ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (158)
  • American Meteorological Society  (158)
  • 2015-2019  (158)
  • 1980-1984
  • 1940-1944
  • 2018  (158)
  • Journal of Applied Meteorology and Climatology. 2018; 57(1): 103-120. Published 2018 Jan 01. doi: 10.1175/jamc-d-17-0090.1.  (1)
  • Journal of Applied Meteorology and Climatology. 2018; 57(1): 121-136. Published 2018 Jan 01. doi: 10.1175/jamc-d-17-0174.1.  (1)
  • Journal of Applied Meteorology and Climatology. 2018; 57(1): 137-154. Published 2018 Jan 01. doi: 10.1175/jamc-d-17-0089.1.  (1)
  • Journal of Applied Meteorology and Climatology. 2018; 57(1): 15-30. Published 2018 Jan 01. doi: 10.1175/jamc-d-17-0023.1.  (1)
  • Journal of Applied Meteorology and Climatology. 2018; 57(1): 171-184. Published 2018 Jan 01. doi: 10.1175/jamc-d-17-0123.1.  (1)
  • Journal of Applied Meteorology and Climatology. 2018; 57(1): 185-192. Published 2018 Jan 01. doi: 10.1175/jamc-d-17-0254.1.  (1)
  • Journal of Applied Meteorology and Climatology. 2018; 57(1): 193-206. Published 2018 Jan 01. doi: 10.1175/jamc-d-17-0080.1.  (1)
  • Journal of Applied Meteorology and Climatology. 2018; 57(1): 3-14. Published 2018 Jan 01. doi: 10.1175/jamc-d-17-0097.1.  (1)
  • Journal of Applied Meteorology and Climatology. 2018; 57(1): 31-50. Published 2018 Jan 01. doi: 10.1175/jamc-d-17-0033.1.  (1)
  • Journal of Applied Meteorology and Climatology. 2018; 57(1): 51-79. Published 2018 Jan 01. doi: 10.1175/jamc-d-16-0408.1.  (1)
  • Journal of Applied Meteorology and Climatology. 2018; 57(1): 81-102. Published 2018 Jan 01. doi: 10.1175/jamc-d-17-0099.1.  (1)
  • Journal of Applied Meteorology and Climatology. 2018; 57(10): 2217-2229. Published 2018 Sep 17. doi: 10.1175/jamc-d-17-0250.1.  (1)
  • Journal of Applied Meteorology and Climatology. 2018; 57(10): 2231-2248. Published 2018 Sep 19. doi: 10.1175/jamc-d-18-0030.1.  (1)
  • Journal of Applied Meteorology and Climatology. 2018; 57(10): 2249-2265. Published 2018 Sep 25. doi: 10.1175/jamc-d-18-0022.1.  (1)
  • Journal of Applied Meteorology and Climatology. 2018; 57(10): 2267-2283. Published 2018 Oct 01. doi: 10.1175/jamc-d-17-0255.1.  (1)
  • Journal of Applied Meteorology and Climatology. 2018; 57(10): 2285-2296. Published 2018 Sep 27. doi: 10.1175/jamc-d-18-0097.1.  (1)
  • Journal of Applied Meteorology and Climatology. 2018; 57(10): 2297-2315. Published 2018 Sep 27. doi: 10.1175/jamc-d-18-0146.1.  (1)
  • Journal of Applied Meteorology and Climatology. 2018; 57(10): 2317-2341. Published 2018 Oct 01. doi: 10.1175/jamc-d-18-0008.1.  (1)
  • Journal of Applied Meteorology and Climatology. 2018; 57(10): 2343-2361. Published 2018 Oct 01. doi: 10.1175/jamc-d-17-0352.1.  (1)
  • Journal of Applied Meteorology and Climatology. 2018; 57(10): 2363-2373. Published 2018 Oct 01. doi: 10.1175/jamc-d-17-0308.1.  (1)
  • 130405
Collection
  • Articles  (158)
Publisher
Years
  • 2015-2019  (158)
  • 1980-1984
  • 1940-1944
Year
Journal
Topic
  • 1
    Publication Date: 2018-07-27
    Description: The Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) retrievals from the Terra and Aqua satellites currently provide the largest satellite aerosol dataset for investigating relationships to meteorological phenomena, such as aerosol impact on electrification in deep convection. The usefulness of polar-orbiting satellite aerosol retrievals in lightning inference is examined by correlating MODIS AOD retrievals with lightning observations of the thunderstorms in the summers during 2002–14 over northern Alabama. Lightning flashes during the 1400–1700 local standard time peak period show weak but positive correlations with the MODIS AOD retrievals 2–4 h earlier. The correlation becomes stronger in particular meteorological conditions, including weak vertical wind shear and prevailing northerly winds over northern Alabama. Results show that the MODIS AOD retrievals are less useful in predicting enhanced lightning flash rate for lightning-producing storms than the forecasts of other meteorological variables that are more closely linked to the intensification of convective storms. However, when relatively weaker convective available potential energy (CAPE) is forecast, the probability of enhanced lightning flash rate increases in a more polluted environment, making the knowledge of aerosols more useful in lightning inference in such CAPE regimes. The aerosol enhancement of lightning, if present, may be associated with enhanced convergence in the boundary layer and secondary convection.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-04-01
    Description: The successive stages of nocturnal atmospheric structure inside a small isolated basin are investigated when a katabatically driven flow on an adjacent tilted plain advects cold air over the basin rim. Data came from Arizona’s Meteor Crater during intensive observing period 4 of the Second Meteor Crater Experiment (METCRAX II) when a mesoscale flow above the plain was superimposed on the katabatic flow leading to a flow acceleration and then deceleration over the course of the night. Following an overflow-initiation phase, the basin atmosphere over the upwind inner sidewall progressed through three stages as the katabatic flow accelerated: 1) a cold-air-intrusion phase in which the overflowing cold air accelerated down the upwind inner sidewall, 2) a bifurcation phase in which the katabatic stable layer lifted over the rim included both a nonnegatively buoyant upper layer that flowed horizontally over the basin and a negatively buoyant lower layer (the cold-air intrusion) that continued on the slope below to create a hydraulic jump at the foot of the sidewall, and 3) a final warm-air-intrusion phase in which shear instability in the upper overflowing layer produced a lee wave that brought warm air from the elevated residual layer downward into the basin. Strong winds during the third phase penetrated to the basin floor, stirring the preexisting, intensely stable, cold pool. Later in the night a wind direction change aloft decelerated the katabatic wind and the atmosphere progressed back through the bifurcation and cold-air-intrusion phases. A conceptual diagram illustrates the first four evolutionary phases.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-05-01
