1, whereas larger and more energetic Vulcanian-type explosions and Plinian eruptions produce VSDs with power-law exponents near 1.5. The hypothesis to be tested was whether or not the samples studied in this work would contain VSDs similar to normal Strombolian products, display higher power-law exponents, or be described by exponential functions. Before making this comparison we tested the hypothesis that the phreatomagmatic nature of the Eyjafjallajökull eruption might have a significant effect on the VSDs. We performed 1 atm bubble-growth experiments in which the samples were inundated with water and compared them to similar, control, experiments without water inundation. No significant differences between the VSDs of the two sets of experiments were found, and the hypothesis is not supported by the experimental evidence; therefore, VSDs of magmatic and phreatomagmatic eruptions can be directly compared. The Phase II Eyjafjallajökull VSDs are described by power law exponents of ~ 0.8, typical of normal Strombolian eruptions. The comparable VSDs and behavior of Phase II of the Eyjafjallajökull 2010 eruption to Stromboli are interpreted to be a reflection of similar conduit systems in both volcanoes that are being constantly fed by the ascent of deep magma that mixes with resident magma at shallow depths. Such behavior implies that continued activity during Phase II of the Eyjafjallajökull eruption could be expected and would have been predicted, had our VSDs been measured in real time during the eruption. However, the products studied show no peculiar feature that could herald renewed eruption intensity observed in the following Phase III of the eruption.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2013-06-04
    Description: Strength constraints of shallow crustal strata from analyses of mining induced seismicity Solid Earth Discussions, 5, 737-765, 2013 Author(s): M. Alber, R. Fritschen, and M. Bischoff Stress redistributions around large underground excavations such as coal mines may lead to failure of the surrounding rock mass. Some of these failure processes were recorded as seismic events. In this paper the different failure processes such as rock mass failure or the reactivation of faults are delineated from the seismic records. These are substantiated by rock mechanical analyses including laboratory strength tests on coal measure rocks obtained from underground drilling. Additionally, shear tests on discontinuities in coal measure rocks (slickensides in shale and rough sandstone joints) were conducted to grasp the possible variation of strength properties of faults. Numerical modeling was employed to evaluate the state of stress at the locations where seismic events did occur.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2013-07-04
    Description: Grassland fire effect on soil organic carbon reservoirs in semiarid environment Solid Earth Discussions, 5, 883-895, 2013 Author(s): A. Novara, L. Gristina, J. Rühl, S. Pasta, G. D'Angelo, T. La Mantia, and P. Pereira The aim of this work was to investigate the effect of a experimental fire, used for grassland management, on soil organic carbon (SOC) reservoirs. The study was carried out on Hyparrhenia hirta (L.) Stapf ( Hh ) grassland and Ampelodesmos mauritanicus (Desf.) T. Durand and Schinz ( Am ) grasslands, located in the north of Sicily. Soil samples were collected at 0–5 cm before and after experimental fire and SOC was measured. During grassland fire soil surface temperature was monitored. Biomass of both grasses was analyzed in order to determine dry weight and its chemical composition. The results showed that SOC varied significantly with vegetation cover, while it is not affected in the short period by grassland fire. Am grassland stored more SOC compared with Hh grassland thanks to lower content in biomass of labile carbon pool. No significant difference was observed in SOC before and after fire which could be caused by several factors: first, in both grassland types the measured soil temperature during fire was low due to thin litter layers; second, in semiarid environment higher mineralization rate results in lower soil carbon labile pool; and third, the C stored in the finest soil fractions, physical protected, is not affected by fire.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2013-11-26
    Description: Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review Solid Earth Discussions, 5, 2155-2179, 2013 Author(s): J. Paz-Ferreiro, H. Lu, S. Fu, A. Méndez, and G. Gascó Anthropogenic activities are resulting in an increase on the use and extraction of heavy metals. Heavy metals cannot be degraded and hence accumulate in the environment having the potential to contaminate the food chain. This pollution threatens soil quality, plant survival and human health. The remediation of heavy metals deserves attention, but it is impaired by the cost of these processes. Phytoremediation and biochar are two sound environmental technologies which could be at the forefront to mitigate soil pollution. This review provides an overview of the current state of knowledge phytoremediation and biochar application to remediate heavy metal contaminated soils, discussing the advantages and disadvantages of both individual approaches. Research to date has attempted only in a limited number of occasions to combine both techniques, however we discuss the potential advantages of combining both remediation techniques and the potential mechanisms involved in the interaction between phytoremediators and biochar. We identified specific research needs to ensure a sustainable use of phytoremediation and biochar as remediation tools.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2013-11-23
    Description: Short-term spatio-temporal spring grassland fire effects on soil colour, organic matter and water repellency in Lithuania Solid Earth Discussions, 5, 2119-2154, 2013 Author(s): P. Pereira, X. Úbeda, J. Mataix-Solera, D. Martin, M. Oliva, and A. Novara The aim of this work was to study the short-term effects (first 9 months after the fire) of a low-severity spring boreal grassland fire on soil colour, soils organic matter (SOM) and soil water repellency (SWR) in Lithuania. Three days after the fire we designed a plot of 400 m 2 in a control (unburned) and unburned area with the same geomorphological characteristics. Soil water repellency analysis were assessed through the 2 mm mesh (composite sample) and in the subsamples of all of the 250 samples divided into different soil aggregate fractions of 2–1, 1–0.5, 0.5–0.25 and 〈 0.25 mm, using the Water Drop Penetration Time (WDPT) method. The results showed that fire darkened the soil significantly during the entire study period due to the incorporation of ash/charcoal into the soil profile. Soil organic matter was significantly higher in the first two months after the fire in the burned plot, in comparison to the unburned plot. Soil water repellency (SWR) of the composite sample was higher in the burned plot during the first two months after the fire. However, considering the different aggregate fractions studied, the SWR was significantly higher until 5 months after the fire in the coarser fractions (2–1 mm, 1–0.5 mm) and 7 months after in the finer (0.5–0.25 mm and 〈 0.25 mm), suggesting that the leachability of organic compounds is different with respect to soil aggregate size fractions. This finding has implications for the spatio-temporal variability of fire effects on SWR. SOM was significantly negative correlated with SWR (composite sample) only in the two months after the fire. These results demonstrated that in the first two months the hydrophobic compounds produced by fire were one of the factors responsible for the increase in SWR. Subsequently repellent compounds were leached, at different rates, according to particle size. The impacts of this low severity grassland fire were limited in time, and are not considered a~threat to this ecosystem.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2013-11-20
    Description: High temperature indentation creep tests on anhydrite – a promising first look Solid Earth Discussions, 5, 2081-2118, 2013 Author(s): D. Dorner, K. Röller, and B. Stöckhert Indentation creep tests are established in materials engineering, providing information on rheology, deformation mechanisms, and related microstructures of materials. Here we explore the potential of this method on natural, polycrystalline anhydrite. The tests are run at atmospheric pressure, temperatures between 700 °C and 920 °C, and reference stresses between 7 MPa and 30 MPa. An activation energy Q of 338 kJ mol −1 and a stress exponent n of 3.9 are derived. Deformation is localized into shear zones bounding a less deformed approximately conical plug underneath the indenter. Shear zone microstructures reveal inhomogeneous crystal plastic deformation, subgrains, and extensive strain induced grain boundary migration, while mechanical twinning appears not to be activated. Microstructure and mechanical data are consistent with deformation by dislocation creep. Extrapolated to slow natural strain rates, the flow law predicts a high flow strength of anhydrite compared to previous studies.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2013-10-25
    Description: Focal mechanisms in the Southern Aegean from temporary seismic networks – implications for the regional stress field and ongoing deformation processes Solid Earth Discussions, 5, 1721-1770, 2013 Author(s): W. Friederich, A. Brüstle, L. Küperkoch, and T. Meier The lateral variation of the stress field in the southern Aegean plate and the subducting Hellenic slab is determined from recordings of seismicity obtained with the CYCNET and EGELADOS networks in the years from 2002 to 2007. First motions from 7000 well-located earthquakes were analysed to produce 540 well-constrained focal mechanisms. They were complemented by another 140 derived by waveform matching of records from larger events. Most of these earthquakes fall into 16 distinct spatial clusters distributed over the southern Aegean region. For each cluster, a stress inversion could be carried out yielding consistent estimates of the stress field and its spatial variation. At crustal levels, the stress field is generally dominated by a steeply dipping compressional principal stress direction except in places where coupling of the subducting slab and overlying plate come into play. Tensional principal stresses are generally subhorizontal. Just behind the forearc, the crust is under arc-parallel tension whereas in the volcanic areas around Kos, Columbo and Astypalea tensional and intermediate stresses are nearly degenerate. Further west and north, in the Santorini-Amorgos graben and in the area of the islands of Mykonos, Andros and Tinos, tensional stresses are significant and point around the NW–SE direction. Very similar stress fields are observed in western Turkey with the tensional axis rotated to NNE–SSW. Intermediate depth earthquakes below 100 km in the Nisyros region indicate that the Hellenic slab experiences slab-parallel tension at these depths. The direction of tension is close to east-west and thus deviates from the local NW-oriented slab dip presumably owing to the segmentation of the slab. Beneath the Cretan sea, at shallower levels, the slab is under NW–SE compression. The lateral and depth variations of the stress field reflect the various agents that influence tectonics in the Aegean: subduction of the Hellenic slab, incipient collision with continental African lithosphere, roll back of the slab in the south-east, segmentation of the slab, arc volcanism and extension of the Aegean crust.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2013-01-18
    Description: A reversed hierarchy of active normal faults: the 6 April 2009, M w 6.3, L'Aquila earthquake (Italy) Solid Earth Discussions, 5, 117-134, 2013 Author(s): L. Bonini, D. Di Bucci, G. Toscani, S. Seno, and G. Valensise Understanding the relationship between seismogenic slip at depth and surface deformation is fundamental in any seismic hazard analysis because the assessment of the earthquake potential of large continental faults relies largely on field investigations. The well-documented 6 April 2009, M w 6.3, L'Aquila earthquake affords a unique opportunity to explore the relationships between the activity of the deep source and its surface evidence. We used available high-resolution geologic, geodetic and seismological data aided by analogue modeling to reconstruct the geometry of the seismogenic rupture in relation with surface and sub-surface faults. We contend that the earthquake was caused by a blind fault, controlled at depth by pre-existing discontinuities and expressed at the surface by pseudo-primary breaks resulting from coseismic crustal bending. Finally, we propose a scheme for hierarchizing normal faults that explains all surface occurrences related to blind faulting in the frame of a single, mechanically coherent, interpretative model. Failure to appreciate such complexity may result in severe over– or under-estimation of the local seismogenic potential.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2013-09-03
    Description: Seismic visibility of a deep subduction channel: insights from numerical simulation of high-frequency seismic waves emitted from intermediate depth earthquakes Solid Earth Discussions, 5, 1461-1509, 2013 Author(s): W. Friederich, L. Lambrecht, B. Stöckhert, S. Wassmann, and C. Moos Return flow in a deep subduction channel (DSC) has been proposed to explain rapid exhumation of high pressure-low temperature metamorphic rocks, entirely based on the fossil rock record. Supported by thermo-mechanical models, the DSC is envisioned as a thin layer on top of the subducted plate reaching down to minimum depths of about 150 km. We perform numerical simulations of high-frequency seismic wave propagation (1 to 6 Hz) to explore potential seismological evidence for the in-situ existence of a DSC. Motivated by field observations, for modeling purposes we assume a simple block-in-matrix structure with eclogitic blocks floating in a serpentinite matrix. Homogenization calculations for block-in-matrix structures demonstrate that effective seismic velocities in such composites are lower than in the surrounding oceanic crust and mantle, with nearly constant values along the entire length of the DSC. Synthetic seismograms for receivers at the surface computed for intermediate depth earthquakes in the subducted oceanic crust for models with and without DSC turn out to be markedly influenced by its presence or absence. In models with channel, P and S waveforms are dominated by delayed high-amplitude guided waves emanating from the waveguide formed by oceanic crust and DSC. Simulated patterns allow for definition of typical signatures and discrimination between models with and without DSC. These signatures stably recur in slightly modified form for earthquakes at different depths inside subducted oceanic crust. Comparison with available seismological data from intermediate depth earthquakes recorded in the forearc of the Hellenic subduction zone reveal similar multi-arrival patterns as observed in the synthetic seismograms for models with DSC. According to our results, observation of intermediate depth earthquakes along a profile across the forearc may allow to test the hypothesis of a DSC and to identify situations where such processes could be active today.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2013-08-21
    Description: Picroilmenites in Yakutian kimberlites: variations and genetic models Solid Earth Discussions, 5, 1259-1334, 2013 Author(s): I. V. Ashchepkov, N. V. Alymova, A. M. Logvinova, N. V. Vladykin, S. S. Kuligin, S. I. Mityukhin, Y. B. Stegnitsky, S. A. Prokopyev, R. F. Salikhov, V. S. Palessky, and O. S. Khmel'nikova Major and trace element variations in picroilmenites from Late Devonian kimberlite pipes in Siberia reveal similarities within the region in general, but show individual features for ilmenites from different fields and pipes. Empirical ilmenite thermobarometry (Ashchepkov et al., 2010), as well as common methods of mantle thermobarometry and trace element geochemical modelling shows that long compositional trends for the ilmenites are a result of complex processes of polybaric fractionation of protokimberlite melts, accompanied by the interaction with mantle wall rocks and dissolution of previous wall rock and metasomatic associations. Evolution of picroilmenite's parental magmas was estimated for the three distinct phases of kimberlite activity from Yubileynaya and closely located Aprelskaya pipes showing heating and increase of Fe of mantle peridotites minerals from stage to stage and splitting of the magmatic system in the final stages. High pressure (5.5–7.0 GPa) Cr-bearing Mg-rich ilmenites (Group 1) reflect the conditions of high temperature metasomatic rocks at the base of the mantle lithosphere. Trace element patterns are enriched to 0.1–10/C1 and have flattened, spoon-like or S- or W-shaped REE patterns with Pb 〉 1. These result from melting and crystallization in melt – feeding channels in the base of the lithosphere, where high temperature dunite – harzburgites and pyroxenites were formed. Cr-poor ilmenite megacrysts (group2) trace the high temperature path of protokimberlites developed as result of fractional crystallization and wall rock assimilation during the creation of the feeder systems prior to the main kimberlite eruption. Inflections in ilmenite compositional trends probably reflect the mantle layering and pulsing melt intrusion during the melt migration within the channels. Group 2 ilmenites reveal inclined REE enriched patterns (10–100)/C1 with La/Ybn 10–25 similar to those derived from kimberlites, and HFSE peaks (typical megacrysts). A series of similar patterns results from polybaric AFC crystallization of protokimberlite melts which also precipitated sulfides (Pb 〈 1) and mixed with partial melts from garnet peridotites. Relatively low-Ti ilmenites with high Cr content (Group 3) probably crystallized in the metasomatic front under the rising protokimberlite source and represent the product of crystallization of segregated partial melts from metasomatic rocks. Cr- rich ilmenites are typical for veins and veinlets in peridotites crystallized from highly contaminated magma intruded into wall rocks in different levels within the mantle columns. The highest in TRE ilmenites 1000/C1 have REE patterns similar to those of perovskites. Low Cr contents suggest relatively closed system fractionation which occurred from the base of the lithosphere up to the garnet – spinel transition, according to monomineral thermobarometry for Mir and Dachnaya pipes. Restricted trends were detected for ilmenites from Udachnaya and most other pipes from the Daldyn -Alakit fields and other regions (Nakyn, Upper Muna and Prianabarie), where ilmenite trends extend from the base of the lithosphere mainly up to 4.0 GPa. Interaction of the megacryst-forming melts with the mantle lithosphere caused heating and HFSE metasomatism prior to kimberlite eruption.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2013-08-22
