ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-04
    Description: The physical integrity of a sub-volcanic basement is crucial in controlling the stability of a volcanic edifice. For many volcanoes, this basement can comprise thick sequences of carbonates that are prone to significant thermally-induced alteration. These debilitating thermal reactions, facilitated by heat from proximal magma storage volumes, promote the weakening of the rock mass and likely therefore encourage edifice instability. Such instability can result in slow, gravitational spreading and episodic to continuous slippage of unstable flanks, and may also facilitate catastrophic flank collapse. Understanding the propensity of a particular sub-volcanic basement to such instability requires a detailed understanding of the influence of high temperatures on the chemical, physical, and mechanical properties of the rocks involved. The juxtaposition of a thick carbonate substratum and magmatic heat sources makes Mt. Etna volcano an ideal candidate for our study. We investigated experimentally the effect of temperature on two carbonate rocks that have been chosen to represent the deep, heterogeneous sedimentary substratum under Mt. Etna volcano. This study has demonstrated that thermal-stressing resulted in a progressive and significant change in the physical properties of the two rocks. Porosity, wet (i.e., water-saturated) dynamic Poisson's ratio and wet Vp/Vs ratio all increased, whilst P- and S-wave velocities, bulk sample density, dynamic and static Young's modulus, dry Vp/Vs ratio, and dry dynamic Poisson's ratio all decreased. At temperatures of 800 °C, the carbonate in these rocks completely dissociated, resulting in a total mass loss of about 45% and the release of about 44 wt.% of CO2. Uniaxial deformation experiments showed that high in-situ temperatures (〉500 °C) significantly reduced the strength of the carbonates and altered their deformation behaviour. Above 500 °C the rocks deformed in a ductile manner and the output of acoustic emissions was greatly reduced. We speculate that thermally-induced weakening and the ductile behaviour of the carbonate substratum could be a key factor in explaining the large-scale deformation observed at Mt. Etna volcano. Our findings are consistent with several field observations at Mt. Etna volcano and can quantitatively support the interpretation of (1) the irregularly low seismic velocity zones present within the sub-volcanic sedimentary basement, (2) the anomalously high CO2 degassing observed, (3) the anomalously high Vp/Vs ratios and the rapid migration of fluids, and (4) the increasing instability of volcanic edifices in the lifespan of a magmatic system. We speculate that carbonate sub-volcanic basement may emerge as one of the decisive fundamentals in controlling volcanic stability.
    Description: Published
    Description: 42-60
    Description: 2R. Laboratori sperimentali e analitici
    Description: JCR Journal
    Description: restricted
    Keywords: Decarbonation ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-24
    Description: The sub-volcanic basement at Mt Etna (Italy) comprises thick sedimentary sequences. An understanding of the physical, mechanical, and microstructural properties of these sequences, and an appreciation of their variability, is important for an accurate assessment of the structural stability of Mt Etna. Here, we present a combined field and laboratory study in which we explore the extent of variability of the materials comprising the sedimentary basement of Mt Etna. To this end, we sampled twelve different lithological units that span the sediments of the Apenninic-Maghrebian Chain (from both the Sicilide and Ionides sequences) and the Hyblean Plateau. X-ray diffraction analysis of the blocks collected show that calcite and quartz are the predominant mineral phases. Textural analysis highlights the wide variability in rock microstructures,with features such as the presence/absence of fractures or veins, pore size and shape, and grain size and shape varying tremendously between the samples. One consequence of this microstructural, textural, and mineralogical variability is that the rock units are characterised by very different values of porosity, P-wave velocity, uniaxial compressive strength, and static Young’s modulus. For example, strength and Young’s modulus vary by a factor of twenty and an order of magnitude, respectively. Our study affirms the vast heterogeneity of the sub-volcanic sedimentary basement of Mt Etna and, on this basis, weurge cautionwhen selecting potentially oversimplified input parameters formodels of flank stability.