    Description: The coupled ocean–atmosphere–wave–sediment transport model and the Weather Research and Forecasting (WRF) atmospheric model were used to simulate extreme rainfall events from 10 to 25 June 2010 in eastern Northeast Brazil (ENEB). The simulations aimed at investigating the improvements from using a coupled ocean–atmospheric model of meteorological systems as the ocean–atmosphere interactions intensified during the period when flood events occurred in ENEB. In June 2010, the sea surface temperature (SST) was warmer than 28.5°C in the western tropical South Atlantic Ocean with anomalies above 1°C, which are characteristics of a warm pool. The sensible and latent heat fluxes acted to moisten the lower troposphere and affected the height of the trade winds inversion layer (TWIL). The meteorological system that occurred at the low–midlevels during the period favored the weakening and even the breakdown of the TWIL. These atmospheric disturbances were associated with convergence, cyclonic vorticity, and upward water vapor motion to the midtroposphere levels. When the disturbances reached the coast of ENEB, they favored convection and intense rainfall over the region. Both coupled and uncoupled modeling experiments were performed with the same physical parameterizations and validated with in situ atmospheric and oceanic measurements. The results highlight that the predictions of extreme rainfall events were greatly improved with the coupled model.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-01
    Description: Sea-effect precipitation (SEP) over the Shandong Peninsula is a unique climatological phenomenon in mainland China, and it exerts a considerable impact on the southern shore of the Bohai Sea. From observed data from 123 stations for the period 1962–2012, the characteristics of cold-season (November–February) SEP in this area were analyzed. Results showed that SEP occurred throughout the late autumn and winter. In all, 1173 SEP days were identified during the 51 years, of which snow days accounted for 73.7% and rain and snow–rain days accounted for 16.1% and 10.1%, respectively. December had the largest number of SEP snow days, followed by January and November. November was the most productive month in terms of SEP rain and snow–rain days. Intense SEP snowfall mainly affected the inland hill area of the peninsula, whereas light SEP snowfall reached farther inland. SEP rainfall shared a similar pattern with snowfall. The SEP frequency showed a significant interannual variability and a nonsignificant upward trend over the period analyzed. SEP was most likely to occur when the temperature difference between sea surface and 850 hPa over the Bohai Sea was above 10°C, indicating a dominant influence of low-level cold-air advection over the sea on the generation and development of the weather phenomenon. A significant negative correlation was also found between the area of sea ice in the Bohai Sea and intense SEP snowfall, indicating that sea ice extent had an important effect on SEP variability over the peninsula. In the case of extremely intense SEP events, a deeper East Asian trough at the 500-hPa level developed over the southwest of the study area and temperature and geopotential height contours were orthogonal to each other, indicating strong geostrophic cold-air advection over the Bohai Sea and the Shandong Peninsula. The extremely intense SEP events were also characterized by anomalous low temperature and high relative humidity in the lower troposphere, which contributed to greater gravitational instability in the study area.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-01
    Description: The higher temperature in cities relative to their rural surroundings, known as the urban heat island (UHI), is one of the most well documented and severe anthropogenic modifications of the environment. Heat islands are hazardous to residents and the sustainability of cities during summertime and heat waves; on the other hand, they provide considerable benefits in wintertime. Yet, the evolution of UHIs during cold waves has not yet been explored. In this study, ground-based observations from 12 U.S. cities and high-resolution weather simulations show that UHIs not only warm urban areas in the winter but also further intensify during cold waves by up to 1.32° ± 0.78°C (mean ± standard deviation) at night relative to precedent and subsequent periods. Anthropogenic heat released from building heating is found to contribute more than 30% of the UHI intensification. UHIs thus serve as shelters against extreme-cold events and provide benefits that include mitigating cold hazard and reducing heating demand. More important, simulations indicate that standard UHI mitigation measures such as green or cool roofs reduce these cold-wave benefits to different extents. Cities, particularly in cool and cold temperate climates, should hence revisit their policies to favor (existing) mitigation approaches that are effective only during hot periods.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-05-01