    Description: The Cretaceous and Cenozoic tectonic evolution of Southeast Asia Solid Earth Discussions, 5, 1335-1422, 2013 Author(s): S. Zahirovic, M. Seton, and R. D. Müller Tectonic reconstructions of Southeast Asia have given rise to numerous controversies which include the accretionary history of Sundaland and the enigmatic tectonic origin of the Proto South China Sea. We assimilate a diversity of geological and geophysical observations into a new regional plate model, coupled to a global model, to address these debates. Our approach takes into account terrane suturing and accretion histories, the location of subducted slabs imaged in mantle tomography in order to constrain the opening and closure history of paleo-ocean basins, as well as plausible absolute and relative plate velocities and tectonic driving mechanisms. We propose a scenario of rifting from northern Gondwana in the Late Jurassic, driven by northward slab pull, to detach East Java, Mangkalihat, southeast Borneo and West Sulawesi blocks that collided with a Tethyan intra-oceanic subduction zone in the mid Cretaceous and subsequently accreted to the Sunda margin (i.e. southwest Borneo core) in the Late Cretaceous. In accounting for the evolution of plate boundaries, we propose that the Philippine Sea Plate originated on the periphery of Tethyan crust forming this northward conveyor. We implement a revised model for the Tethyan intra-oceanic subduction zones to reconcile convergence rates, changes in volcanism and the obduction of ophiolites. In our model the northward margin of Greater India collides with the Kohistan-Ladakh intra-oceanic arc at ∼53 Ma, followed by continent-continent collision closing the Shyok and Indus-Tsangpo suture zones between ∼42 and 34 Ma. We also account for the back-arc opening of the Proto South China Sea from ∼65 Ma, consistent with extension along east Asia and the emplacement of supra-subduction zone ophiolites presently found on the island of Mindoro. The related rifting likely detached the Semitau continental fragment from east China, which accreted to northern Borneo in the mid Eocene, to account for the Sarawak Orogeny. Rifting then re-initiated along southeast China by 37 Ma to open the South China Sea, resulting in the complete consumption of Proto South China Sea by ∼17 Ma when the collision of the Dangerous Grounds and northern Palawan blocks with northern Borneo choked the subduction zone to result in the Sabah Orogeny and the obduction of ophiolites in Palawan and Mindoro. We conclude that the counterclockwise rotation of Borneo was accommodated by oroclinal bending consistent with paleomagnetic constraints, the curved lithospheric lineaments observed in gravity anomalies of the Java Sea and the curvature of the Cretaceous Natuna paleo-subduction zone. We complete our model by constructing a time-dependent network of continuously closing plate boundaries and gridded paleo-ages of oceanic basins, allowing us to test our plate model evolution against seismic tomography. In particular, slabs observed at depths shallower than ∼1000 km beneath northern Borneo and the South China Sea are likely to be remnants of the Proto South China Sea basin.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2013-08-28
    Description: Seasonal changes of the soil hydrological and erosive response in contrasted Mediterranean eco-geomorphological conditions at patch scale Solid Earth Discussions, 5, 1423-1460, 2013 Author(s): M. A. Gabarrón-Galeote, J. F. Martínez-Murillo, M. A. Quesada, and J. D. Ruiz-Sinoga Mediterranean areas are characterized by a strong spatial variability that makes highly complex the soil hydrological response. Moreover, Mediterranean climate has a marked seasonal variability that provokes dramatic changes on the soil properties determining the hydrological behavior, such as soil water content, crust formation or soil water repellency (SWR). Thus, soil hydrological and erosive response in Mediterranean areas can be highly time- as well space-dependant. The main goal of this study was to characterize the relations between SWR, aspect and vegetation, determining the soil hydrological and erosive response throughout the rainy period in different microenvironments of opposite hillslopes. This study was undertaken in a small catchment located in the South of Spain. Erosion plots were installed in the north- and the south-facing hillslope, in areas with different vegetal cover, and runoff and sediments were collected. Moreover, precipitation parameters were recorded and SWR measurements were performed. SWR proved to have a significant effect on the soil hydrological response, but this influence was modulated by seasonal changes and by the discontinuities on the repellent layer. In general, the influence of SWR was restricted to the first rains after the summer and was greater on the north-facing hillslope due to the more continuous vegetation cover. The more important precipitation parameter influencing runoff generated was maximum rainfall intensity in ten minutes ( I max ). The relation between I max and overland flow showed a contrasting seasonal behavior in the north-facing hillslope and, on the contrary, remained homogeneous throughout the year in the south-facing hillslope.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2013-04-18
    Description: Experimental deformation and recrystallization of olivine – processes and time scales of damage healing during postseismic relaxation at mantle depths Solid Earth Discussions, 5, 463-524, 2013 Author(s): C. A. Trepmann, J. Renner, and A. Druiventak Experiments comprising sequences of deformation (at 300 or 600 °C) and annealing at varying temperature (700 to 1100 °C), time (up to 144 h) and stress (up to 1.5 GPa) were carried out in a Griggs-type apparatus on natural olivine-rich peridotite samples to simulate deformation and recrystallization processes in deep shear zones that reach mantle depth as continuations of seismically active faults. The resulting olivine microfabrics were analysed by polarization and electron microscopy. Core-and-mantle like microstructures are the predominant result of our experiments simulating rapid stress relaxation (without or with minor creep) after a high-stress deformation event: porphyroclasts (〉 100 μm) are surrounded by defect-poor recrystallized grains with a wide range in size (2 to 40 μm). Areas with smaller recrystallized grains (〉 10 μm) trace former high-strain zones generated during initial high-stress deformation even after annealing at a temperature of 1100 °C for 70 h. A weak crystallographic preferred orientation (CPO) of recrystallized olivine grains is related to the orientation of the host crystals but appears unrelated to the strain field. Based on these findings, we propose that olivine microstructures in natural shear-zone peridotites with a large range in recrystallized grain size, localized fine-grained zones, and a weak CPO not related to the strain field are diagnostic for a sequence of high-stress deformation followed by recrystallization at low stresses, as to be expected in areas of seismic activity. We extended the classic Avrami-kinetics equation by accounting for time-dependent growth kinetics and constrained the involved parameters relying on our results and previously reported kinetics parameters. Extrapolation to natural conditions suggests that the observed characteristic microstructure may develop within as little as tens of years and less than ten thousands of years. These recrystallization microstructures have a great diagnostic potential for past seismic activity because they are expected to be stable over geological time scales, since driving forces for further modification are not sufficient to erase the characteristic heterogeneities.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2013-06-28
    Description: Short-lived tectonic switch mechanism for long-term pulses of volcanic activity after mega-thrust earthquakes Solid Earth Discussions, 5, 811-839, 2013 Author(s): M. Lupi and S. A. Miller Eruptive rates in volcanic arcs increase significantly after mega-thrust earthquakes in subduction zones. Over short to intermediate time periods the link between mega-thrust earthquakes and arc response can be attributed to dynamic triggering processes or static stress changes, but a fundamental mechanism that controls long-term pulses of volcanic activity after mega-thrust earthquakes has not been proposed yet. Using geomechanical, geological, and geophysical arguments, we propose that increased eruption rates over longer timescales are due to the relaxation of the compressional regime that accompanies mega-thrust subduction zone earthquakes. More specifically, the reduction of the horizontal stress σ h promotes the occurrence of short-lived strike-slip kinematics rather than reverse faulting in the volcanic arc. The relaxation of the pre-earthquake compressional regime facilitates magma mobilization by providing a short-circuit pathway to shallow depths by significantly increasing the hydraulic properties of the system. The timescale for the onset of strike-slip faulting depends on the degree of shear stress accumulated in the arc during inter-seismic periods, which in turn is connected to the degree of strain-partitioning at convergent margins. We performed Coulomb stress transfer analysis to determine the order of magnitude of the stress perturbations in present-day volcanic arcs in response to five actual mega-thrust earthquakes; the 2005 M8.6, 2007 M8.5, and 2007 M7.9 Sumatra earthquakes; the 2010 M8.8 Maule, Chile earthquake; and the 2011 M9.0 Tohoku, Japan earthquake. We find that all, but one, the shallow earthquakes that occurred in the arcs of Sumatra, Chile and Japan show a marked lateral component. Our hypothesis suggests that the long-term response of volcanic arcs to subduction zone mega-thrust earthquakes will be manifested as predominantly strike-slip seismic events, and that these future earthquakes will be followed closely by seismic swarms, inflation, and other indications of a rising magma source.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2013-06-29
    Description: An objective rationale for the choice of regularisation parameter with application to global multiple-frequency S -wave tomography Solid Earth Discussions, 5, 841-881, 2013 Author(s): C. Zaroli, M. Sambridge, J.-J. Lévêque, E. Debayle, and G. Nolet In a linear ill-posed inverse problem, the regularisation parameter (damping) controls the balance between minimising both the residual data misfit and the model norm. Poor knowledge of data uncertainties often makes the selection of damping rather arbitrary. To go beyond that subjectivity, an objective rationale for the choice of damping is presented, which is based on the coherency of delay-time estimates in different frequency bands. Our method is tailored to the problem of global Multiple-Frequency Tomography (MFT), using a data set of 287 078 S -wave delay-times measured in five frequency bands (10, 15, 22, 34, 51 s central periods). Whereas for each ray path the delay-time estimates should vary coherently from one period to the other, the noise most likely is not coherent. Thus, the lack of coherency of the information in different frequency bands is exploited, using an analogy with the cross-validation method, to identify models dominated by noise. In addition, a sharp change of behaviour of the model ℓ∞-norm, as the damping becomes lower than a threshold value, is interpreted as the signature of data noise starting to significantly pollute at least one model component. Models with damping larger than this threshold are diagnosed as being constructed with poor data exploitation. Finally, a preferred model is selected from the remaining range of permitted model solutions. This choice is quasi-objective in terms of model interpretation, as the selected model shows a high degree of similarity with almost all other permitted models (correlation superior to 98% up to spherical harmonic degree 80). The obtained tomographic model is displayed in mid lower-mantle (660–1910 km depth), and is shown to be compatible with three other recent global shear-velocity models. A wider application of the presented rationale should permit us to converge towards more objective seismic imaging of the Earth's mantle.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2013-11-06
    Description: BrO/SO 2 molar ratios from scanning DOAS measurements in the NOVAC network Solid Earth Discussions, 5, 1845-1870, 2013 Author(s): P. Lübcke, N. Bobrowski, S. Arellano, B. Galle, G. Garzón, L. Vogel, and U. Platt The molar ratio of BrO to SO 2 is, like other halogen/sulphur ratios, a~possible precursor for dynamic changes in the shallow part of a volcanic system. While the predictive significance of the BrO/SO 2 ratio has not been well constrained yet, it has the major advantage that this ratio can be readily measured using the remote-sensing technique Differential Optical Absorption Spectroscopy (DOAS) in the UV. While BrO/SO 2 ratios have been measured during several short-term field campaigns this article presents an algorithm that can be used to obtain long-term time series of BrO/SO 2 ratios from the scanning DOAS instruments of the Network for Observation of Volcanic and Atmospheric Change (NOVAC) or comparable networks. Parameters of the DOAS retrieval of both trace gases are given and the influence of co-adding spectra on the retrieval error will be investigated. Difficulties in the evaluation of spectroscopic data from monitoring instruments in volcanic environments and possible solutions are discussed. The new algorithm is demonstrated by evaluating data from the NOVAC scanning DOAS systems at Nevado del Ruiz, Colombia encompassing almost four years of measurements between November 2009 and end of June 2013. This dataset shows variations of the BrO/SO 2 ratio several weeks prior to the eruption on 30 June 2012.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2013-11-07
    Description: Extracting the time variable gravity field from satellite gravity data using a sawtooth filter Solid Earth Discussions, 5, 1871-1899, 2013 Author(s): E. Gurria and C. López The Grace satellite pair has been in operation since March 2002 providing monthly gravity potential solutions. This data set contains the variation of the gravity potential as a function of time however its use is limited by the presence of vertical striping noise which overwhelms the time variable signal. Several sophisticated filters exist to extract the time variable signal from the noise however they are seldom used as these filters are complex and difficult to implement. Consequently a large proportion of users of time variable Grace data use a conventional Spherical Gaussian Filter with a large smoothing radius of 600–1000 km which greatly attenuates the vertical striping noise however it also attenuates the remaining signal significantly. The difficulty in removing the noise is that the vertical striping noise is not band limited. We have studied the nature of the vertical striping noise and have found that it occurs over all harmonic degrees however it is associated only with the high harmonic orders. We also find that it occurs only in the east–west and radial components of the gravity field and that the noise is much greater than the signal in these two components. Further we observe that these two components are very similar at all geographic latitudes and that by performing a phase shift and subtracting one component from the other, one obtains a noise free signal. We use this procedure to define a new filter which we call the Sawtooth Filter and find that this filter offers three interesting properties: (i) it subtracts the vertical striping noise from the time variable signal (ii) it amplifies the higher degree harmonics thus improving the spatial resolution (iii) it is simpler to implement and use than the Spherical Gaussian Filter.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2013-11-14
    Description: Jurassic–Paleogene intra-oceanic magmatic evolution of the Ankara Mélange, North-Central Anatolia, Turkey Solid Earth Discussions, 5, 1941-2004, 2013 Author(s): E. Sarifakioglu, Y. Dilek, and M. Sevin Oceanic rocks in the Ankara Mélange along the Izmir–Ankara–Erzincan suture zone (IAESZ) in North-Central Anatolia include locally coherent ophiolite complexes (~179 Ma and ~80 Ma), seamount or oceanic plateau volcanic units with pelagic and reefal limestones (96.6 ± 1.8 Ma), metamorphic rocks with ages of 187.4 ± 3.7 Ma, 158.4 ± 4.2 Ma, and 83.5 ± 1.2 Ma, and subalkaline to alkaline volcanic and plutonic rocks of an island arc origin (~67–63 Ma). All but the arc rocks occur in a shaly-graywacke and/or serpentinite matrix, and are deformed by south-vergent thrust faults and folds that developed in the Middle to Late Eocene due to continental collisions in the region. Ophiolitic volcanic rocks have mid-ocean ridge (MORB) and island arc tholeiite (IAT) affinities showing moderate to significant LILE enrichment and depletion in Nb, Hf, Ti, Y and Yb, which indicate the influence of subduction-derived fluids in their melt evolution. Seamount/oceanic plateau basalts show ocean island basalt (OIB) affinities. The arc-related volcanic rocks, lamprophyric dikes and syeno-dioritic plutons exhibit high-K shoshonitic to medium-to high-K calc-alkaline compositions with strong enrichment in LILE, REE and Pb, and initial ϵ Nd values between +1.3 and +1.7. Subalkaline arc volcanic units occur in the northern part of the mélange, whereas the younger alkaline volcanic rocks and intrusions (lamprophyre dikes and syeno-dioritic plutons) in the southern part. The Early to Late Jurassic and Late Cretaceous epidote-actinolite, epidote-chlorite and epidote-glaucophane schists represent the metamorphic units formed in a subduction channel in the Northern Neotethys. The Middle to Upper Triassic neritic limestones spatially associated with the seamount volcanic rocks indicate that the Northern Neotethys was an open ocean with its MORB-type oceanic lithosphere by the Early Triassic. The Latest Cretaceous–Early Paleocene island arc volcanic, dike and plutonic rocks with subalkaline to alkaline geochemical affinities represent intraoceanic magmatism that developed on and across the subduction-accretion complex above a N-dipping, southward-rolling subducted lithospheric slab within the Northern Neotethys. The Ankara Mélange thus exhibits the record of ~120–130 million years of oceanic magmatism in geological history of the Northern Neotethys.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2013-10-31
    Description: Thermal shock and splash effects on burned gypseous soils from the Ebro Basin Solid Earth Discussions, 5, 1817-1844, 2013 Author(s): J. León, M. Seeger, D. Badía, P. Peters, and M. T. Echeverría Fire is a natural factor of landscape evolution in Mediterranean ecosystems. Middle Ebro Valley has extreme aridity, which determines a low plant cover and high soil erodibility of the soils, especially on gypseous substrates. The aim of this research is to analyze the effects of a moderate heating, on physical and chemical soil properties, mineralogical composition and susceptibility to splash erosion. Topsoil samples (15 cm soil depth) were taken in the Remolinos mountain slopes (Ebro Valley, NE-Spain) from two soil types: Leptic Gypsisol (LP) in a convex slope and Haplic Gypsisol (GY) in a concave slope. To assess the heating effects on the mineralogy we burned the soils at 105 °C and 205 °C in an oven and to assess the splash effects we used a rainfall simulator under laboratory conditions using undisturbed topsoil subsamples (0–5 cm soil depth of Ah horizon). LP soil has lower SOM and SAS and higher gypsum content than GY soil. Gypsum and dolomite are the main minerals (〉80%) in the LP soil, while gypsum, dolomite, calcite and quartz have similar proportions in GY soil. Clay minerals (kaolinite and illite) are scarce in both soils. Heating at 105 °C has no effect on soil mineralogy. However heating to 205 °C transforms gypsum to bassanite, increases significantly EC in both soil units (LP and GY) and decreases pH only in GY soil. Despite differences in the content of organic matter and structural stability, both soils show no significant differences ( P 〈 0.01) in the splash erosion rates. The size of pores is reduced by heating treatment or fire effect, as derived from variations in pF.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2013-11-12