    Description: Published
    Description: 102-116
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: restricted
    Keywords: Uniaxial compressive strength, Young’s modulus, Microstructure, Porosity, P-wave velocity, Mineralogical composition ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2015-07-29
    Description: During earthquakes, comminution and frictional heating both contribute to the dissipation of stored energy. With sufficient dissipative heating, melting processes can ensue, yielding the production of frictional melts or “pseudotachylytes.” It is commonly assumed that the Newtonian viscosities of such melts control subsequent fault slip resistance. Rock melts, however, are...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-03-22
    Description: Volcanic eruptions are regulated by the rheology of magmas and their ability to degas. Both detail the evolution of stresses within ascending subvolcanic magma. But as magma is forced through the ductile-brittle transition, new pathways emerge as cracks nucleate, propagate, and coalesce, constructing a permeable network. Current analyses of magma dynamics center on models of the glass transition, neglecting important aspects such as incremental strain accommodation and (the key monitoring tool of) seismicity. Here, in a combined-methods study, we report the first high-resolution (20 μm) neutron-computed tomography and microseismic monitoring of magma failure under controlled experimental conditions. The data reconstruction reveals that a competition between extensional and shear fracturing modes controls the total magnitude of strain-to-failure and importantly, the geometry and efficiency of the permeable fracture network that regulates degassing events. Extrapolation of our findings yields magma ascent via strain localization along conduit margins, thereby providing an explanation for gas-and-ash explosions along arcuate fractures at active lava domes. We conclude that a coupled deformation-seismicity analysis holds a derivation of fracture mechanisms and network, and thus holds potential application in forecasting technologies.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-02-24
    Description: In sedimentary basins and volcanic edifices, granular materials undergo densification that results in a decrease of porosity and permeability. Understanding the link between porosity and permeability is central to predicting fluid migration in the sedimentary crust and during volcanic outgassing. Sedimentary diagenesis and volcanic welding both involve the transition of an initially granular material to a non-granular (porous to dense) rock. Scaling laws for the prediction of fluid permeability during such granular densification remain contested. Here, based on collated literature data for a range of sedimentary and volcanic rocks for which the initial material state was granular, we test theoretical scaling laws. We provide a statistical tool for predicting the evolution of the internal surface area of a system of particles during isotropic diagenesis and welding, which in turn facilitates the universal scaling of the fluid permeability of these rocks. We find agreement across a large range of measured natural permeabilities. We propose that this result will prove useful for geologists involved in modeling porosity-permeability evolution in similar settings.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-02-03
    Description: The elastic properties of homogeneous, isotropic materials are well constrained. However, in heterogeneous and evolving materials, these essential properties are less well-explored. During sintering of volcanic ash particles by viscous processes as well as during compaction and cementation of sediments, microstructure and porosity undergo changes that affect bulk dynamic elastic properties. Here using a model system of glass particles as an analogue for initially granular rock-forming materials, we have determined porosity and P -wave velocity during densification. Using these results, we test models for the kinetics of densification and the resultant evolution of the elastic properties to derive a quantitative description of the coupling between the kinetics of isotropic densification and the evolving dynamic elastic moduli. We demonstrate the power of the resultant model on a wide range of data for non-coherent sediments as well as sedimentary and volcanic rocks. We propose that such constraints be viewed as an essential ingredient of time-dependent models for the deformation of evolving materials in volcanoes and sedimentary basins.