    Description: Persistent high pressure conditions over the Mediterranean Basin favor the occurrence of sea breezes that can lead to ozone transport through complex recirculation patterns. These features were investigated during an ozone episode with hourly concentrations exceeding 200 μg m−3 that occurred on July 2015 in Naples (Italy), one of the largest and densest conurbations in the Mediterranean region. Aircraft measurements were taken at heights from 150 to 1500 m AGL and compared and integrated with high-resolution meteorological and air quality model simulations to investigate local circulation and pollutants dynamics. The integration of airborne measurements, surface observations, and modeling established a framework to assess the photochemical phenomena in the area. Sea breezes and local emissions triggered ozone production at inland areas, causing high concentrations between the coast and the Apennine chain. Ozone was then injected into the upper boundary layer and transported toward the sea by the wind rotation occurring above 500 m AGL, causing a complex vertical layering of concentrations, with maxima between 500 and 800 m AGL. Vertical growth of the ozone concentration profile was also caused by the decrease of the boundary layer depth occurring when the breeze front reached the inland area carrying NOx-rich air from the densely populated coast and favoring titration near the surface. Although the whole airshed was a net ozone producer, local surface concentrations were determined by a complex interaction of atmospheric flow and chemistry at different scales, supporting the need for coordinated efforts to control smog precursors over wide areas.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-03-01
    Description: Climate research in Portugal is often constrained by the lack of homogeneous, temporally and spatially consistent, and long-term climatic series. To overcome this limitation, the authors developed new high-resolution gridded datasets (~1 km) of daily mean, minimum, and maximum air temperatures over Portugal (1950–2015, 66 yr), based on gridded daily temperatures (E-OBS) at ~25-km spatial resolution. A two-step approach was followed, under the assumption that daily temperature variability in Portugal is mainly controlled by atmospheric large-scale forcing, while local processes are mostly expressed as strong spatial gradients. First, monthly baseline (1971–2000) patterns were estimated at 1-km grid resolution by applying multivariate linear regressions (exploratory variables: elevation, latitude, and distance to coastline). A kriging of residuals from baseline normals of 36 weather stations was applied for bias corrections. Second, bilinearly interpolated daily temperature anomalies were then added to the daily baseline patterns to obtain the final datasets. The method performance was evaluated using fivefold cross-validations. The datasets were also validated using daily temperatures from 23 stations not incorporated in E-OBS. A climatological analysis based on these datasets was carried out, highlighting spatial heterogeneities, seasonality, long-term trends, interannual variability, and extremes. The spatial and temporal variability is generally coherent with previous studies at coarser resolutions. An overall warming trend is apparent for all variables and indices, but showing different strengths and spatial variability. These datasets show important advantages over preexisting data, including more detailed and accurate information on trends and interannual variability of precipitation extremes, and can thus be applied to several areas of research in Portugal, such as hydrology, ecology, agriculture, and forestry.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-01
    Description: Marine boundary layer clouds are modified by processes at different spatial and temporal scales. To isolate the processes governing aerosol–cloud–precipitation interactions, multiday synoptic variability of the environment must be accounted for. Information on the location of low clouds relative to the ridge–trough pattern gives insight into how cloud properties vary as a function of environmental subsidence and stability. The technique of self-organizing maps (SOMs) is employed to objectively classify the 500-hPa geopotential height patterns for 33 years of reanalysis fields (ERA-Interim) into pretrough, trough, posttrough, ridge, and zonal-flow categories. The SOM technique is applied to a region of prevalent marine low cloudiness over the eastern North Atlantic Ocean that is centered on the Azores island chain, the location of a long-term U.S. Department of Energy observation site. The Azores consistently lie in an area of substantial variability in synoptic configuration, thermodynamic environment, and cloud properties. The SOM method was run in two ways to emphasize multiday and seasonal variability separately. Over and near the Azores, there is an east-to-west sloshing back and forth of the western edge of marine low clouds associated with different synoptic states. The different synoptic states also exhibit substantial north–south variability in the position of high clouds. For any given month of the year, there is large year-to-year variability in the occurrence of different synoptic states. Hence, estimating the climatological behavior of clouds from short-term field campaigns has large uncertainties. This SOM approach is a robust method that is broadly applicable to characterizing synoptic regimes for any location.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-07-01