    Description: Focal mechanism and depth of the 1956 Amorgos twin earthquakes from waveform matching of analogue seismograms Solid Earth Discussions, 5, 1901-1940, 2013 Author(s): A. Brüstle, W. Friederich, T. Meier, and C. Gross Historic analogue seismograms of the large 1956 Amorgos twin earthquakes which occurred in the volcanic arc of the Hellenic Subduction Zone (HSZ) were collected, digitized and reanalyzed to obtain refined estimates of their depth and focal mechanism. In total, 80 records of the events from 29 European stations were collected and, if possible, digitized. In addition, bulletins were searched for instrument parameters required to calculate transfer functions for instrument correction. A grid search based on matching the digitized historic waveforms to complete synthetic seismograms was then carried out to infer optimal estimates for depth and focal mechanism. Owing to incomplete or unreliable information on instrument parameters and frequently occurring technical problems during recording such as writing needles jumping off mechanical recording systems, much less seismograms than collected proved suitable for waveform matching. For the first earthquake, only 7 seismograms from three different stations (STU, GTT, COP) could be used. Nevertheless, the grid search produces stable optimal values for both source depth and focal mechanism. Our results indicate a shallow hypocenter at about 25 km depth. The best-fitting focal mechanism is a SW–NE-trending normal fault dipping either by 30° towards SE or 60° towards NW. This finding is consistent with the local structure of the Santorini–Amorgos graben. For the second earthquake, 4 seismograms from three different stations (JEN, GTT, COP) proved suitable for waveform matching. Whereas it was impossible to obtain meaningful results for the focal mechanism owing to surface wave coda of the first event overlapping body wave phases of the second event, waveform matching and time-frequency analysis point to a considerably deeper hypocenter located within the Wadati–Benioff-zone of the subducting African plate at about 120–160 km depth.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2013-11-15
    Description: On the complexity of surface ruptures during normal faulting earthquakes: excerpts from the 6 April 2009, L'Aquila (central Italy) earthquake ( M w 6.3) Solid Earth Discussions, 5, 2043-2079, 2013 Author(s): L. Bonini, D. Di Bucci, G. Toscani, S. Seno, and G. Valensise Over the past few years the assessment of the earthquake potential of large continental faults has increasingly relied on field investigations. State-of-the-art seismic hazard models are progressively complementing the information derived from earthquake catalogues with geological observations of active faulting. Using these observations, however, requires full understanding of the relationships between seismogenic slip at depth and surface deformation, such that the evidence indicating the presence of a large, potentially seismogenic fault can be singled out effectively and unambiguously. We used observations and models of the 6 April 2009, M w 6.3, L'Aquila, normal faulting earthquake to explore the relationships between the activity of a large fault at seismogenic depth and its surface evidence. This very well-documented earthquake is representative of mid-size yet damaging earthquakes that are frequent around the Mediterranean Basin, and is somehow paradigmatic of the nature of the associated geologic evidence along with observational difficulties and ambiguities. Thanks to available high-resolution geologic, geodetic and seismological data aided by analogue modeling, we reconstructed the full geometry of the seismogenic source in relation with surface and sub-surface faults. We find that the earthquake was caused by seismogenic slip in the range 3–10 km depth, and that the slip distribution was strongly controlled by inherited discontinuities. We also contend that faulting was expressed at the surface by pseudo-primary breaks resulting from coseismic crustal bending and by sympathetic slip on secondary faults. Based on our results we propose a scheme for hierarchizing normal faults through which all surface occurrences related to faulting at depth can be interpreted in the frame of a single, mechanically coherent model. Appreciating such complexity is crucial to avoid severe over- or under-estimation of the local seismogenic potential.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2013-11-15
    Description: The ring-shaped thermal field of Stefanos crater, Nisyros Island: a conceptual model Solid Earth Discussions, 5, 2005-2042, 2013 Author(s): M. Pantaleo and T. R. Walter Fumarole fields related to hydrothermal processes release the heat of the underground through permeable pathways. Thermal changes, therefore, are likely to depend also on the variation of these pathways. As these paths may affect or even control the temperature field at the surface, their understanding is relevant to applied and basic science alike. A common difficulty, however, in surface temperature field studies at active volcanoes is that the parameters controlling the ascending routes of fluids are poorly constrained in general. Here we analyze the crater of Stefanos, Nisyros (Greece), and highlight complexities in the spatial pattern of the fumarole field related to permeability conditions. There may be different explanations for the observed permeability changes, such as structural control, lithology, weathering, and heterogeneous sediment accumulation and erosion. We combine high resolution infrared mosaics and grain-size analysis of soils, aiming to elaborate parameters controlling the appearance of the fumarole field. We find a ring-shaped thermal field located within the explosion crater, which is dependent on contrasts of the soil granulometry and volcanotectonic history. We develop a conceptual model of how the ring-shaped thermal field has formed at the Stefanos crater and similarly at other volcanic edifices, highlighting the importance of local permeability contrast that may increase or decrease the thermal fluid flux.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2013-08-03
    Description: Assessing accuracy of gas-driven permeability measurements: a comparative study of diverse Hassler-cell and probe permeameter devices Solid Earth Discussions, 5, 1163-1190, 2013 Author(s): C. M. Filomena, J. Hornung, and H. Stollhofen Permeability is one of the most important petrophysical parameters to describe the reservoir potential of sedimentary rocks, contributing to problems in hydrology, geothermics, or hydrocarbon reservoir analysis. Outcrop analog studies, well core measurements, or individual sample analysis take advantage of a variety of commercially available devices for permeability measurements. Very often, permeability data derived from different devices need to be merged within one study, e.g. outcrop mini-permeametry and lab-based core plug measurements. To enhance accuracy of different gas-driven permeability measurements, device-specific aberrations need to be taken into account. The application of simple one-to-one correlations may draw a wrong picture of permeability trends. For this purpose, transform equations need to be established. This study presents a detailed comparison of permeability data derived from a selection of commonly used Hassler cells and probe permeameters. As a result of individual cross-plots, typical aberrations and transform equations are elaborated which enable corrections for the specific permeameters. Permeability measurements of the commercially available ErgoTech Gas Permeameter and the TinyPerm II probe-permeameter are well-comparable over the entire range of permeability, with R 2 = 0.967. Major aberrations are identified among the TinyPerm II and the mini-permeameter/Hassler-cell combination at Darmstadt University, which need to be corrected and standardized within one study. However, transforms are critical to their use, as aberrations are frequently limited to certain permeability intervals. In the presented examples, deviations typically tend to occur in the lower permeability range 〈 10 mD. Applying standardizations which consider these aberration intervals strongly improve the comparability of permeability datasets and facilitate the combination of measurement principles. Therefore, the utilization of such correlation tests is highly recommended for all kinds of reservoir studies using integrated permeability databases.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2013-04-13
    Description: The microstructural record of porphyroclasts and matrix of serpentinite mylonites – from brittle and crystal-plastic deformation to dissolution-precipitation creep Solid Earth Discussions, 5, 365-390, 2013 Author(s): J. Bial and C. A. Trepmann We examine the microfabric development in high-pressure, low-temperature metamorphic serpentinite mylonites exposed in the Erro-Tobbio Unit (Voltri Massif, Italy) using polarization microscopy and electron microscopy (SEM/EBSD, EMP). The mylonites are derived from mantle peridotites, were serpentinized at the ocean floor and underwent high pressure metamorphism during Alpine subduction. They contain diopside and olivine porphyroclasts embedded in a fine-grained matrix essentially consisting of antigorite. The porphyroclasts record brittle and crystal-plastic deformation of the original peridotites in the upper mantle at stresses of a few hundred MPa. After the peridotites became serpentinized, deformation occurred mainly by dissolution-precipitation creep resulting in a foliation with flattened olivine grains at phase boundaries with antigorite, crenulation cleavages and olivine and antigorite aggregates in strain shadows next to porphyroclasts. It is suggested that the fluid was provided by dehydration reactions of antigorite forming olivine and enstatite during subduction and prograde metamorphism. At sites of stress concentration around porphyroclasts antigorite reveals an associated SPO and CPO, characteristically varying grain sizes and sutured grain boundaries, indicating deformation by dislocation creep. Stresses were probably below a few tens of MPa in the serpentinites, which was not sufficiently high to allow for crystal-plastic deformation of olivine at conditions at which antigorite is stable. Accordingly, any intragranular deformation features of the newly precipitated olivine in strain shadows are absent. The porphyroclast microstructures are not associated with the microstructures of the mylonitic matrix, but are inherited from an independent earlier deformation. The porphyroclasts record a high-stress deformation in the upper mantle of the oceanic lithosphere probably related to rifting processes, whereas the antigorite matrix records deformation at low stresses during subduction and exhumation.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2013-04-17
    Description: New constraints on the geometry of the subducting African plate and the overriding Aegean plate obtained from P receiver functions and seismicity Solid Earth Discussions, 5, 427-461, 2013 Author(s): F. Sodoudi, A. Bruestle, T. Meier, R. Kind, W. Friederich, and EGELADOS working group New combined P receiver functions and seismicity data obtained from the EGELADOS network employing 65 stations within the Aegean constrained new information on the geometry of the Hellenic subduction zone. The dense network and large dataset enabled us to accurately estimate the Moho of the continental Aegean plate across the whole area. Presence of a negative contrast at the Moho boundary indicating the serpentinized mantle wedge above the subducting African plate was clearly seen along the entire forearc. Furthermore, low seismicity was observed within the serpentinized mantle wedge. We found a relatively thick continental crust (30–43 km) with a maximum thickness of about 48 km beneath the Peloponnesus Peninsula, whereas a thinner crust of about 27–30 km was observed beneath western Turkey. The crust of the overriding plate is thinning beneath the southern and central Aegean (Moho depth 23–27 km). Moreover, P receiver functions significantly imaged the subducted African Moho as a strong converted phase down to a depth of 180 km. However, the converted Moho phase appears to be weak for the deeper parts of the African plate suggesting reduced dehydration and nearly complete phase transitions of crustal material into denser phases. We show the subducting African crust along 8 profiles covering the whole southern and central Aegean. Seismicity of the western Hellenic subduction zone was taken from the relocated EHB-ISC catalogue, whereas for the eastern Hellenic subduction zone, we used the catalogues of manually picked hypocenter locations of temporary networks within the Aegean. P receiver function profiles significantly revealed in good agreement with the seismicity a low dip angle slab segment down to 200 km depth in the west. Even though, the African slab seems to be steeper in the eastern Aegean and can be followed down to 300 km depth implying lower temperatures and delayed dehydration towards larger depths in the eastern slab segment. Our results showed that the transition between the western and eastern slab segments is located beneath the southeastern Aegean crossing eastern Crete and the Karpathos basin. High resolution P receiver functions also clearly resolved the top of a strong low velocity zone (LVZ) at about 60 km depth. This LVZ is interpreted as asthenosphere below the Aegean continental lithosphere and above the subducting slab. Thus the Aegean mantle lithosphere seems to be 30–40 km thick, which means that its thickness increased again since the removal of the mantle lithosphere about 15 to 35 Ma ago.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2013-04-16
    Description: Two-dimensional numerical investigations on the termination of bilinear flow in fractures Solid Earth Discussions, 5, 391-425, 2013 Author(s): A. E. Ortiz R., R. Jung, and J. Renner Bilinear flow occurs when fluid is drained from a permeable matrix by producing it through an enclosed fracture of finite conductivity intersecting a well along its axis. The terminology reflects the combination of two approximately linear flow regimes, one in the matrix with flow essentially perpendicular to the fracture and one along the fracture itself associated with the non-negligible pressure drop in it. We investigated the characteristics, in particular the termination, of bilinear flow by numerical modeling allowing an examination of the entire flow field without prescribing the flow geometry in the matrix. Fracture storage capacity was neglected relying on previous findings that bilinear flow is associated with a quasi-steady flow in the fracture. Numerical results were generalized by dimensionless presentation. Definition of a dimensionless time that other than in previous approaches does not use geometrical parameters of the fracture permitted identifying the dimensionless well pressure for the infinitely long fracture as the master curve for type curves of all fractures with finite length from the beginning of bilinear flow up to fully developed radial flow. In log-log-scale the master curve's logarithmic derivative initially follows a 1/4-slope-straight line (characteristic for bilinear flow) and gradually bends into a horizontal line (characteristic for radial flow) for long times. During the bilinear flow period, isobars normalized to well pressure propagate with fourth and second root of time in fracture and matrix, respectively. The width-to-length ratio of the pressure field increases proportional to the fourth root of time during the bilinear period and starts to deviate from this relation close to the deviation of well pressure and its derivative from their fourth-root-of-time relations. At this time, isobars are already significantly inclined with respect to the fracture. The type curves of finite fractures all deviate counterclockwise from the master curve instead of clockwise or counterclockwise from the 1/4-slope-straight line as previously proposed. The counterclockwise deviation from the master curve was identified as the arrival of a normalized isobar reflected at the fracture tip sixteen times earlier. Nevertheless, two distinct regimes were found regarding pressure at the fracture tip when bilinear flow ends. For dimensionless fracture conductivities T D 〈 1, a significant pressure increase is not observed at the fracture tip until bilinear flow is succeeded by radial flow at a fixed dimensionless time. For T D 〉 10, the pressure at the fracture tip has reached substantial fractions of the associated change in well pressure when the flow field transforms towards intermittent formation linear flow at times that scale inversely with the fourth power of dimensionless fracture conductivity. Our results suggest that semi-log plots of normalized well pressure provide a means for the determination of hydraulic parameters of fracture and matrix after shorter test duration than for conventional analysis.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2013-04-18
    Description: Extreme extension across Seram and Ambon, eastern Indonesia: Evidence for Banda slab rollback Solid Earth Discussions, 5, 525-607, 2013 Author(s): J. M. Pownall, R. Hall, and I. M. Watkinson The island of Seram, which lies in the northern part of the 180°-curved Banda Arc, has previously been interpreted as a fold-and-thrust belt formed during arc-continent collision, which incorporates ophiolites intruded by granites thought to have been produced by anatexis within a metamorphic "sole". However, new geological mapping and a re-examination of the field relations cause us to question this model. We instead propose that there is evidence for recent N–S extension that has caused the high-temperature exhumation of hot mantle peridotites, granites, and granulites (the "Kobipoto Complex") beneath low-angle lithospheric detachment faults. Greenschist- to lower-amphibolite facies metapelites and amphibolites of the Tehoru Formation, which comprise the hanging wall above the detachment faults, were overprinted by sillimanite-grade metamorphism, migmatisation and limited localised diatexis to form the Taunusa Complex. Highly aluminous metapelitic garnet + cordierite + sillimanite + spinel + corundum + quartz granulites exposed in the Kobipoto Mountains (central Seram) are intimately associated with the peridotites. Spinel + quartz inclusions in garnet, which indicate that peak metamorphic temperatures for the granulites likely approached 900 °C, confirm that peridotite was juxtaposed against the crust at typical lithospheric mantle temperatures and could not have been part of a cooled ophiolite. Some granulites experienced slight metatexis, but the majority underwent more advanced in situ anatexis to produce widespread granitic diatexites characterised by abundant cordierite and garnet xenocrysts and numerous restitic sillimanite + spinel "clots". These Mio-Pliocene "cordierite granites", which are present throughout Ambon, western Seram, and the Kobipoto Mountains in direct association with peridotites, demonstrate that the extreme extension required to have driven Kobipoto Complex exhumation must have occurred along much of the northern Banda Arc. In central Seram, smeared lenses of peridotites are incorporated with a major left-lateral strike-slip shear zone (the "Kawa Shear Zone"), demonstrating that strike-slip motions likely initiated shortly after the mantle had been partly exhumed by detachment faulting and that the main strike-slip faults may themselves be reactivated and steepened low-angle detachments. The Kobipoto Mountains represent a left-lateral pop-up structure that has facilitated the final stages of exhumation of the high-grade Kobipoto Complex through overlying Mesozoic sedimentary rocks. On Ambon, Quaternary "ambonites" (cordierite + garnet dacites) are evidently the volcanic equivalent of the cordierite granites as they also contain granulite-inherited xenoliths and xenocrysts. The geodynamic driver for mantle exhumation along the detachment faults and strike-slip faulting in central Seram is very likely the same – we interpret the extreme extension to be the result of eastward slab rollback into the Banda Embayment as outlined by the latest plate reconstructions for Banda Arc evolution.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2013-04-23