    Keywords: Mineral Physics, Rheology, Heat Flow and Volcanology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-02-28
    Description: An anomalous body with low Vp (compressional wave velocity), low Vs (shear wave velocity), and high Vp/Vs anomalies is observed at 8–11 km depth beneath the upper east rift zone of Kilauea volcano in Hawaii by simultaneous inversion of seismic velocity structure and earthquake locations. We interpret this body to be a crustal magma reservoir beneath the volcanic pile, similar to those widely recognized beneath mid-ocean ridge volcanoes. Combined seismic velocity and petrophysical models suggest the presence of 10% melt in a cumulate magma mush. This reservoir could have supplied the magma that intruded into the deep section of the east rift zone and caused its rapid expansion following the 1975 M7.2 Kalapana earthquake.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-04-01
    Description: Tuff has been extensively used as a building material in volcanically and tectonically active areas over many centuries, despite its inherent low strength. A common and unfortunate secondary hazard accompanying both major volcanic eruptions and tectonic earthquakes is the initiation of catastrophic fires. Here we report new experimental results on the influence of high temperatures on the strength of three tuffs that are commonly used for building in the Neapolitan region of Italy. Our results show that a reduction in strength was only observed for one tuff; the other two were unaffected by high temperatures. The cause of this strength discrepancy was found to be a product of the initial mineralogical composition, or more specifically, the presence of thermally unstable zeolites within the initial rock matrix. The implications of these data are that, in the event of fire, only the stability of buildings or structures built from tuff containing thermally unstable zeolites will be reduced. Unfortunately, this includes the most widespread dimension stone in Neapolitan architecture. We recommend that this knowledge should be considered during fire hazard mitigation in the Neapolitan area and that other tuffs used in construction worldwide should be tested in a similar way to assess their fire resistance.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-12-01
    Description: Quantifying global soil carbon losses in response to warming Nature 540, 7631 (2016). doi:10.1038/nature20150 Authors: T. W. Crowther, K. E. O. Todd-Brown, C. W. Rowe, W. R. Wieder, J. C. Carey, M. B. Machmuller, B. L. Snoek, S. Fang, G. Zhou, S. D. Allison, J. M. Blair, S. D. Bridgham, A. J. Burton, Y. Carrillo, P. B. Reich, J. S. Clark, A. T. Classen, F. A. Dijkstra, B. Elberling, B. A. Emmett, M. Estiarte, S. D. Frey, J. Guo, J. Harte, L. Jiang, B. R. Johnson, G. Kröel-Dulay, K. S. Larsen, H. Laudon, J. M. Lavallee, Y. Luo, M. Lupascu, L. N. Ma, S. Marhan, A. Michelsen, J. Mohan, S. Niu, E. Pendall, J. Peñuelas, L. Pfeifer-Meister, C. Poll, S. Reinsch, L. L. Reynolds, I. K. Schmidt, S. Sistla, N. W. Sokol, P. H. Templer, K. K. Treseder, J. M. Welker & M. A. Bradford The majority of the Earth’s terrestrial carbon is stored in the soil. If anthropogenic warming stimulates the loss of this carbon to the atmosphere, it could drive further planetary warming. Despite evidence that warming enhances carbon fluxes to and from the soil, the net global balance between these responses remains uncertain. Here we present a comprehensive analysis of warming-induced changes in soil carbon stocks by assembling data from 49 field experiments located across North America, Europe and Asia. We find that the effects of warming are contingent on the size of the initial soil carbon stock, with considerable losses occurring in high-latitude areas. By extrapolating this empirical relationship to the global scale, we provide estimates of soil carbon sensitivity to warming that may help to constrain Earth system model projections. Our empirical relationship suggests that global soil carbon stocks in the upper soil horizons will fall by 30 ± 30 petagrams of carbon to 203 ± 161 petagrams of carbon under one degree of warming, depending on the rate at which the effects of warming are realized. Under the conservative assumption that the response of soil carbon to warming occurs within a year, a business-as-usual climate scenario would drive the loss of 55 ± 50 petagrams of carbon from the upper soil horizons by 2050. This value is around 12–17 per cent of the expected anthropogenic emissions over this period. Despite the considerable uncertainty in our estimates, the direction of the global soil carbon response is consistent across all scenarios. This provides strong empirical support for the idea that rising temperatures will stimulate the net loss of soil carbon to the atmosphere, driving a positive land carbon–climate feedback that could accelerate climate change.
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...