    Description: A historical rainfall index, relevant to the grazing industries of Queensland, Australia, is described. We refer to our index as the Queensland grazing lands rainfall index (QGLRI), which is a long-term (1890/91–present) time series of austral summer (November–March) rainfall, spatially averaged over a region we define as the Queensland grazing lands region. We argue that our QGLRI better represents historical summer rainfall variability faced by the majority of the grazing industry in Queensland than does area-averaged statewide rainfall. The geographical boundaries of our region were chosen to 1) better represent the spatial patterns of land use, settlement, and livestock densities and 2) coincide with spatial patterns of airmass dominance. The selected region covers 59% of Queensland’s mainland area but carries more than 80% of the state’s livestock. The region’s boundaries also closely match the mean summer location of the boundaries of the “tropical maritime Pacific” air mass. The selected 5-month season (November–March) was chosen based on summer rainfall dominance, seasonal climatic effects restricting pasture and animal growth, and pasture management implications such as burning and the risk of overgrazing. We find that this season also corresponds to the timing of tropical maritime airmass dominance. The remaining regions of Queensland, far-northern and far-western Queensland, also correspond to well-defined dominant air masses, with properties that are markedly different from those of the tropical maritime Pacific air mass. We demonstrate that the rainfall regime in far-northern Queensland makes a strong contribution to statewide totals, resulting in statewide summer rainfall having lower variability than our QGLRI.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-05-01
    Description: The surface skin and air temperatures reported by the Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit-A (AIRS/AMSU-A), the Modern-Era Retrospective Analysis for Research and Applications (MERRA), and MERRA-2 at Summit, Greenland, are compared with near-surface air temperatures measured at National Oceanic and Atmospheric Administration (NOAA) and Greenland Climate Network (GC-Net) weather stations. The AIRS/AMSU-A surface skin temperature (TS) is best correlated with the NOAA 2-m air temperature (T2M) but tends to be colder than the station measurements. The difference may be the result of the frequent near-surface temperature inversions in the region. The AIRS/AMSU-A surface air temperature (SAT) is also correlated with the NOAA T2M but has a warm bias during the cold season and a larger standard error than the surface temperature. The extrapolation of the temperature profile to calculate the AIRS SAT may not be valid for the strongest inversions. The GC-Net temperature sensors are not held at fixed heights throughout the year; however, they are typically closer to the surface than the NOAA station sensors. Comparing the lapse rates at the two stations shows that it is larger closer to the surface. The difference between the AIRS/AMSU-A SAT and TS is sensitive to near-surface inversions and tends to measure stronger inversions than both stations. The AIRS/AMSU-A may be sampling a thicker layer than either station. The MERRA-2 surface and near-surface temperatures show improvements over MERRA but little sensitivity to near-surface temperature inversions.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2018-07-01
    Description: Lake-effect storms (LES) produce substantial snowfall in the vicinity of the downwind shores of the Great Lakes. These storms may take many forms; one type of LES event, lake to lake (L2L), occurs when LES clouds/snowbands develop over an upstream lake (e.g., Lake Huron), extend across an intervening landmass, and continue over a downstream lake (e.g., Lake Ontario). The current study examined LES snowfall in the vicinity of Lake Ontario and the atmospheric conditions during Lake Huron-to-Lake Ontario L2L days as compared with LES days on which an L2L connection was not present [i.e., only Lake Ontario (OLO)] for the cold seasons (October–March) from 2003/04 through 2013/14. Analyses of snowfall demonstrate that, on average, significantly greater LES snowfall totals occur downstream of Lake Ontario on L2L days than on OLO days. The difference in mean snowfall between L2L and OLO days approaches 200% in some areas near the Tug Hill Plateau and central New York State. Analyses of atmospheric conditions found more-favorable LES environments on L2L days relative to OLO days that included greater instability over the upwind lake, more near-surface moisture available, faster wind speeds, and larger surface heat fluxes over the upstream lake. Last, despite significant snowfalls on L2L days, their average contribution to the annual accumulated LES snowfall in the vicinity of Lake Ontario was found to be small (i.e., 25%–30%) because of the relatively infrequent occurrence of L2L days.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018-08-01
    Description: The properties of clouds derived using a suite of remote sensors on board the Australian research vessel (R/V) Investigator during the 5-week Clouds, Aerosols, Precipitation, Radiation, and Atmospheric Composition over the Southern Ocean (CAPRICORN) voyage south of Australia during March and April 2016 are examined and compared to similar measurements collected by CloudSat and CALIPSO (CC) and from data collected at Graciosa Island, Azores (GRW). In addition, we use depolarization lidar data to examine the thermodynamic phase partitioning as a function of temperature and compare those statistics to similar information reported from the CALIPSO lidar in low-Earth orbit. We find that cloud cover during CAPRICORN was 76%, dominated by clouds based in the marine boundary layer. This was lower than comparable measurements collected by CC during these months, although the CC dataset observed significantly more high clouds. In the surface-based data, approximately 2/3 (1/2) of all low-level layers observed had a reflectivity below −20 dBZ in the CAPRICORN data (GRW) with 30% (20%) of the layers observed only by the lidar. The phase partitioning in layers based in the lower 4 km of the atmosphere was similar in the two surface-based datasets, indicating a greater occurrence of the ice phase in subfreezing low clouds than what is reported from analysis of CALIPSO data.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2018-03-01