    Description: Transport processes at quartz-water interfaces: constraints from hydrothermal grooving experiments Solid Earth Discussions, 5, 609-654, 2013 Author(s): K. Klevakina, J. Renner, N. Doltsinis, and W. Adeagbo We performed hydrothermal annealing experiments on quartzite at temperatures of 392 to 568 °C and fluid pressures of 63 to 399 MPa for up to 120 h during which hydrothermal grooves developed on the free surfaces of the samples. Analysis of surface topology and groove characteristics with an atomic force microscope revealed a range of surface features associated with the simultaneous and successive operation of several processes partly depending on crystal orientation during the various stages of an experiment. Initially, dissolution at the quartzite-sample surface occurs to saturate the fluid in the capsule with SiO 2 . Subsequently, grooving controlled by diffusion processes takes place parallel to dissolution and precipitation due to local differences in solubility. Finally, quench products develop on grain surfaces during the termination of experiments. Average groove-root angle amounts to about 80° and slightly depends on temperature, run duration, and misorientation between neighboring grains. The grooving is thermally activated, i.e., groove depth ranging from 5 nm to several micrometers for the entire suite of experiments generally increases with temperature and/or run time. We use Mullins' classical theories to constrain kinetics parameters for the transport processes controlling the grooving. In the light of previous measurements of various diffusion coefficients in the system SiO 2 -H 2 O, interface diffusion of Si is identified as the most plausible rate-controlling process. Grooving could potentially proceed faster if the fluid were not convecting in the capsule. Characteristic times of healing of microfractures in hydrous environments constrained from these kinetics parameters are consistent with the order of magnitude of time scales over which healing occurs in-situ according to geophysical surveys and of recurrence intervals of earthquakes.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2013-04-10
    Description: The dynamics of laterally variable subductions: laboratory models applied to the Hellenides Solid Earth Discussions, 5, 315-363, 2013 Author(s): B. Guillaume, L. Husson, F. Funiciello, and C. Faccenna We design three-dimensional dynamically self-consistent laboratory models of subduction to analyze the relationships between overriding plate deformation and subduction dynamics in the upper mantle. We investigate the effects of the subduction of a lithosphere of laterally variable buoyancy on the temporal evolution of trench kinematics and shape, horizontal flow at the top of the asthenosphere, dynamic topography and deformation of the overriding plate. The interface between the two units, analogue to a trench-perpendicular tear fault between a negatively buoyant oceanic plate and positively buoyant continental one, is either fully-coupled or shear-stress free. Differential rates of trench retreat, in excess of 6 cm yr −1 between the two units, trigger a more vigorous mantle flow above the oceanic slab unit than above the continental slab unit. The resulting asymmetrical sublithospheric flow shears the overriding plate in front of the tear fault, and deformation gradually switches from extension to transtension through time. The consistency between our models results and geological observations suggests that the Late Cenozoic deformation of the Aegean domain, including the formation of the North Aegean Trough and Central Hellenic Shear zone, results from the spatial variations in the buoyancy of the subducting lithosphere. In particular, the lateral changes of the subduction regime caused by the Early Pliocene subduction of the old oceanic Ionian plate redesigned mantle flow and excited an increasingly vigorous dextral shear underneath the overriding plate. The models suggest that it is the inception of the Kefalonia Fault that caused the transition between an extension dominated tectonic regime to transtension, in the North Aegean, Mainland Greece and Peloponnese. The subduction of the tear fault may also have helped the propagation of the North Anatolian Fault into the Aegean domain.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2013-07-18
    Description: The European Alps as an interrupter of the Earth's conductivity structures Solid Earth Discussions, 5, 1031-1079, 2013 Author(s): D. Al-Halbouni Joint interpretation of magnetotelluric and geomagnetic depth sounding results in the period range of 10–10 5 s in the Western European Alps offer new insights into the conductivity structure of the Earth's crust and mantle. This first large scale electromagnetic study in the Alps covers a cross-section from Germany to northern Italy and shows the importance of the alpine mountain chain as an interrupter of continuous conductors. Poor data quality due to the highly crystalline underground is overcome by Remote Reference and Robust Processing techniques and the combination of both electromagnetic methods. 3-D forward modeling reveals on the one hand interrupted dipping crustal conductors with maximum conductances of 4960 S and on the other hand a lithosphere thickening up to 208 km beneath the central Western Alps. Graphite networks arising from Palaeozoic sedimentary deposits are considered to be accountable for the occurrence of high conductivity and the distribution pattern of crustal conductors. The influence of huge sedimentary Molasse basins on the electromagnetic data is suggested to be minor compared with the influence of crustal conductors. Dipping direction (S–SE) and maximum angle (10.1°) of the northern crustal conductor reveal the main thrusting conditions beneath the Helvetic Alps whereas the existence of a crustal conductor in the Briançonnais supports theses about its belonging to the Iberian Peninsula. In conclusion the proposed model arisen from combined 3-D modeling of noise corrected electromagnetic data is able to explain the geophysical influence of various structural features in and around the Western European Alps and serves as a background for further upcoming studies.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2013-07-18
    Description: Paleosols in the transantarctic mountains: indicators of environmental change Solid Earth Discussions, 5, 1007-1029, 2013 Author(s): J. G. Bockheim The Transantarctic Mountains (TAMs), a 3500 km long chain that subdivides East Antarctica from West Antarctica, are important for reconstructing the tectonic, glacial, and climatic history of Antarctica. With an ice-free area of 24 200 km 2 (50% of the total in Antarctica), the TAMs contain an unusually high proportion of paleosols, including relict and buried soils. The unconsolidated paleosols range from late Quaternary to Miocene in age, the semi-consolidated paleosols are of early Miocene to Oligocene age, and the consolidated paleosols are of Paleozoic age. Paleosols on unconsolidated deposits are emphasized in this study. Examples are given from the McMurdo Dry Valleys (78° S) and two outlet glaciers in the central and southern TAMS, including the Hatherton-Darwin Glacier region (80° S) and the Beardmore Glacier region (85° 30' S). Relict soils constitute 73% of all of the soils examined; 10% of the soils featured burials. About 26% of the soils examined are from the last glaciation ( 〈 117 ka) and have not undergone any apparent change in climate. As an example, paleosols comprise 65% of a mapped portion of central Wright Valley. Paleosols in the TAMs feature recycled ventifacts and buried glacial ice in excess of 8 Ma in age; and volcanic ash of Pliocene to Miocene age has buried some soils. Relict soils are more strongly developed than nearby modern soils and often are dry-frozen and feature sand-wedge casts when ice-cemented permafrost was present. The preservation of paleosols in the TAMs can be attributed to cold-based glaciers that are able to override landscapes while causing minimal disturbance.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2013-08-15
    Description: A database of plagioclase crystal preferred orientations (CPO) and microstructures – implications for CPO origin, strength, symmetry and seismic anisotropy Solid Earth Discussions, 5, 1191-1257, 2013 Author(s): T. Satsukawa, B. Ildefonse, D. Mainprice, L. F. G. Morales, K. Michibayashi, and F. Barou This study presents a unique database of 170 plagioclase Crystallographic Preferred Orientations (CPO) of variously deformed gabbroic rocks. The CPO characteristics as a function of the deformation regime (magmatic or crystal-plastic) are outlined and discussed. The studied samples are dominantly from slow- and fast-spread present-day ocean crust, as well as from the Oman ophiolite. Plagioclase is the dominant mineral phase in the studied samples. Plagioclase CPOs are grouped in three main categories: Axial-B, a strong point alignment of (010) with a girdle distribution of [100]; Axial-A, a strong point maximum concentration of [100] with parallel girdle distributions of (010) and (001); and P-type, point maxima of [100], (010), and (001). A majority of CPO patterns are Axial-B and P-type, in samples showing either magmatic or crystal-plastic deformation textures. Axial-A CPOs are less common; they represent 21% of the samples deformed by crystal-plastic flow. Although fabric strength (ODF J-index) does not show any consistent variation as a function of the CPO patterns, there is a significant difference in the relationship between the ODF and pole figures J-indices; the magmatic type microstructures have high (010) pole figures J-indices, which increase linearly with ODF J-index, whereas the high [100] pole figures J-indices of plastically deformed samples vary in a more scattered manner with ODF J-index. The multistage nature of plastic deformation superposed on a magmatic structure compared with magmatic flow, and the large number of possible slip-systems in plagioclase probably account for these differences. Calculated seismic properties (P wave and S wave velocities and anisotropies) of plagioclase aggregates show that anisotropy (up to 12% for P wave and 14% for S wave) tends to increase as a function of ODF J-index. In comparison with the olivine 1998 CPO database, the magnitude of P wave anisotropy for a given J-index is much less than olivine, whereas it is similar for S wave anisotropy. Despite a large variation of fabric patterns and geodynamic setting, seismic properties of plagioclase-rich rocks have similar magnitudes of anisotropy. There is a small difference in the aggregate elastic symmetry, with magmatic microstructures having higher orthorhombic and hexagonal components, whereas plastic deformation microstructures have a slightly higher monoclinic component, possibly correlated with predominant monoclinic simple shear flow in plastically-deformed samples. Overall, plots for CPO strength (ODF J-index), pole figure strength, CPO symmetry and seismic anisotropy show significant scattering. This could be related to sampling statistics, although our database is a factor of ten higher than the olivine database of 1998, or it could be related to the low symmetry (triclinic) structure of plagioclase resulting in the addition of degrees of freedom in the processes creating the CPOs.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2013-03-28
    Description: An experimental study of pyroxene crystallization during rapid cooling in a thermal gradient; applications to komatiites and chondrites Solid Earth Discussions, 5, 227-256, 2013 Author(s): S. Bouquain, N. T. Arndt, F. Faure, and G. Libourel To investigate the crystallization of pyroxene in spinifex-textured komatiites and in chondrites we undertook a series of experiments in which compositions in the CMAS system were cooling rapidly in a thermal gradient. Cooling rates were generally between 5 to 10 °C h −1 but some runs were made at 100–200 °C h −1 ; thermal gradients were between 10 and 20 °C cm −1 . These conditions reproduced those at various levels in the crust of komatiitic lava flow. The starting composition was chosen to have pigeonite on the liquidus and a majority of the experiments crystallized zoned pigeonite-diopside crystals like those in komatiite lavas. A~conspicuous aspect of the experimental results was their lack of reproduceability. Some experiments crystallized forsterite whereas others that were run under similar conditions crystallized two pyroxenes and no forsterite; some experiments were totally glassy but others totally crystallized to pyroxene. The degree of supercooling at the onset of pyroxene crystallization was variable, from less than 25 °C to more than 110 °C. We attribute these results to the difficulty of nucleation of pyroxene. In some cases forsterite crystallized metastably and modified the liquid composition to inhibit pyroxene crystallization; in others no nucleation took place until a large degree of supercooling was achieved, then pyroxene crystallized rapidly. Pigeonite crystallized under a wide range of conditions, at cooling rates from 3 to 100 °C h −1 . The notion that this mineral only forms at low cooling rates is not correct.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2013-12-19
    Description: Optimal locations of sea-level indicators in glacial isostatic adjustment investigations Solid Earth Discussions, 5, 2419-2448, 2013 Author(s): H. Steffen, P. Wu, and H. Wang Fréchet (sensitivity) kernels are an important tool in glacial isostatic adjustment (GIA) investigations to understand lithospheric thickness, mantle viscosity and ice-load model variations. These parameters influence the interpretation of geologic, geophysical and geodetic data, which contribute to our understanding of global change. Recently, sensitivity kernels have been extended to laterally heterogeneous Earth models using the finite-element formulation, which enabled detailed studies on the sensitivity of the different geodetic observations of GIA such as GPS and terrestrial and space gravimetry. In this study, we discuss global sensitivities of relative sea-level (RSL) data of the last 18 000 yr. This also includes indicative RSL-like data (e.g. lake levels) on the continents far off the coasts. We present detailed sensitivity maps for four parameters important in GIA investigations (ice-load history, lithospheric thickness, background viscosity, lateral viscosity variations) for up to 9 dedicated times. Assuming an accuracy of 2 m of RSL data of all ages, we highlight areas around the world where, if the environmental conditions allowed its deposition and survival until today, RSL data of at least this accuracy may help to quantify the GIA modelling parameters above. The sensitivity to ice-load history variations is the dominating pattern covering in times of 14 ka BP and older almost the whole world. Lithospheric thickness variations are mainly only possible to be determined in certain high-latitude areas around the large former and current ice sheets. Background viscosity as well as lateral viscosity variations can be traced at most coast and shelf areas around the world, especially when dated to be older than 10 ka BP. The latter three are almost everywhere overlapped by the ice-load history pattern. In general we find that the more recent the data are, the smaller is the area of possible RSL locations which could provide enough information on the four GIA modelling parameters. But, we also note that when the accuracy of RSL data can be improved, e.g. from 2 m to 1 m, these areas become larger allowing better inference of background viscosity and lateral heterogeneity. Although the patterns depend on the chosen models and error limit, our results are indicative enough to outline areas where one should look for helpful RSL data of a certain time period.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2013-12-19
    Description: The sensitivity of GNSS measurements in Fennoscandia to distinct three-dimensional upper-mantle structures Solid Earth Discussions, 5, 2389-2418, 2013 Author(s): H. Steffen and P. Wu We present the sensitivity of Global Navigation Satellite System (GNSS) measurements at selected GNSS stations used both in the EUREF Permanent Network as well as in the BIFROST project to distinct areas in a laterally heterogeneous upper mantle beneath Fennoscandia. We therefore use a three-dimensional finite element model for glacial isostatic adjustment (GIA) calculations. The underlying structure is based on the S20A seismic tomography model, whose shear-wave velocities have been transformed into a viscosity structure of the upper mantle. Lower mantle is not investigated as previous results showed negligible sensitivity of Fennoscandian GIA data to it. We subdivide the upper mantle in four layers with lateral viscosity structure. Areas with similar viscosity within a layer are combined to larger blocks. Further subdivision is made into areas inside and outside the formerly glaciated areas. This leads to about 20 differently shaped areas per layer. We then calculate the sensitivity kernels at 10 selected GNSS stations for all blocks in comparison to a well-fitting one-dimensional GIA model. We find that GNSS stations are most sensitive to mantle viscosity in the near surrounding of the station, i.e. in the nearest about 250 km, and only within the formerly glaciated area. This area can be enlarged up to 800 km when velocities of stations in the uplift center are investigated. There is no indication of sufficiently high sensitivity of all investigated GNSS stations to regions outside the glaciated area. We also note that in the first mantle layer (70–250 km depth) below the lithosphere, there is only small sensitivity to parts along the Norwegian coast. Most prominent features in the Fennoscandian upper mantle may be detected in the second (250–450 km depth) and third layer (450–550 km depth). In future investigations on the lateral viscosity structure using GNSS measurements one should only consider GNSS stations within the area of former glaciation. They can be further grouped to address certain areas. In a combination with other GIA data, e.g. relative sea-level and gravity data, it is then highly recommended to assign more weight on those GNSS results with high sensitivity in order to determine the viscosity of a certain region.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2013-12-18
    Description: Comparing a thermo-mechanical Weichselian ice sheet reconstruction to GIA driven reconstructions: aspects of earth response and ice configuration Solid Earth Discussions, 5, 2345-2388, 2013 Author(s): P. Schmidt, B. Lund, and J-O. Näslund In this study we compare a recent reconstruction of the Weichselian ice-sheet as simulated by the University of Main ice-sheet model (UMISM) to two reconstructions commonly used in glacial isostatic adjustment (GIA) modeling: ICE-5G and ANU (also known as RSES). The UMISM reconstruction is carried out on a regional scale based on thermo-mechanical modelling whereas ANU and ICE-5G are global models based on the sea-level equation. The Weichselian ice-sheet in the three models are compared directly in terms of ice volume, extent and thickness, as well as in terms of predicted glacial isostatic adjustment in Fennoscandia. The three reconstructions display significant differences. UMISM and ANU includes phases of pronounced advance and retreat prior to the last glacial maximum (LGM), whereas the thickness and areal extent of the ICE-5G ice-sheet is more or less constant up until LGM. The final retreat of the ice-sheet initiates at earliest time in ICE-5G and latest in UMISM, while ice free conditions are reached earliest in UMISM and latest in ICE-5G. The post-LGM deglaciation style also differs notably between the ice models. While the UMISM simulation includes two temporary halts in the deglaciation, the later during the Younger Dryas, ANU only includes a decreased deglaciation rate during Younger Dryas and ICE-5G retreats at a relatively constant pace after an initial slow phase. Moreover, ANU and ICE-5G melt relatively uniformly over the entire ice-sheet in contrast to UMISM which melts preferentially from the edges. We find that all three reconstructions fit the present day uplift rates over Fennoscandia and the observed relative sea-level curve along the Ångerman river equally well, albeit with different optimal earth model parameters. Given identical earth models, ICE-5G predicts the fastest present day uplift rates and ANU the slowest, ANU also prefers the thinnest lithosphere. Moreover, only for ANU can a unique best fit model be determined. For UMISM and ICE-5G there is a range of earth models that can reproduce the present day uplift rates equally well. This is understood from the higher present day uplift rates predicted by ICE-5G and UMISM, which results in a bifurcation in the best fit mantle viscosity. Comparison of the uplift histories predicted by the ice-sheets indicate that inclusion of relative sea-level data in the data fit can reduce the observed ambiguity. We study the areal distributions of present day residual surface velocities in Fennoscandia and show that all three reconstructions generally over-predict velocities in southwestern Fennoscandia and that there are large differences in the fit to the observational data in Finland and northernmost Sweden and Norway. These difference may provide input to further enhancements of the ice-sheet reconstructions.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2013-12-24
    Description: Magnetic signature of large exhumed mantle domains of the Southwest Indian Ridge: results from a deep-tow geophysical survey over 0 to 11 Ma old seafloor Solid Earth Discussions, 5, 2449-2482, 2013 Author(s): A. Bronner, D. Sauter, M. Munschy, J. Carlut, R. Searle, M. Cannat, and G. Manatschal We investigate the magnetic signature of an ultramafic seafloor in the eastern part of the Southwest Indian Ridge (SWIR). There, detachment faulting, continuous over 11 Myrs, exhumed large areas of mantle derived rocks. These exhumed mantle domains occur in the form of a smooth rounded topography with broad ridges locally covered by a thin highly discontinuous volcanic carapace. We present high-resolution data combining deep-tow magnetics, side-scan sonar images and dredged samples collected within two exhumed mantle domains between 62° E and 65° E. We show that, despite an ultraslow spreading rate, volcanic areas within robust magmatic segments are characterized by well defined seafloor spreading anomalies. By contrast, the exhumed mantle domains, including a few thin volcanic patches, reveal a weak and highly variable magnetic pattern. The analysis of the magnetic properties of the dredged samples and careful comparison between the nature of the seafloor, the deep-tow magnetic anomalies and the seafloor equivalent magnetization suggest that the serpentinized peridotites do not carry a sufficiently stable remanent magnetization to produce seafloor spreading magnetic anomalies in exhumed mantle domains.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2013-12-14
    Description: The morphology and surface features of olivine in kimberlite lava: implications for ascent and emplacement mechanisms Solid Earth Discussions, 5, 2283-2312, 2013 Author(s): T. J. Jones, J. K. Russell, L. A. Porritt, and R. J. Brown Many kimberlite rocks contain large proportions of ellipsoidal-shaped xenocrystic olivine grains that are derived mainly from the disaggregation of peridotite. Xenocrystic olivine grains from a lava erupted from the Quaternary Igwisi Hills kimberlites, Tanzania, are compared to phenocrystic olivine, liberated from picritic lavas, and mantle olivine, liberated from a fresh peridotite xenolith, in order to examine the potential modification of olivine surface textures due to transport from the mantle to the surface within kimberlite magmas. Image analysis, SEM imagery and laser microscopy reveals significant differences in the surface features and morphologies of the three crystal populations. Xenocrystic olivine grains are characterised by rough surfaces, ellipsoidal shapes and impact pits. Mantle olivines are characterised by flaked surfaces and indented shapes consistent with growth as a crystal aggregates. Phenocrystic olivines are smooth-surfaced and exhibit flat crystal faces. We infer that the distinctive shapes and surfaces of xenocrystic olivine grains resulted from three distinct mechanical processes attending their rapid transport from their source in the mantle lithosphere: (1) penetrative flaking from micro-tensile failure induced by rapid decompression; (2) sustained abrasion and attrition arising from particle-particle collisions between grains in a turbulent, volatile-rich flow regime, and; (3) higher energy particle-particle collisions that produced impact cavities superimposed on decompression structures. The combination of these processes during the rapid ascent of kimberlite magmas is responsible for the distinctive ellipsoidal shape of olivine xenocrysts found in kimberlites worldwide.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2013-12-17
    Description: New insights on the occurrence of peperites and sedimentary deposits within the silicic volcanic sequences of the Paraná Magmatic Province, Brazil Solid Earth Discussions, 5, 2313-2344, 2013 Author(s): A. C. F. Luchetti, A. J. R. Nardy, F. B. Machado, J. Madeira, and J. M. Arnosio In the Paraná Basin (southern and southeastern Brazil), the stratigraphy of the Paraná Magmatic Province (PMP) is composed of a thick (up to 1600 m) volcanic sequence formed by a succession of petrographically and geochemically distinct units of basic and acidic composition. The whole package may have been emplaced in approximately 3 million yr of almost uninterrupted activity. A few aeolian sandstone layers, indicating arid environmental conditions (Botucatu Formation), are interlayered in the lower basalts. Above the basalts, the Palmas and Chapecó Members of the Early Cretaceous Serra Geral Formation, are composed of silicic volcanic rocks (trachydacites, dacites, rhyolites, and rhyodacites) and basalts. This paper presents new evidence of episodes of sedimentation separating silicic volcanic events, expressed by occurrences of sedimentary deposits. Interaction between the volcanic bodies and the coeval unconsolidated sediments formed peperites. The sediments were observed between basaltic lava flows and silicic rocks or interlayered in the Palmas type rocks, between Chapecó type rocks and underlying basaltic flows, between silicic bodies of Palmas and Chapecó types, and interlayered with Palmas type units. The observed structures indicate that the sediments were still wet and unconsolidated, or weakly consolidated, at the time of volcanism, which coupled with the sediment features reflect environmental conditions that are different from those characterizing the Botucatu arid conditions.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2013-12-24
    Description: Lithosphere and upper-mantle structure of the southern Baltic Sea estimated from modelling relative sea-level data with glacial isostatic adjustment Solid Earth Discussions, 5, 2483-2507, 2013 Author(s): H. Steffen, G. Kaufmann, and R. Lampe During the last glacial maximum, a large ice sheet covered Scandinavia, and the Earth's surface was depressed by several 100 m. Beyond the limit of this Fennoscandian ice sheet, mass redistribution in the upper mantle led to the development of peripheral bulges around the glaciated region. These once uplifted areas subside since the begin of deglaciation due to the viscoelastic behavior of the mantle. Parts of this subsiding region are located in northern central Europe in the coastal parts of Denmark, Germany and Poland. We analyze relative sea-level (RSL) data of these regions to determine the lithospheric thickness and radial mantle viscosity structure for distinct regional RSL subsets. We load a one-dimensional Maxwell-viscoelastic earth model with a global ice-load history model of the last glaciation. We test two commonly used ice histories, RSES from the Australian National University and Ice-5G from the University of Toronto. Our results indicate that the lithospheric thickness varies, depending on the ice model used, between 60 and 160 km. The lowest values are found in the Oslo Graben area and the western German Baltic Sea coast. In between, thickness increases by at least 30 km tracing the Fyn High. In Poland, lithospheric thickness values up to 160 km are reached. However, the latter values are not well constrained due to a low number of RSL data from the Polish area. Upper-mantle viscosity is found to bracket [2–7] × 10 20 Pa s when using Ice-5G. Employing RSES much higher values of 2 × 10 21 Pa s yield for the southern Baltic Sea, which suggests a revision of this ice-model version. We confirm that the lower-mantle viscosity in Fennoscandia can only be poorly resolved. The lithospheric structure inferred partly supports structural features of regional and global lithosphere models based on thermal or seismological data. While there is agreement in eastern Europe and southwest Sweden, the structure in an area from south of Norway to northern Germany shows large discrepancies for two of the tested models. It thus remains challenging to sufficiently determine the Fyn High as seen with seismics with the help of glacial isostatic adjustment modelling.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2013-12-23
    Description: We investigate the magnetic signature of an ultramafic seafloor in the eastern part of the Southwest Indian Ridge (SWIR). There, detachment faulting, continuous over 11 Myrs, exhumed large areas of mantle derived rocks. These exhumed mantle domains occur in the form of a smooth rounded topography with broad ridges locally covered by a thin highly discontinuous volcanic carapace. We present high-resolution data combining deep-tow magnetics, side-scan sonar images and dredged samples collected within two exhumed mantle domains between 62° E and 65° E. We show that, despite an ultraslow spreading rate, volcanic areas within robust magmatic segments are characterized by well defined seafloor spreading anomalies. By contrast, the exhumed mantle domains, including a few thin volcanic patches, reveal a weak and highly variable magnetic pattern. The analysis of the magnetic properties of the dredged samples and careful comparison between the nature of the seafloor, the deep-tow magnetic anomalies and the seafloor equivalent magnetization suggest that the serpentinized peridotites do not carry a sufficiently stable remanent magnetization to produce seafloor spreading magnetic anomalies in exhumed mantle domains.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2013-12-18
    Description: Fréchet (sensitivity) kernels are an important tool in glacial isostatic adjustment (GIA) investigations to understand lithospheric thickness, mantle viscosity and ice-load model variations. These parameters influence the interpretation of geologic, geophysical and geodetic data, which contribute to our understanding of global change. Recently, sensitivity kernels have been extended to laterally heterogeneous Earth models using the finite-element formulation, which enabled detailed studies on the sensitivity of the different geodetic observations of GIA such as GPS and terrestrial and space gravimetry. In this study, we discuss global sensitivities of relative sea-level (RSL) data of the last 18 000 yr. This also includes indicative RSL-like data (e.g. lake levels) on the continents far off the coasts. We present detailed sensitivity maps for four parameters important in GIA investigations (ice-load history, lithospheric thickness, background viscosity, lateral viscosity variations) for up to 9 dedicated times. Assuming an accuracy of 2 m of RSL data of all ages, we highlight areas around the world where, if the environmental conditions allowed its deposition and survival until today, RSL data of at least this accuracy may help to quantify the GIA modelling parameters above. The sensitivity to ice-load history variations is the dominating pattern covering in times of 14 ka BP and older almost the whole world. Lithospheric thickness variations are mainly only possible to be determined in certain high-latitude areas around the large former and current ice sheets. Background viscosity as well as lateral viscosity variations can be traced at most coast and shelf areas around the world, especially when dated to be older than 10 ka BP. The latter three are almost everywhere overlapped by the ice-load history pattern. In general we find that the more recent the data are, the smaller is the area of possible RSL locations which could provide enough information on the four GIA modelling parameters. But, we also note that when the accuracy of RSL data can be improved, e.g. from 2 m to 1 m, these areas become larger allowing better inference of background viscosity and lateral heterogeneity. Although the patterns depend on the chosen models and error limit, our results are indicative enough to outline areas where one should look for helpful RSL data of a certain time period.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2013-12-18
    Description: We present the sensitivity of Global Navigation Satellite System (GNSS) measurements at selected GNSS stations used both in the EUREF Permanent Network as well as in the BIFROST project to distinct areas in a laterally heterogeneous upper mantle beneath Fennoscandia. We therefore use a three-dimensional finite element model for glacial isostatic adjustment (GIA) calculations. The underlying structure is based on the S20A seismic tomography model, whose shear-wave velocities have been transformed into a viscosity structure of the upper mantle. Lower mantle is not investigated as previous results showed negligible sensitivity of Fennoscandian GIA data to it. We subdivide the upper mantle in four layers with lateral viscosity structure. Areas with similar viscosity within a layer are combined to larger blocks. Further subdivision is made into areas inside and outside the formerly glaciated areas. This leads to about 20 differently shaped areas per layer. We then calculate the sensitivity kernels at 10 selected GNSS stations for all blocks in comparison to a well-fitting one-dimensional GIA model. We find that GNSS stations are most sensitive to mantle viscosity in the near surrounding of the station, i.e. in the nearest about 250 km, and only within the formerly glaciated area. This area can be enlarged up to 800 km when velocities of stations in the uplift center are investigated. There is no indication of sufficiently high sensitivity of all investigated GNSS stations to regions outside the glaciated area. We also note that in the first mantle layer (70–250 km depth) below the lithosphere, there is only small sensitivity to parts along the Norwegian coast. Most prominent features in the Fennoscandian upper mantle may be detected in the second (250–450 km depth) and third layer (450–550 km depth). In future investigations on the lateral viscosity structure using GNSS measurements one should only consider GNSS stations within the area of former glaciation. They can be further grouped to address certain areas. In a combination with other GIA data, e.g. relative sea-level and gravity data, it is then highly recommended to assign more weight on those GNSS results with high sensitivity in order to determine the viscosity of a certain region.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2013-11-14
    Description: Fumarole fields related to hydrothermal processes release the heat of the underground through permeable pathways. Thermal changes, therefore, are likely to depend also on the variation of these pathways. As these paths may affect or even control the temperature field at the surface, their understanding is relevant to applied and basic science alike. A common difficulty, however, in surface temperature field studies at active volcanoes is that the parameters controlling the ascending routes of fluids are poorly constrained in general. Here we analyze the crater of Stefanos, Nisyros (Greece), and highlight complexities in the spatial pattern of the fumarole field related to permeability conditions. There may be different explanations for the observed permeability changes, such as structural control, lithology, weathering, and heterogeneous sediment accumulation and erosion. We combine high resolution infrared mosaics and grain-size analysis of soils, aiming to elaborate parameters controlling the appearance of the fumarole field. We find a ring-shaped thermal field located within the explosion crater, which is dependent on contrasts of the soil granulometry and volcanotectonic history. We develop a conceptual model of how the ring-shaped thermal field has formed at the Stefanos crater and similarly at other volcanic edifices, highlighting the importance of local permeability contrast that may increase or decrease the thermal fluid flux.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2013-11-13
    Description: Oceanic rocks in the Ankara Mélange along the Izmir–Ankara–Erzincan suture zone (IAESZ) in North-Central Anatolia include locally coherent ophiolite complexes (~179 Ma and ~80 Ma), seamount or oceanic plateau volcanic units with pelagic and reefal limestones (96.6 ± 1.8 Ma), metamorphic rocks with ages of 187.4 ± 3.7 Ma, 158.4 ± 4.2 Ma, and 83.5 ± 1.2 Ma, and subalkaline to alkaline volcanic and plutonic rocks of an island arc origin (~67–63 Ma). All but the arc rocks occur in a shaly-graywacke and/or serpentinite matrix, and are deformed by south-vergent thrust faults and folds that developed in the Middle to Late Eocene due to continental collisions in the region. Ophiolitic volcanic rocks have mid-ocean ridge (MORB) and island arc tholeiite (IAT) affinities showing moderate to significant LILE enrichment and depletion in Nb, Hf, Ti, Y and Yb, which indicate the influence of subduction-derived fluids in their melt evolution. Seamount/oceanic plateau basalts show ocean island basalt (OIB) affinities. The arc-related volcanic rocks, lamprophyric dikes and syeno-dioritic plutons exhibit high-K shoshonitic to medium-to high-K calc-alkaline compositions with strong enrichment in LILE, REE and Pb, and initial ϵNd values between +1.3 and +1.7. Subalkaline arc volcanic units occur in the northern part of the mélange, whereas the younger alkaline volcanic rocks and intrusions (lamprophyre dikes and syeno-dioritic plutons) in the southern part. The Early to Late Jurassic and Late Cretaceous epidote-actinolite, epidote-chlorite and epidote-glaucophane schists represent the metamorphic units formed in a subduction channel in the Northern Neotethys. The Middle to Upper Triassic neritic limestones spatially associated with the seamount volcanic rocks indicate that the Northern Neotethys was an open ocean with its MORB-type oceanic lithosphere by the Early Triassic. The Latest Cretaceous–Early Paleocene island arc volcanic, dike and plutonic rocks with subalkaline to alkaline geochemical affinities represent intraoceanic magmatism that developed on and across the subduction-accretion complex above a N-dipping, southward-rolling subducted lithospheric slab within the Northern Neotethys. The Ankara Mélange thus exhibits the record of ~120–130 million years of oceanic magmatism in geological history of the Northern Neotethys.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2013-11-05
    Description: The molar ratio of BrO to SO2 is, like other halogen/sulphur ratios, a~possible precursor for dynamic changes in the shallow part of a volcanic system. While the predictive significance of the BrO/SO2 ratio has not been well constrained yet, it has the major advantage that this ratio can be readily measured using the remote-sensing technique Differential Optical Absorption Spectroscopy (DOAS) in the UV. While BrO/SO2 ratios have been measured during several short-term field campaigns this article presents an algorithm that can be used to obtain long-term time series of BrO/SO2 ratios from the scanning DOAS instruments of the Network for Observation of Volcanic and Atmospheric Change (NOVAC) or comparable networks. Parameters of the DOAS retrieval of both trace gases are given and the influence of co-adding spectra on the retrieval error will be investigated. Difficulties in the evaluation of spectroscopic data from monitoring instruments in volcanic environments and possible solutions are discussed. The new algorithm is demonstrated by evaluating data from the NOVAC scanning DOAS systems at Nevado del Ruiz, Colombia encompassing almost four years of measurements between November 2009 and end of June 2013. This dataset shows variations of the BrO/SO2 ratio several weeks prior to the eruption on 30 June 2012.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2013-10-30