    Description: Dual-polarization radar rainfall estimation relationships have been extensively tested in continental and subtropical coastal rain regimes, with little testing over tropical oceans where the majority of rain on Earth occurs. A 1.5-yr Indo-Pacific warm pool disdrometer dataset was used to quantify the impacts of tropical oceanic drop-size distribution (DSD) variability on dual-polarization radar variables and their resulting utility for rainfall estimation. Variables that were analyzed include differential reflectivity Zdr; specific differential phase Kdp; reflectivity Zh; and specific attenuation Ah. When compared with continental or coastal convection, tropical oceanic Zdr and Kdp values were more often of low magnitude ( 0.3° km−1 thresholds. Because of these thresholds and the lack of hail, R(Kdp) was never used. At all wavelengths, R(z) was still needed 43% of the time during light rain (R 〈 5 mm h−1, Zdr 〈 0.25 dB), composing 7% of the total rain volume. As wavelength decreased, R(Kdp, ζdr) was used more often, R(z, ζdr) was used less often, and the blended algorithm became increasingly more accurate than R(z).
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2018-07-25
    Description: In this study, rainfall data are prepared at a 0.01° scale using 16-yr spaceborne radar data over the area of 36.13°S–36.13°N as provided by the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR). A spatial resolution that is finer than the field of view is obtained by assuming rainfall uniformity within an instantaneous footprint centered on the PR footprint geolocation. These ultra-high-resolution data reveal local rainfall concentrations over slope areas. A new estimate of the maximum rainfall at Cherrapunji, India, was observed on the valley side, approximately 5 km east of the gauge station, and is approximately 50% higher than the value indicated by the 0.1°-scale data. A case study of Yakushima Island, Japan, indicates that several percent of the sampling error arising from the spatial mismatch may be contained in conventional 0.05°-scale datasets generated without footprint areal information. The differences attributable to the enhancement in the resolution are significant in complex terrain such as the Himalayas. The differences in rainfall averaged for the 0.1° and 0.01° scales exceed 10 mm day−1 over specific slope areas. In the case of New Guinea, the mean rainfall on a mountain ridge can be 30 times smaller than that on an adjacent slope at a distance of 0.25°; this is not well represented by other high-resolution datasets based on gauges and infrared radiometers. The substantial nonuniformity of rainfall climatology highlights the need for a better understanding of kilometer-scale geographic constraints on rainfall and retrieval approaches.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2018-06-01
    Description: Surfzone sensible heat flux (HS,SZ) obtained through direct eddy-covariance estimates was measured at four different sandy beach sites along Monterey Bay, California. The HS,SZ source region is estimated from a footprint probability distribution function (pdf) model and is only considered when at least 70% of the footprint pdf occupies the surfzone. The measured HS,SZ is 2 times the modeled interfacial sensible heat (HS,int) using COARE3.5. A formulation for estimating sensible heat flux from spray droplets (HS,spray) generated during depth-limited wave breaking is developed. The sea-spray generation function for droplet radii ranging over 0.1 〈 ro 〈 1000 μm is based on self-similar spectra of spray droplets measured from the surfzone forced by the average depth-limited breaking wave dissipation across the surfzone. However, it is shown that the size of the spume droplets that contribute to HS,spray is limited owing to the relatively short residence time in air as the droplets fall to the sea surface during wave breaking. The addition of the surfzone-modeled HS,spray to the COARE3.5 HS,int gives values similar to the observed surfzone HS,SZ, highlighting the importance of depth-limited wave-breaking processes to sensible heat flux. Measured HS,SZ values are an order of magnitude larger than simultaneous open ocean observations.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2018-05-01
    Description: This study investigates to what extent weather types (WTs) computed over tropical North Africa and the tropical North Atlantic Ocean (40°W–40°E, 0°–30°N) are relevant for documenting intraseasonal and interannual temperature variability in tropical North Africa (west of 37°E, 2°–27°N). Nine WTs are extracted by using clustering analysis of the daily anomalies of sea level pressure and low-level 925-hPa winds from two reanalyses (NCEP–DOE and ERA-Interim) from 1979 to 2016. The analyses are carried out separately for February–March and for April–June, when temperatures reach their annual peak across most of the region. The WT patterns mix the effects of different multiscale phenomena, including the extratropical Rossby waves that travel on the northern edge of the domain (and are partly related to the North Atlantic Oscillation), the Madden–Julian oscillation, and Kelvin waves in the subequatorial zone. For each WT, warm (cold) minimum (TN) and maximum (TX) daily temperature anomalies tend to be systematically located east of cyclonic (anticyclonic) low-level circulation anomalies associated with the WT patterns. By modulating the greenhouse effect, the water vapor anomalies exert a major influence, leading to warm (cold) TX and TN anomalies associated with moister (drier) air, through advection from the tropical Atlantic or equatorial latitudes (the Sahara or northern latitudes) toward tropical North Africa. WTs are also useful for monitoring interannual variability of TX/TN anomalies mostly north of 10°N in February–March, even if they greatly underestimate the long-term warming trend. Most WTs significantly raise or lower the probability of regional-scale heat peaks, defined as the crossing of the 90th percentile of daily TX or TN.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018-08-01
    Description: The use of nudging in the Weather Research and Forecasting (WRF) Model to constrain regional climate downscaling simulations is gaining in popularity because it can reduce error and improve consistency with the driving data. While some attention has been paid to whether nudging is beneficial for downscaling, very little research has been performed to determine best practices. In fact, many published papers use the default nudging configuration (which was designed for numerical weather prediction), follow practices used by colleagues, or adapt methods developed for other regional climate models. Here, a suite of 45 three-year simulations is conducted with WRF over the continental United States to systematically and comprehensively examine a variety of nudging strategies. The simulations here use a longer test period than did previously published works to better evaluate the robustness of each strategy through all four seasons, through multiple years, and across nine regions of the United States. The analysis focuses on the evaluation of 2-m temperature and precipitation, which are two of the most commonly required downscaled output fields for air quality, health, and ecosystems applications. Several specific recommendations are provided to effectively use nudging in WRF for regional climate applications. In particular, spectral nudging is preferred over analysis nudging. Spectral nudging performs best in WRF when it is used toward wind above the planetary boundary layer (through the stratosphere) and temperature and moisture only within the free troposphere. Furthermore, the nudging toward moisture is very sensitive to the nudging coefficient, and the default nudging coefficient in WRF is too high to be used effectively for moisture.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2018-04-23
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2018-05-22
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2018-08-01
    Description: Convective surface winds in the contiguous United States are classified as severe at 50 kt (58 mi h−1, or 26 m s−1), whether measured or estimated. In 2006, NCDC (now NCEI) Storm Data, from which analyzed data are directly derived, began explicit categorization of such reports as measured gusts (MGs) or estimated gusts (EGs). Because of the documented tendency of human observers to overestimate winds, the quality and reliability of EGs (especially in comparison with MGs) has been challenged, mostly for nonconvective winds and controlled-testing situations, but only speculatively for bulk convective data. For the 10-yr period of 2006–15, 150 423 filtered convective-wind gust magnitudes are compared and analyzed, including 15 183 MGs and 135 240 EGs, both nationally and by state. Nonmeteorological artifacts include marked geographic discontinuities and pronounced “spikes” of an order of magnitude in which EG values (in both miles per hour and knots) end in the digits 0 or 5. Sources such as NWS employees, storm chasers, and the general public overestimate EGs, whereas trained spotters are relatively accurate. Analysis of the ratio of EG to MG and their sources also reveals an apparent warning-verification-influence bias in the climatological distribution of wind gusts imparted by EG reliance in the Southeast. Results from prior wind-tunnel testing of human subjects are applied to 1) illustrate the difference between measured and perceived winds for the database and 2) show the impact on the severe-wind dataset if EGs were bias-corrected for the human overestimation factor.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2018-08-01
    Description: The properties of clouds derived from measurements collected using a suite of remote sensors on board the Australian R/V Investigator during a 5-week voyage into the Southern Ocean during March and April 2016 are examined. Based on the findings presented in a companion paper (Part I), we focus our attention on a subset of marine boundary layer (MBL) clouds that form a substantial portion of the cloud-coverage fraction. We find that the MBL clouds that dominate the coverage fraction tend to occur in decoupled boundary layers near the base of marine inversions. The thermodynamic conditions under which these clouds are found are reminiscent of marine stratocumulus studied extensively in the subtropical eastern ocean basins except that here they are often supercooled with a rare presence of the ice phase, quite tenuous in terms of their physical properties, rarely drizzling, and tend to occur in migratory high pressure systems in cold-air advection. We develop a simple cloud property retrieval algorithm that uses as input the lidar-attenuated backscatter, the W-band radar reflectivity, and the 31-GHz brightness temperature. We find that the stratocumulus clouds examined have water paths in the 15–25 g m−2 range, effective radii near 8 μm, and number concentrations in the 20 cm−3 range in the Southern Ocean with optical depths in the range of 3–4. We speculate that addressing the high bias in absorbed shortwave radiation in climate models will require understanding the processes that form and maintain these marine stratocumulus clouds in southern mid- and high latitudes.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2018-04-01