    Description: Fire is a natural factor of landscape evolution in Mediterranean ecosystems. Middle Ebro Valley has extreme aridity, which determines a low plant cover and high soil erodibility of the soils, especially on gypseous substrates. The aim of this research is to analyze the effects of a moderate heating, on physical and chemical soil properties, mineralogical composition and susceptibility to splash erosion. Topsoil samples (15 cm soil depth) were taken in the Remolinos mountain slopes (Ebro Valley, NE-Spain) from two soil types: Leptic Gypsisol (LP) in a convex slope and Haplic Gypsisol (GY) in a concave slope. To assess the heating effects on the mineralogy we burned the soils at 105 °C and 205 °C in an oven and to assess the splash effects we used a rainfall simulator under laboratory conditions using undisturbed topsoil subsamples (0–5 cm soil depth of Ah horizon). LP soil has lower SOM and SAS and higher gypsum content than GY soil. Gypsum and dolomite are the main minerals (〉80%) in the LP soil, while gypsum, dolomite, calcite and quartz have similar proportions in GY soil. Clay minerals (kaolinite and illite) are scarce in both soils. Heating at 105 °C has no effect on soil mineralogy. However heating to 205 °C transforms gypsum to bassanite, increases significantly EC in both soil units (LP and GY) and decreases pH only in GY soil. Despite differences in the content of organic matter and structural stability, both soils show no significant differences (P 〈 0.01) in the splash erosion rates. The size of pores is reduced by heating treatment or fire effect, as derived from variations in pF.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2013-10-24
    Description: Subduction of oceanic lithosphere brings water into Earth's upper mantle. Previous numerical studies have shown how slab dehydration and mantle hydration can impact the dynamics of a subduction system by allowing a more vigorous mantle flow and promoting localisation of deformation in lithosphere and mantle. The depths at which dehydration reactions occur in the hydrated portions of the slab are well constrained in these models by thermodynamic calculations. However, the mechanism by which free water migrates in the mantle is incompletely known. Therefore, models use different numerical schemes to model the migration of free water. We aim to show the influence of the numerical scheme of free water migration on the dynamics of the upper mantle and more specifically the mantle wedge. We investigate the following three migration schemes with a finite-element model: (1) element-wise vertical migration of free water, occurring independent of the material flow; (2) an imposed vertical free water velocity; and (3) a Darcy velocity, where the free water velocity is calculated as a function of the pressure gradient between water and the surrounding rocks. In addition, the material flow field also moves the free water in the imposed vertical velocity and Darcy schemes. We first test the influence of the water migration scheme using a simple Stokes flow model that simulates the sinking of a cold hydrated cylinder into a hot dry mantle. We find that the free water migration scheme has only a limited impact on the water distribution after 1 Myr in these models. We next investigate slab dehydration and mantle hydration with a thermomechanical subduction model that includes brittle behaviour and viscous water-dependent creep flow laws. Our models show how the bound water distribution is not greatly influenced by the water migration scheme whereas the free water distribution is. We find that a water-dependent creep flow law results in a broader area of hydration in the mantle wedge which feeds back to the dynamics of the system by the associated weakening. This supports using dynamic time evolution models to investigate the effects of (de)hydration. We also show that hydrated material can be transported down to the base of the upper mantle at 670 km. Although (de)hydration processes influence subduction dynamics, we find that the exact numerical implementation of free water migration is not important. This implies that a simple implementation of water migration would be sufficient for studies that focus on larger-scale features of subduction dynamics.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2013-10-24
    Description: The lateral variation of the stress field in the southern Aegean plate and the subducting Hellenic slab is determined from recordings of seismicity obtained with the CYCNET and EGELADOS networks in the years from 2002 to 2007. First motions from 7000 well-located earthquakes were analysed to produce 540 well-constrained focal mechanisms. They were complemented by another 140 derived by waveform matching of records from larger events. Most of these earthquakes fall into 16 distinct spatial clusters distributed over the southern Aegean region. For each cluster, a stress inversion could be carried out yielding consistent estimates of the stress field and its spatial variation. At crustal levels, the stress field is generally dominated by a steeply dipping compressional principal stress direction except in places where coupling of the subducting slab and overlying plate come into play. Tensional principal stresses are generally subhorizontal. Just behind the forearc, the crust is under arc-parallel tension whereas in the volcanic areas around Kos, Columbo and Astypalea tensional and intermediate stresses are nearly degenerate. Further west and north, in the Santorini-Amorgos graben and in the area of the islands of Mykonos, Andros and Tinos, tensional stresses are significant and point around the NW–SE direction. Very similar stress fields are observed in western Turkey with the tensional axis rotated to NNE–SSW. Intermediate depth earthquakes below 100 km in the Nisyros region indicate that the Hellenic slab experiences slab-parallel tension at these depths. The direction of tension is close to east-west and thus deviates from the local NW-oriented slab dip presumably owing to the segmentation of the slab. Beneath the Cretan sea, at shallower levels, the slab is under NW–SE compression. The lateral and depth variations of the stress field reflect the various agents that influence tectonics in the Aegean: subduction of the Hellenic slab, incipient collision with continental African lithosphere, roll back of the slab in the south-east, segmentation of the slab, arc volcanism and extension of the Aegean crust.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2013-10-22
    Description: The location of major Cu-Au deposits on the island of New Guinea are considered to be controlled by a series of transfer faults that strike N–S to NE–SW, perpendicular to the long axis of the island. The premise is that these faults dilate perpendicular to the regional stress field, forming conduits for metalliferous bearing fluids and gas to deposit. However, the data on which this idea was first proposed was often not presented, or when it was, is of poor quality or low resolution. We therefore present a review of the existing structural interpretations and compare these with several recently published geophysical datasets (gravity, magnetics and seismic tomography) to determine if the Cu-Au controlling transfer faults could be observed. These data were used to produce a new lineament map of New Guinea. A comparison of the lineaments with the location of major Cu-Au deposits indicates there is a link between the arc-normal structures and mineralization. However, it is only those deposits that are less than 4.5 million years old that could be associated with these structures. Gravity and seismic tomography data indicate that some of these structures could penetrate deep levels of the lithosphere, providing some support to the earlier idea that the arc-normal transfer faults act as conduits for the younger mineral deposits of New Guinea. The gravity data can also be used to infer the location of igneous intrusions at depth, which could have brought metal-bearing fluids and gases closer to the Earth's surface. These regions might be of interest for future exploration campaigns, particularly those areas that are crosscut by deep, vertical faults. However, new exploration models are needed to explain the location of the deposits that are older than 5 Ma.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2013-10-16
    Description: Lava dome eruptions subjected to high extrusion rates commonly evolve from endogenous to exogenous growth and limits to their structural stability hold catastrophic potential as explosive eruption triggers. In the conduit, strain localisation in magma, accompanied by seismogenic failure, marks the onset of brittle magma ascent dynamics. The rock record of exogenous dome structures preserves vestiges of cataclastic processes (Cashman et al., 2008; Kennedy and Russell, 2011) and of thermal anomalies (Kendrick et al., 2012), key to unravelling subsurface processes. Here, a combined structural, thermal and magnetic investigation of a shear band crosscutting a large block erupted in 2010 at Soufrière Hills volcano (SHV) reveals evidence of faulting and frictional melting within the magmatic column. The mineralogy of this pseudotachylyte vein offers confirmation of complete recrystallisation with an isothermal remanent magnetisation signature that typifies local electric currents in faults. The pseudotachylyte presents an impermeable barrier, which is thought to have influenced the degassing pathway. Such melting events may be linked to the step-wise extrusion of magma accompanied by repetitive long-period (LP) drumbeat seismicity at SHV (Neuberg et al., 2006). Frictional melting of SHV andesite in a high velocity rotary shear apparatus highlights the small slip distances (〈 15 cm) required to bring 800 °C magma to melting point at upper conduit stress conditions (10 MPa). We conclude that frictional melting is an inevitable consequence of seismogenic, conduit-dwelling magma fracture during dome building eruptions and that it may have an important influence on magma ascent dynamics.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2013-12-17
    Description: In this study we compare a recent reconstruction of the Weichselian ice-sheet as simulated by the University of Main ice-sheet model (UMISM) to two reconstructions commonly used in glacial isostatic adjustment (GIA) modeling: ICE-5G and ANU (also known as RSES). The UMISM reconstruction is carried out on a regional scale based on thermo-mechanical modelling whereas ANU and ICE-5G are global models based on the sea-level equation. The Weichselian ice-sheet in the three models are compared directly in terms of ice volume, extent and thickness, as well as in terms of predicted glacial isostatic adjustment in Fennoscandia. The three reconstructions display significant differences. UMISM and ANU includes phases of pronounced advance and retreat prior to the last glacial maximum (LGM), whereas the thickness and areal extent of the ICE-5G ice-sheet is more or less constant up until LGM. The final retreat of the ice-sheet initiates at earliest time in ICE-5G and latest in UMISM, while ice free conditions are reached earliest in UMISM and latest in ICE-5G. The post-LGM deglaciation style also differs notably between the ice models. While the UMISM simulation includes two temporary halts in the deglaciation, the later during the Younger Dryas, ANU only includes a decreased deglaciation rate during Younger Dryas and ICE-5G retreats at a relatively constant pace after an initial slow phase. Moreover, ANU and ICE-5G melt relatively uniformly over the entire ice-sheet in contrast to UMISM which melts preferentially from the edges. We find that all three reconstructions fit the present day uplift rates over Fennoscandia and the observed relative sea-level curve along the Ångerman river equally well, albeit with different optimal earth model parameters. Given identical earth models, ICE-5G predicts the fastest present day uplift rates and ANU the slowest, ANU also prefers the thinnest lithosphere. Moreover, only for ANU can a unique best fit model be determined. For UMISM and ICE-5G there is a range of earth models that can reproduce the present day uplift rates equally well. This is understood from the higher present day uplift rates predicted by ICE-5G and UMISM, which results in a bifurcation in the best fit mantle viscosity. Comparison of the uplift histories predicted by the ice-sheets indicate that inclusion of relative sea-level data in the data fit can reduce the observed ambiguity. We study the areal distributions of present day residual surface velocities in Fennoscandia and show that all three reconstructions generally over-predict velocities in southwestern Fennoscandia and that there are large differences in the fit to the observational data in Finland and northernmost Sweden and Norway. These difference may provide input to further enhancements of the ice-sheet reconstructions.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2013-11-14
    Description: Over the past few years the assessment of the earthquake potential of large continental faults has increasingly relied on field investigations. State-of-the-art seismic hazard models are progressively complementing the information derived from earthquake catalogues with geological observations of active faulting. Using these observations, however, requires full understanding of the relationships between seismogenic slip at depth and surface deformation, such that the evidence indicating the presence of a large, potentially seismogenic fault can be singled out effectively and unambiguously. We used observations and models of the 6 April 2009, Mw 6.3, L'Aquila, normal faulting earthquake to explore the relationships between the activity of a large fault at seismogenic depth and its surface evidence. This very well-documented earthquake is representative of mid-size yet damaging earthquakes that are frequent around the Mediterranean Basin, and is somehow paradigmatic of the nature of the associated geologic evidence along with observational difficulties and ambiguities. Thanks to available high-resolution geologic, geodetic and seismological data aided by analogue modeling, we reconstructed the full geometry of the seismogenic source in relation with surface and sub-surface faults. We find that the earthquake was caused by seismogenic slip in the range 3–10 km depth, and that the slip distribution was strongly controlled by inherited discontinuities. We also contend that faulting was expressed at the surface by pseudo-primary breaks resulting from coseismic crustal bending and by sympathetic slip on secondary faults. Based on our results we propose a scheme for hierarchizing normal faults through which all surface occurrences related to faulting at depth can be interpreted in the frame of a single, mechanically coherent model. Appreciating such complexity is crucial to avoid severe over- or under-estimation of the local seismogenic potential.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2013-11-11
    Description: Historic analogue seismograms of the large 1956 Amorgos twin earthquakes which occurred in the volcanic arc of the Hellenic Subduction Zone (HSZ) were collected, digitized and reanalyzed to obtain refined estimates of their depth and focal mechanism. In total, 80 records of the events from 29 European stations were collected and, if possible, digitized. In addition, bulletins were searched for instrument parameters required to calculate transfer functions for instrument correction. A grid search based on matching the digitized historic waveforms to complete synthetic seismograms was then carried out to infer optimal estimates for depth and focal mechanism. Owing to incomplete or unreliable information on instrument parameters and frequently occurring technical problems during recording such as writing needles jumping off mechanical recording systems, much less seismograms than collected proved suitable for waveform matching. For the first earthquake, only 7 seismograms from three different stations (STU, GTT, COP) could be used. Nevertheless, the grid search produces stable optimal values for both source depth and focal mechanism. Our results indicate a shallow hypocenter at about 25 km depth. The best-fitting focal mechanism is a SW–NE-trending normal fault dipping either by 30° towards SE or 60° towards NW. This finding is consistent with the local structure of the Santorini–Amorgos graben. For the second earthquake, 4 seismograms from three different stations (JEN, GTT, COP) proved suitable for waveform matching. Whereas it was impossible to obtain meaningful results for the focal mechanism owing to surface wave coda of the first event overlapping body wave phases of the second event, waveform matching and time-frequency analysis point to a considerably deeper hypocenter located within the Wadati–Benioff-zone of the subducting African plate at about 120–160 km depth.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2013-08-27
    Description: Mediterranean areas are characterized by a strong spatial variability that makes highly complex the soil hydrological response. Moreover, Mediterranean climate has a marked seasonal variability that provokes dramatic changes on the soil properties determining the hydrological behavior, such as soil water content, crust formation or soil water repellency (SWR). Thus, soil hydrological and erosive response in Mediterranean areas can be highly time- as well space-dependant. The main goal of this study was to characterize the relations between SWR, aspect and vegetation, determining the soil hydrological and erosive response throughout the rainy period in different microenvironments of opposite hillslopes. This study was undertaken in a small catchment located in the South of Spain. Erosion plots were installed in the north- and the south-facing hillslope, in areas with different vegetal cover, and runoff and sediments were collected. Moreover, precipitation parameters were recorded and SWR measurements were performed. SWR proved to have a significant effect on the soil hydrological response, but this influence was modulated by seasonal changes and by the discontinuities on the repellent layer. In general, the influence of SWR was restricted to the first rains after the summer and was greater on the north-facing hillslope due to the more continuous vegetation cover. The more important precipitation parameter influencing runoff generated was maximum rainfall intensity in ten minutes (Imax). The relation between Imax and overland flow showed a contrasting seasonal behavior in the north-facing hillslope and, on the contrary, remained homogeneous throughout the year in the south-facing hillslope.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2013-09-13
    Description: The Basque-Cantabrian Basin of the Northern Iberia peninsula constitutes a unique example of a major deformation system, featuring a dome structure developed by extensional tectonics followed by compressional reactivation. The occurrence of natural resources in the area and the possibility of establishing a geological storage site for carbon dioxide motivated the acquisition of a 3-D seismic reflection survey in 2010, centered on the Jurassic Hontomín dome. The objectives of this survey were to obtain a geological model of the overall structure and to establish a baseline model for a possible geological CO2 storage site. The 36 km2 survey included approximately 5000 mixed (Vibroseis and explosives) source points recorded with a 25 m inline source and receiver spacing. The target reservoir is a saline aquifer, at approximately 1450 m depth, encased and sealed by carbonate formations. Acquisition and processing parameters were influenced by the rough topography and relatively complex geology. A strong near surface velocity inversion is evident in the data, affecting the quality of the data. The resulting 3-D image provides constraints on the key features of the geologic model. The Hontomín structure is interpreted to consist of an approximately 107 m2 large elongated dome with two major W–E and NW–SE striking faults bounding it.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2013-08-14