    Description: At 0247 UTC 13 February 2013, a South Korean commercial aircraft encountered moderate-level clear-air turbulence at ~24 000 ft (~7.3 km) over the Yellow Sea (121.25°E, 38.55°N) en route from Incheon, South Korea, to Tianjin, China. Two crew members were severely injured by this event. To investigate the possible mechanisms of this event, a high-resolution numerical simulation using the Weather Research and Forecasting Model was conducted. In the synoptic-scale flow pattern, one of two bifurcated jet streams passed over the Yellow Sea, and strong horizontal and vertical gradients of the wind occurred on the northern edge of the jet stream near the flight route. An upper-level frontal system on the cyclonic shear side of the jet intensified as it moved northward toward a strengthening upper-level trough in northeastern China. The developed jet–frontal system induced strong vertical wind shear and tropopause folding, which extended down to about z = 5 km, near the observed turbulence region. Despite a relatively high stability with an intrusion of stratospheric air with tropopause folding, the strong vertical wind shear led to a small Richardson number in the incident region, which in turn induced the aviation turbulence through the Kelvin–Helmholtz instability. Although small-scale mountain waves were evident during the passage of flight before the incident time, breaking of these waves was not likely the key factor for the observed turbulence, given that the wave amplitudes were weak and that the strong zonal wind on the upstream of the mountain waves prohibited wave saturation and breakdown.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2018-03-20
    Description: Currently, there are several spaceborne microwave instruments suitable for the detection and quantitative estimation of snowfall. To test and improve retrieval snowfall algorithms, ground validation datasets that combine detailed characterization of snowfall microphysics and spatial precipitation measurements are required. To this endpoint, measurements of snow microphysics are combined with large-scale weather radar observations to generate such a dataset. The quantitative snowfall estimates are computed by applying event-specific relations between the equivalent reflectivity factor and snowfall rate to weather radar observations. The relations are derived using retrieved ice particle microphysical properties from observations that were carried out at the University of Helsinki research station in Hyytiälä, Finland, which is about 64 km east of the radar. For each event, the uncertainties of the estimate are also determined. The feasibility of using this type of data to validate spaceborne snowfall measurements and algorithms is demonstrated with the NASA GPM Microwave Imager (GMI) snowfall product. The detection skill and retrieved surface snowfall precipitation of the GPROF detection algorithm, versions V04A and V05A, are assessed over southern Finland. On the basis of the 26 studied overpasses, probability of detection (POD) is 0.90 for version V04A and 0.84 for version V05A, and corresponding false-alarm rates are 0.09 and 0.10, respectively. A clear dependence of detection skill on cloud echo top height is shown: POD increased from 0.8 to 0.99 (V04A) and from 0.61 to 0.94 (V05A) as the cloud echo top altitude increased from 2 to 5 km. Both versions underestimate the snowfall rate by factors of 6 (V04A) and 3 (V05A).
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2018-06-01
    Description: Hourly rainfall from automatic weather stations and reanalysis data from MERRA-2 are used to investigate the diurnal variation of precipitation in Hong Kong, a site along the southeast China coast with strong interactions between the monsoonal circulation and the land–sea breeze. The precipitation in Hong Kong is characterized by a spatially uniform diurnal cycle with the peak at about 0800 local time (LT), with rather weak dependence on local terrain. Precipitation unrelated to tropical cyclones (TCs) dominates the diurnal variation of precipitation, especially in the summer. The diurnal cycle exhibits a notable seasonal dependence, with the strongest signal in the summer. The morning peak of precipitation over Hong Kong is coincident with deep rising motion, linking to near-surface convergence and overlying weak divergence. The convergence may be attributed to the prevalence of the southerly monsoonal flow over the South China Sea (SCS) and to the northerly land breeze induced by the land–sea thermal contrast in the morning. The overlying weak divergence could be ascribed to the nocturnal–early morning acceleration of southerly flow over southeast China. Linked to the inverse relationship between monsoon intensity and the land–sea thermal contrast, the diurnal cycle of precipitation is strengthened when the SCS monsoon is active and weakened when the land–sea thermal contrast is high. Both the cloud-top radiative cooling effect and the enhanced radiative cooling over inland cloud-free areas also play roles in the development of the morning rainfall peak over Hong Kong.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2018-05-01