    Description: This study presents a unique database of 170 plagioclase Crystallographic Preferred Orientations (CPO) of variously deformed gabbroic rocks. The CPO characteristics as a function of the deformation regime (magmatic or crystal-plastic) are outlined and discussed. The studied samples are dominantly from slow- and fast-spread present-day ocean crust, as well as from the Oman ophiolite. Plagioclase is the dominant mineral phase in the studied samples. Plagioclase CPOs are grouped in three main categories: Axial-B, a strong point alignment of (010) with a girdle distribution of [100]; Axial-A, a strong point maximum concentration of [100] with parallel girdle distributions of (010) and (001); and P-type, point maxima of [100], (010), and (001). A majority of CPO patterns are Axial-B and P-type, in samples showing either magmatic or crystal-plastic deformation textures. Axial-A CPOs are less common; they represent 21% of the samples deformed by crystal-plastic flow. Although fabric strength (ODF J-index) does not show any consistent variation as a function of the CPO patterns, there is a significant difference in the relationship between the ODF and pole figures J-indices; the magmatic type microstructures have high (010) pole figures J-indices, which increase linearly with ODF J-index, whereas the high [100] pole figures J-indices of plastically deformed samples vary in a more scattered manner with ODF J-index. The multistage nature of plastic deformation superposed on a magmatic structure compared with magmatic flow, and the large number of possible slip-systems in plagioclase probably account for these differences. Calculated seismic properties (P wave and S wave velocities and anisotropies) of plagioclase aggregates show that anisotropy (up to 12% for P wave and 14% for S wave) tends to increase as a function of ODF J-index. In comparison with the olivine 1998 CPO database, the magnitude of P wave anisotropy for a given J-index is much less than olivine, whereas it is similar for S wave anisotropy. Despite a large variation of fabric patterns and geodynamic setting, seismic properties of plagioclase-rich rocks have similar magnitudes of anisotropy. There is a small difference in the aggregate elastic symmetry, with magmatic microstructures having higher orthorhombic and hexagonal components, whereas plastic deformation microstructures have a slightly higher monoclinic component, possibly correlated with predominant monoclinic simple shear flow in plastically-deformed samples. Overall, plots for CPO strength (ODF J-index), pole figure strength, CPO symmetry and seismic anisotropy show significant scattering. This could be related to sampling statistics, although our database is a factor of ten higher than the olivine database of 1998, or it could be related to the low symmetry (triclinic) structure of plagioclase resulting in the addition of degrees of freedom in the processes creating the CPOs.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2013-09-16
    Description: The postglacial uplift/subsidence in Scandinavia is regular. And the phenomenon is similar in time scales of tens, hundreds and thousands of years studied via geodesy, seismology and geology. Searches for irregularities in the form of earthquakes claimed in the scientific literature have disclosed many earthquakes right after the Ice Age and some later cases for further evaluation. In a previous report the present author has mentioned doubts about the validity of some of the most significant claimed irregularities. In the present paper a review is made of these significant claimed irregularities in the southwestern flank of the Scandinavian postglacial uplift/subsidence via literature studies of geodetic and geological claims of earthquakes as well as discussions in the field. Geodetic observations exist for all of Scandinavia. Those describe the phenomenon in 10s–100s of years scale. Earthquake observations in seismology are of relevance in the same time scales. Geological studies of dated shore lines describe the postglacial vertical earth-surface motion in a quite different time scale of 100s–1000s of years. There is a need for integration of these observations geographically. This is happening in the various time scales in the DynaQlim project. The review finds the claims improbable about the following: (1) geodynamical motion in the Copenhagen area, (2) a paleo-earthquake in Læsø and (3) the recently proposed water level discrepancy in the southern part of Denmark. The assessment is less certain, but falls to improbable concerning (4) proposed paleo-earthquakes by Hallandsåsen in southwestern Sweden.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2013-07-17
    Description: The Transantarctic Mountains (TAMs), a 3500 km long chain that subdivides East Antarctica from West Antarctica, are important for reconstructing the tectonic, glacial, and climatic history of Antarctica. With an ice-free area of 24 200 km2 (50% of the total in Antarctica), the TAMs contain an unusually high proportion of paleosols, including relict and buried soils. The unconsolidated paleosols range from late Quaternary to Miocene in age, the semi-consolidated paleosols are of early Miocene to Oligocene age, and the consolidated paleosols are of Paleozoic age. Paleosols on unconsolidated deposits are emphasized in this study. Examples are given from the McMurdo Dry Valleys (78° S) and two outlet glaciers in the central and southern TAMS, including the Hatherton-Darwin Glacier region (80° S) and the Beardmore Glacier region (85° 30' S). Relict soils constitute 73% of all of the soils examined; 10% of the soils featured burials. About 26% of the soils examined are from the last glaciation (〈 117 ka) and have not undergone any apparent change in climate. As an example, paleosols comprise 65% of a mapped portion of central Wright Valley. Paleosols in the TAMs feature recycled ventifacts and buried glacial ice in excess of 8 Ma in age; and volcanic ash of Pliocene to Miocene age has buried some soils. Relict soils are more strongly developed than nearby modern soils and often are dry-frozen and feature sand-wedge casts when ice-cemented permafrost was present. The preservation of paleosols in the TAMs can be attributed to cold-based glaciers that are able to override landscapes while causing minimal disturbance.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2013-08-21
    Description: Tectonic reconstructions of Southeast Asia have given rise to numerous controversies which include the accretionary history of Sundaland and the enigmatic tectonic origin of the Proto South China Sea. We assimilate a diversity of geological and geophysical observations into a new regional plate model, coupled to a global model, to address these debates. Our approach takes into account terrane suturing and accretion histories, the location of subducted slabs imaged in mantle tomography in order to constrain the opening and closure history of paleo-ocean basins, as well as plausible absolute and relative plate velocities and tectonic driving mechanisms. We propose a scenario of rifting from northern Gondwana in the Late Jurassic, driven by northward slab pull, to detach East Java, Mangkalihat, southeast Borneo and West Sulawesi blocks that collided with a Tethyan intra-oceanic subduction zone in the mid Cretaceous and subsequently accreted to the Sunda margin (i.e. southwest Borneo core) in the Late Cretaceous. In accounting for the evolution of plate boundaries, we propose that the Philippine Sea Plate originated on the periphery of Tethyan crust forming this northward conveyor. We implement a revised model for the Tethyan intra-oceanic subduction zones to reconcile convergence rates, changes in volcanism and the obduction of ophiolites. In our model the northward margin of Greater India collides with the Kohistan-Ladakh intra-oceanic arc at ∼53 Ma, followed by continent-continent collision closing the Shyok and Indus-Tsangpo suture zones between ∼42 and 34 Ma. We also account for the back-arc opening of the Proto South China Sea from ∼65 Ma, consistent with extension along east Asia and the emplacement of supra-subduction zone ophiolites presently found on the island of Mindoro. The related rifting likely detached the Semitau continental fragment from east China, which accreted to northern Borneo in the mid Eocene, to account for the Sarawak Orogeny. Rifting then re-initiated along southeast China by 37 Ma to open the South China Sea, resulting in the complete consumption of Proto South China Sea by ∼17 Ma when the collision of the Dangerous Grounds and northern Palawan blocks with northern Borneo choked the subduction zone to result in the Sabah Orogeny and the obduction of ophiolites in Palawan and Mindoro. We conclude that the counterclockwise rotation of Borneo was accommodated by oroclinal bending consistent with paleomagnetic constraints, the curved lithospheric lineaments observed in gravity anomalies of the Java Sea and the curvature of the Cretaceous Natuna paleo-subduction zone. We complete our model by constructing a time-dependent network of continuously closing plate boundaries and gridded paleo-ages of oceanic basins, allowing us to test our plate model evolution against seismic tomography. In particular, slabs observed at depths shallower than ∼1000 km beneath northern Borneo and the South China Sea are likely to be remnants of the Proto South China Sea basin.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2013-09-02
    Description: Return flow in a deep subduction channel (DSC) has been proposed to explain rapid exhumation of high pressure-low temperature metamorphic rocks, entirely based on the fossil rock record. Supported by thermo-mechanical models, the DSC is envisioned as a thin layer on top of the subducted plate reaching down to minimum depths of about 150 km. We perform numerical simulations of high-frequency seismic wave propagation (1 to 6 Hz) to explore potential seismological evidence for the in-situ existence of a DSC. Motivated by field observations, for modeling purposes we assume a simple block-in-matrix structure with eclogitic blocks floating in a serpentinite matrix. Homogenization calculations for block-in-matrix structures demonstrate that effective seismic velocities in such composites are lower than in the surrounding oceanic crust and mantle, with nearly constant values along the entire length of the DSC. Synthetic seismograms for receivers at the surface computed for intermediate depth earthquakes in the subducted oceanic crust for models with and without DSC turn out to be markedly influenced by its presence or absence. In models with channel, P and S waveforms are dominated by delayed high-amplitude guided waves emanating from the waveguide formed by oceanic crust and DSC. Simulated patterns allow for definition of typical signatures and discrimination between models with and without DSC. These signatures stably recur in slightly modified form for earthquakes at different depths inside subducted oceanic crust. Comparison with available seismological data from intermediate depth earthquakes recorded in the forearc of the Hellenic subduction zone reveal similar multi-arrival patterns as observed in the synthetic seismograms for models with DSC. According to our results, observation of intermediate depth earthquakes along a profile across the forearc may allow to test the hypothesis of a DSC and to identify situations where such processes could be active today.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2013-07-19
    Description: The accuracy of ground deformation modelling at active volcanoes is a principal requirement in volcanic hazard mitigation. However, the reliability of such models relies on the accuracy of the rock physical property (permeability and elastic moduli) input parameters. Unfortunately, laboratory-derived values on representative rocks are usually rare. To this end we have performed a systematic laboratory study of the influence of pressure and temperature on the permeability and elastic moduli of the two most widespread tuffs from the Campi Flegrei volcanic district, Italy. Our data show that the water permeability of Neapolitan Yellow Tuff and a tuff from the Campanian Ignimbrite differ by about two orders of magnitude, highlighting the heterogeneous nature of the tuffs at Campi Flegrei. As pressure (depth) increases beyond the critical point for inelastic pore collapse (at an effective pressure of 10–15 MPa, or a depth of about 750 m), permeability and porosity decrease significantly, and ultrasonic wave velocities and dynamic elastic moduli increase significantly. Increasing the thermal stressing temperature increases the permeability and decreases the ultrasonic wave velocities and dynamic elastic moduli of the Neapolitan Yellow Tuff; whereas the tuff from the Campanian Ignimbrite remains unaffected. This difference is due the presence of thermally unstable zeolites within the Neapolitan Yellow Tuff. For both rocks we also find, under the same pressure conditions, that the dynamic (calculated from ultrasonic wave velocities) and static (calculated from triaxial stress-strain data) elastic moduli differ significantly. The choice of elastic moduli in ground deformation modelling is therefore an important consideration. While we urge that these new laboratory data should be considered in routine ground deformation modelling, we highlight the heterogeneous nature of the rocks that comprise the caldera at Campi Flegrei.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2013-07-03
    Description: The aim of this work was to investigate the effect of a experimental fire, used for grassland management, on soil organic carbon (SOC) reservoirs. The study was carried out on Hyparrhenia hirta (L.) Stapf (Hh) grassland and Ampelodesmos mauritanicus (Desf.) T. Durand and Schinz (Am) grasslands, located in the north of Sicily. Soil samples were collected at 0–5 cm before and after experimental fire and SOC was measured. During grassland fire soil surface temperature was monitored. Biomass of both grasses was analyzed in order to determine dry weight and its chemical composition. The results showed that SOC varied significantly with vegetation cover, while it is not affected in the short period by grassland fire. Am grassland stored more SOC compared with Hh grassland thanks to lower content in biomass of labile carbon pool. No significant difference was observed in SOC before and after fire which could be caused by several factors: first, in both grassland types the measured soil temperature during fire was low due to thin litter layers; second, in semiarid environment higher mineralization rate results in lower soil carbon labile pool; and third, the C stored in the finest soil fractions, physical protected, is not affected by fire.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2013-07-16
    Description: We calculated the seismic properties of 47 mantle xenoliths from 9 kimberlitic pipes in the Kaapvaal craton based on their modal composition, the crystal preferred orientations (CPO) of olivine, ortho- and clinopyroxene, and garnet, the Fe content of olivine, and the pressures and temperatures at which the rocks were equilibrated. These data allow constraining the variation of seismic anisotropy and velocities with depth. The fastest P wave and fast split shear wave (S1) polarization direction is always close to olivine [100] maximum. Changes in olivine CPO symmetry result in minor variations in the seismic anisotropy patterns. Seismic anisotropy is higher for high olivine contents and stronger CPO. Maximum P waves azimuthal anisotropy (AVp) ranges between 2.5 and 10.2% and S waves polarization anisotropy (AVs) between 2.7 and 8%. Seismic properties averaged in 20 km thick intervals depth are, however, very homogeneous. Based on these data, we predict the anisotropy that would be measured by SKS, Rayleigh (SV) and Love (SH) waves for 5 end-member orientations of the foliation and lineation. Comparison to seismic anisotropy data in the Kaapvaal shows that the coherent fast directions, but low delay times imaged by SKS studies and the low azimuthal anisotropy and SH faster than SV measured using surface waves may only be consistently explained by dipping foliations and lineations. The strong compositional heterogeneity of the Kaapvaal peridotite xenoliths results in up to 3% variation in density and in up to 2.3% of variation Vp, Vs and the Vp/Vs ratio. Fe depletion by melt extraction increases Vp and Vs, but decreases the Vp/Vs ratio and density. Orthopyroxene enrichment decreases the density and Vp, but increases Vs, strongly reducing the Vp/Vs ratio. Garnet enrichment increases the density, and in a lesser manner Vp and the Vp/Vs ratio, but it has little to no effect on Vs. These compositionally-induced variations are slightly higher than the velocity perturbations imaged by body-wave tomography, but cannot explain the strong velocity anomalies reported by surface wave studies. Comparison of density and seismic velocity profiles calculated using the xenoliths' compositions and equilibrium conditions to seismological data in the Kaapvaal highlights that: (i) the thickness of the craton is underestimated in some seismic studies and reaches at least 180 km, (ii) the deep sheared peridotites represent very local modifications caused and oversampled by kimberlites, and (iii) seismological models probably underestimate the compositional heterogeneity in the Kaapvaal mantle root, which occurs at a scale much smaller than the one that may be sampled seismologically.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2013-06-19
    Description: We studied three-dimensional (3-D) vesicle size distributions by X-ray microtomography in scoria collected during the relatively quiescent Phase II of the 2010 eruption at Eyjafjallajökull volcano, Iceland. Our goal was to compare the vesicle size distributions (VSDs) measured in these samples with those found in Stromboli volcano, Italy. Stromboli was chosen because its VSDs are well-characterized and show a correlation with eruption intensity: typical Strombolian activity produces VSDs with power-law exponents near 1, whereas larger and more energetic Vulcanian-type explosions and Plinian eruptions produce VSDs with power-law exponents near 1.5. The hypothesis to be tested was whether or not the samples studied in this work would contain VSDs similar to normal Strombolian products, display higher power-law exponents, or be described by exponential functions. Before making this comparison we tested the hypothesis that the phreatomagmatic nature of the Eyjafjallajökull eruption might have a significant effect on the VSDs. We performed 1 atm bubble-growth experiments in which the samples were inundated with water and compared them to similar, control, experiments without water inundation. No significant differences between the VSDs of the two sets of experiments were found, and the hypothesis is not supported by the experimental evidence; therefore, VSDs of magmatic and phreatomagmatic eruptions can be directly compared. The Phase II Eyjafjallajökull VSDs are described by power law exponents of ~ 0.8, typical of normal Strombolian eruptions. The comparable VSDs and behavior of Phase II of the Eyjafjallajökull 2010 eruption to Stromboli are interpreted to be a reflection of similar conduit systems in both volcanoes that are being constantly fed by the ascent of deep magma that mixes with resident magma at shallow depths. Such behavior implies that continued activity during Phase II of the Eyjafjallajökull eruption could be expected and would have been predicted, had our VSDs been measured in real time during the eruption. However, the products studied show no peculiar feature that could herald renewed eruption intensity observed in the following Phase III of the eruption.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2013-06-28
    Description: In a linear ill-posed inverse problem, the regularisation parameter (damping) controls the balance between minimising both the residual data misfit and the model norm. Poor knowledge of data uncertainties often makes the selection of damping rather arbitrary. To go beyond that subjectivity, an objective rationale for the choice of damping is presented, which is based on the coherency of delay-time estimates in different frequency bands. Our method is tailored to the problem of global Multiple-Frequency Tomography (MFT), using a data set of 287 078 S-wave delay-times measured in five frequency bands (10, 15, 22, 34, 51 s central periods). Whereas for each ray path the delay-time estimates should vary coherently from one period to the other, the noise most likely is not coherent. Thus, the lack of coherency of the information in different frequency bands is exploited, using an analogy with the cross-validation method, to identify models dominated by noise. In addition, a sharp change of behaviour of the model ℓ∞-norm, as the damping becomes lower than a threshold value, is interpreted as the signature of data noise starting to significantly pollute at least one model component. Models with damping larger than this threshold are diagnosed as being constructed with poor data exploitation. Finally, a preferred model is selected from the remaining range of permitted model solutions. This choice is quasi-objective in terms of model interpretation, as the selected model shows a high degree of similarity with almost all other permitted models (correlation superior to 98% up to spherical harmonic degree 80). The obtained tomographic model is displayed in mid lower-mantle (660–1910 km depth), and is shown to be compatible with three other recent global shear-velocity models. A wider application of the presented rationale should permit us to converge towards more objective seismic imaging of the Earth's mantle.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2013-04-09
    Description: We design three-dimensional dynamically self-consistent laboratory models of subduction to analyze the relationships between overriding plate deformation and subduction dynamics in the upper mantle. We investigate the effects of the subduction of a lithosphere of laterally variable buoyancy on the temporal evolution of trench kinematics and shape, horizontal flow at the top of the asthenosphere, dynamic topography and deformation of the overriding plate. The interface between the two units, analogue to a trench-perpendicular tear fault between a negatively buoyant oceanic plate and positively buoyant continental one, is either fully-coupled or shear-stress free. Differential rates of trench retreat, in excess of 6 cm yr−1 between the two units, trigger a more vigorous mantle flow above the oceanic slab unit than above the continental slab unit. The resulting asymmetrical sublithospheric flow shears the overriding plate in front of the tear fault, and deformation gradually switches from extension to transtension through time. The consistency between our models results and geological observations suggests that the Late Cenozoic deformation of the Aegean domain, including the formation of the North Aegean Trough and Central Hellenic Shear zone, results from the spatial variations in the buoyancy of the subducting lithosphere. In particular, the lateral changes of the subduction regime caused by the Early Pliocene subduction of the old oceanic Ionian plate redesigned mantle flow and excited an increasingly vigorous dextral shear underneath the overriding plate. The models suggest that it is the inception of the Kefalonia Fault that caused the transition between an extension dominated tectonic regime to transtension, in the North Aegean, Mainland Greece and Peloponnese. The subduction of the tear fault may also have helped the propagation of the North Anatolian Fault into the Aegean domain.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2013-04-15
    Description: Bilinear flow occurs when fluid is drained from a permeable matrix by producing it through an enclosed fracture of finite conductivity intersecting a well along its axis. The terminology reflects the combination of two approximately linear flow regimes, one in the matrix with flow essentially perpendicular to the fracture and one along the fracture itself associated with the non-negligible pressure drop in it. We investigated the characteristics, in particular the termination, of bilinear flow by numerical modeling allowing an examination of the entire flow field without prescribing the flow geometry in the matrix. Fracture storage capacity was neglected relying on previous findings that bilinear flow is associated with a quasi-steady flow in the fracture. Numerical results were generalized by dimensionless presentation. Definition of a dimensionless time that other than in previous approaches does not use geometrical parameters of the fracture permitted identifying the dimensionless well pressure for the infinitely long fracture as the master curve for type curves of all fractures with finite length from the beginning of bilinear flow up to fully developed radial flow. In log-log-scale the master curve's logarithmic derivative initially follows a 1/4-slope-straight line (characteristic for bilinear flow) and gradually bends into a horizontal line (characteristic for radial flow) for long times. During the bilinear flow period, isobars normalized to well pressure propagate with fourth and second root of time in fracture and matrix, respectively. The width-to-length ratio of the pressure field increases proportional to the fourth root of time during the bilinear period and starts to deviate from this relation close to the deviation of well pressure and its derivative from their fourth-root-of-time relations. At this time, isobars are already significantly inclined with respect to the fracture. The type curves of finite fractures all deviate counterclockwise from the master curve instead of clockwise or counterclockwise from the 1/4-slope-straight line as previously proposed. The counterclockwise deviation from the master curve was identified as the arrival of a normalized isobar reflected at the fracture tip sixteen times earlier. Nevertheless, two distinct regimes were found regarding pressure at the fracture tip when bilinear flow ends. For dimensionless fracture conductivities TD 〈 1, a significant pressure increase is not observed at the fracture tip until bilinear flow is succeeded by radial flow at a fixed dimensionless time. For TD 〉 10, the pressure at the fracture tip has reached substantial fractions of the associated change in well pressure when the flow field transforms towards intermittent formation linear flow at times that scale inversely with the fourth power of dimensionless fracture conductivity. Our results suggest that semi-log plots of normalized well pressure provide a means for the determination of hydraulic parameters of fracture and matrix after shorter test duration than for conventional analysis.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2013-01-16
    Description: The South Atlantic rift basin evolved as branch of a large Jurassic-Cretaceous intraplate rift zone between the African and South American plates during the final breakup of western Gondwana. While the relative motions between South America and Africa for post-breakup times are well resolved, many issues pertaining to the fit reconstruction and particular the relation between kinematics and lithosphere dynamics during pre-breakup remain unclear in currently published plate models. We have compiled and assimilated data from these intraplated rifts and constructed a revised plate kinematic model for the pre-breakup evolution of the South Atlantic. Based on structural restoration of the conjugate South Atlantic margins and intracontinental rift basins in Africa and South America, we achieve a tight fit reconstruction which eliminates the need for previously inferred large intracontinental shear zones, in particular in Patagonian South America. By quantitatively accounting for crustal deformation in the Central and West African rift zone, we have been able to indirectly construct the kinematic history of the pre-breakup evolution of the conjugate West African-Brazilian margins. Our model suggests a causal link between changes in extension direction and velocity during continental extension and the generation of marginal structures such as the enigmatic Pre-salt sag basin and the São Paulo High. We model an initial E–W directed extension between South America and Africa (fixed in present-day position) at very low extensional velocities until Upper Hauterivian times (≈126 Ma) when rift activity along in the equatorial Atlantic domain started to increase significantly. During this initial ≈17 Myr-long stretching episode the Pre-salt basin width on the conjugate Brazilian and West African margins is generated. An intermediate stage between 126.57 Ma and Base Aptian is characterised by strain localisation, rapid lithospheric weakening in the equatorial Atlantic domain, resulting in both progressively increasing extensional velocities as well as a significant rotation of the extension direction to NE–SW. From Base Aptian onwards diachronous lithospheric breakup occurred along the central South Atlantic rift, first in the Sergipe-Alagoas/Rio Muni margin segment in the northernmost South Atlantic. Final breakup between South America and Africa occurred in the conjugate Santos–Benguela margin segment at around 113 Ma and in the Equatorial Atlantic domain between the Ghanaian Ridge and the Piauí-Ceará margin at 103 Ma. We conclude that such a multi-velocity, multi-directional rift history exerts primary control on the evolution of this conjugate passive margins systems and can explain the first order tectonic structures along the South Atlantic and possibly other passive margins.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2013-03-27
    Description: To investigate the crystallization of pyroxene in spinifex-textured komatiites and in chondrites we undertook a series of experiments in which compositions in the CMAS system were cooling rapidly in a thermal gradient. Cooling rates were generally between 5 to 10 °C h−1 but some runs were made at 100–200 °C h−1; thermal gradients were between 10 and 20 °C cm−1. These conditions reproduced those at various levels in the crust of komatiitic lava flow. The starting composition was chosen to have pigeonite on the liquidus and a majority of the experiments crystallized zoned pigeonite-diopside crystals like those in komatiite lavas. A~conspicuous aspect of the experimental results was their lack of reproduceability. Some experiments crystallized forsterite whereas others that were run under similar conditions crystallized two pyroxenes and no forsterite; some experiments were totally glassy but others totally crystallized to pyroxene. The degree of supercooling at the onset of pyroxene crystallization was variable, from less than 25 °C to more than 110 °C. We attribute these results to the difficulty of nucleation of pyroxene. In some cases forsterite crystallized metastably and modified the liquid composition to inhibit pyroxene crystallization; in others no nucleation took place until a large degree of supercooling was achieved, then pyroxene crystallized rapidly. Pigeonite crystallized under a wide range of conditions, at cooling rates from 3 to 100 °C h−1. The notion that this mineral only forms at low cooling rates is not correct.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2013-06-27
    Description: Eruptive rates in volcanic arcs increase significantly after mega-thrust earthquakes in subduction zones. Over short to intermediate time periods the link between mega-thrust earthquakes and arc response can be attributed to dynamic triggering processes or static stress changes, but a fundamental mechanism that controls long-term pulses of volcanic activity after mega-thrust earthquakes has not been proposed yet. Using geomechanical, geological, and geophysical arguments, we propose that increased eruption rates over longer timescales are due to the relaxation of the compressional regime that accompanies mega-thrust subduction zone earthquakes. More specifically, the reduction of the horizontal stress σh promotes the occurrence of short-lived strike-slip kinematics rather than reverse faulting in the volcanic arc. The relaxation of the pre-earthquake compressional regime facilitates magma mobilization by providing a short-circuit pathway to shallow depths by significantly increasing the hydraulic properties of the system. The timescale for the onset of strike-slip faulting depends on the degree of shear stress accumulated in the arc during inter-seismic periods, which in turn is connected to the degree of strain-partitioning at convergent margins. We performed Coulomb stress transfer analysis to determine the order of magnitude of the stress perturbations in present-day volcanic arcs in response to five actual mega-thrust earthquakes; the 2005 M8.6, 2007 M8.5, and 2007 M7.9 Sumatra earthquakes; the 2010 M8.8 Maule, Chile earthquake; and the 2011 M9.0 Tohoku, Japan earthquake. We find that all, but one, the shallow earthquakes that occurred in the arcs of Sumatra, Chile and Japan show a marked lateral component. Our hypothesis suggests that the long-term response of volcanic arcs to subduction zone mega-thrust earthquakes will be manifested as predominantly strike-slip seismic events, and that these future earthquakes will be followed closely by seismic swarms, inflation, and other indications of a rising magma source.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2013-08-02
    Description: Permeability is one of the most important petrophysical parameters to describe the reservoir potential of sedimentary rocks, contributing to problems in hydrology, geothermics, or hydrocarbon reservoir analysis. Outcrop analog studies, well core measurements, or individual sample analysis take advantage of a variety of commercially available devices for permeability measurements. Very often, permeability data derived from different devices need to be merged within one study, e.g. outcrop mini-permeametry and lab-based core plug measurements. To enhance accuracy of different gas-driven permeability measurements, device-specific aberrations need to be taken into account. The application of simple one-to-one correlations may draw a wrong picture of permeability trends. For this purpose, transform equations need to be established. This study presents a detailed comparison of permeability data derived from a selection of commonly used Hassler cells and probe permeameters. As a result of individual cross-plots, typical aberrations and transform equations are elaborated which enable corrections for the specific permeameters. Permeability measurements of the commercially available ErgoTech Gas Permeameter and the TinyPerm II probe-permeameter are well-comparable over the entire range of permeability, with R2 = 0.967. Major aberrations are identified among the TinyPerm II and the mini-permeameter/Hassler-cell combination at Darmstadt University, which need to be corrected and standardized within one study. However, transforms are critical to their use, as aberrations are frequently limited to certain permeability intervals. In the presented examples, deviations typically tend to occur in the lower permeability range 〈 10 mD. Applying standardizations which consider these aberration intervals strongly improve the comparability of permeability datasets and facilitate the combination of measurement principles. Therefore, the utilization of such correlation tests is highly recommended for all kinds of reservoir studies using integrated permeability databases.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2013-06-07
    Description: The optimal use of conventional and unconventional hydrocarbon reservoirs depends, amongst others, on the local tectonic stress field. For example, wellbore stability, orientation of hydraulically induced fractures and – especially in fractured reservoirs – permeability anisotropies are controlled by the recent in situ stresses. Faults and lithological changes can lead to stress perturbations and produce local stresses that can significantly deviate from the regional stress field. Geomechanical reservoir models aim for a robust, ideally "pre-drilling" prediction of the local variations in stress magnitude and orientation. This requires a~numerical modelling approach that is capable to incorporate the specific geometry and mechanical properties of the subsurface reservoir. The workflow presented in this paper can be used to build 3-D geomechanical models based on the Finite Element Method (FEM) and ranging from field-scale models to smaller, detailed submodels of individual fault blocks. The approach is successfully applied to an intensively faulted gas reservoir in the North German Basin. The in situ stresses predicted by the geomechanical FE model were calibrated against stress data actually observed, e.g. borehole breakouts and extended leak-off tests. Such a validated model can provide insights into the stress perturbations in the inter-well space and undrilled parts of the reservoir. In addition, the tendency of the existing fault network to slip or dilate in the present-day stress regime can be addressed.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2013-03-20
    Description: The difficulties of seismic imaging beneath high velocity structures are widely recognised. In this setting, theoretical analysis of synthetic wide-angle seismic reflection data indicates that velocity models are not well constrained. A two-dimensional velocity model was built to simulate a simplified structural geometry given by a basaltic wedge placed within a sedimentary sequence. This model reproduces the geological setting in areas of special interest for the oil industry as the Faroe-Shetland Basin. A wide-angle synthetic dataset was calculated on this model using an elastic finite difference scheme. This dataset provided travel times for tomographic inversions. Results show that the original model can not be completely resolved without considering additional information. The resolution of nonlinear inversions lacks a functional mathematical relationship, therefore, statistical approaches are required. Stochastical tests based on Metropolis techniques support the need of additional information to properly resolve subbasalt structures.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2013-02-22
    Description: The agricultural Mediterranean areas are dedicated to arable crops (AC), but in the last few decades, a significant number of AC has a land use change (LUC) to olive grove cultivations (OG) and vineyards (V). A field study was conducted to determine the long-term effects (46 yr) of LUC (AC by OG and V) and to determine soil organic carbon (SOC), total nitrogen (TN), C:N ratio and their stratification across the soil entire profile, in Montilla-Moriles denomination of origin (DO), in Calcic-Chromic Luvisols (LVcc/cr), an area under semiarid Mediterranean conditions. The experimental design consisted of studying the LUC on one farm between 1965 and 2011. Originally, only AC was farmed in 1965, but OG and V were farmed up to now (2011). This LUC principally affected the thickness horizon, texture, bulk density, pH, organic matter, organic carbon, total nitrogen and C:N ratio. The LUC had a negative impact in the soil, affecting the SOC and TN stocks. The conversion from AC to V and OG involved the loss of the SOC stock (52.7% and 64.9% to V and OG, respectively) and the loss of the TN stock (42.6% and 38.1% to V and OG, respectively). With respect to the soil quality, the effect was opposite; 46\,yr after LUC improved the soil quality, increasing the stratification ratio (in V and OG) of SOC, TN and C:N ratio.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2013-01-17
    Description: Understanding the relationship between seismogenic slip at depth and surface deformation is fundamental in any seismic hazard analysis because the assessment of the earthquake potential of large continental faults relies largely on field investigations. The well-documented 6 April 2009, Mw 6.3, L'Aquila earthquake affords a unique opportunity to explore the relationships between the activity of the deep source and its surface evidence. We used available high-resolution geologic, geodetic and seismological data aided by analogue modeling to reconstruct the geometry of the seismogenic rupture in relation with surface and sub-surface faults. We contend that the earthquake was caused by a blind fault, controlled at depth by pre-existing discontinuities and expressed at the surface by pseudo-primary breaks resulting from coseismic crustal bending. Finally, we propose a scheme for hierarchizing normal faults that explains all surface occurrences related to blind faulting in the frame of a single, mechanically coherent, interpretative model. Failure to appreciate such complexity may result in severe over– or under-estimation of the local seismogenic potential.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...