    Description: Episodes of extremely strong northerly winds (known as etesians) during boreal summer can cause hazardous conditions over the Aegean Archipelago (Greece) and represent a threat for the safe design, construction, and operation of wind energy turbines. Here, these extremes are characterized by employing a peak-over-threshold approach in the extended summer season (May–September) from 1989 to 2008. Twelve meteorological stations in the Aegean are used, and results are compared with 6-hourly wind speed data from five ERA-Interim–driven regional climate model (RCM) simulations from the European domain of the Coordinated Regional Climate Downscaling Experiment (EURO-CORDEX). The main findings show that, in the range of wind speeds for the maximum power output of the turbine, the most etesian-exposed stations could operate 90% at a hub height of 80 m. The central and northern Aegean are identified as areas prone to wind hazards, where medium- to high-wind (class II or I according to the International Electrotechnical Committee standards) wind turbines could be more suitable. In the central Aegean, turbines with a cutout wind speed 〉 25 m s−1 are recommended. Overall, RCMs can be considered a valuable tool for investigating wind resources at regional scale. Therefore, this study encourages a broader use of climate models for the assessment of future wind energy potential over the Aegean.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2018-04-01
    Description: Stratiform liquid-bearing clouds (LBCs), defined herein as either pure liquid or mixed-phase clouds, have a large impact on the surface radiation budget across the Arctic. LBCs lasting at least 6 h are observed at Summit, Greenland, year-round with a maximum in occurrence during summer. Mean cloud-base height is below 1 km for 85% of LBC cases identified, 59% have mean liquid water path (LWP) values between 10 and 40 g m−2, and most produce sporadic light ice-phase precipitation. During their occurrence, the atmosphere above the ice sheet is anomalously warm and moist, with southerly winds observed over much of the ice sheet, including at Summit. LBCs that occur when the North Atlantic Oscillation (NAO) is in the negative phase correspond to strong ridging centered over the Greenland Ice Sheet (GIS), allowing for southwesterly flow over the GIS toward Summit. During the positive phase of the NAO, the occurrence of LBCs corresponds to a cyclone located off the southeastern coast of the ice sheet, which leads to easterly-to-southeasterly flow toward Summit. Furthermore, air parcels at Summit frequently originate from below the elevation of Summit, indicating that orographic lift along the ice sheet is a factor in the occurrence of LBCs at Summit. LBCs are more frequently observed during the negative NAO, and both the LWP and precipitation rate are larger in LBCs occurring during this phase. Mean LWP in LBCs occurring during the negative NAO is 15 g m−2 larger than in LBCs occurring during the positive phase.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2018-04-01
    Description: This study compares the predictability of surface wind components by linear statistical downscaling using data from both observations and comprehensive models [regional climate models (RCM) and NCEP-2 reanalysis] in three domains: North America (NAM), Europe–Mediterranean Basin (EMB), and East Asia (EAS). A particular emphasis is placed on predictive anisotropy, a phenomenon referring to unequal predictability of surface wind components in different directions. Simulated predictability by comprehensive models is generally close to that found in observations in flat regions of NAM and EMB, but it is overestimated relative to observations in mountainous terrain. Simulated predictability in EAS shows different structures. In particular, there are regions in EAS where predictability simulated by RCMs is lower than that in observations. Overestimation of predictability by comprehensive models tends to occur in regions of low predictability in observations and can be attributed to small-scale physical processes not resolved by comprehensive models. An idealized mathematical model is used to characterize the predictability of wind components. It is found that the signal strength along the direction of minimum predictability is the dominant control on the strength of predictive anisotropy. The biases in the model representation of the statistical relationship between free-tropospheric circulation and surface winds are interpreted in terms of inadequate simulation of small-scale processes in regional and global models, and the primary cause of predictive anisotropy is attributed to such small-scale processes.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2018-04-01
    Description: A 2-yr cloud microphysical property dataset derived from ground-based remote sensors at the Atmospheric Radiation Measurement site near Barrow, Alaska, was used as input into a radiative transfer model to compute radiative heating rate (RHR) profiles in the atmosphere. Both the longwave (LW; 5–100 μm) and shortwave (SW; 0.2–5 μm) RHR profiles show significant month-to-month variability because of seasonal dependence in the vertical profiles of cloud liquid and ice water contents, with additional contributions from the seasonal dependencies of solar zenith angle, water vapor amount, and temperature. The LW and SW RHR profiles were binned to provide characteristic profiles as a function of cloud type and liquid water path (LWP). Single-layer liquid-only clouds are shown to have larger (10–30 K day−1) LW radiative cooling rates at the top of the cloud layer than single-layer mixed-phase clouds; this is due primarily to differences in the vertical distribution of liquid water between the two classes. However, differences in SW RHR profiles at the top of these two classes of clouds are less than 3 K day−1. The absolute value of the RHR in single-layer ice-only clouds is an order of magnitude smaller than in liquid-bearing clouds. Furthermore, for double-layer cloud systems, the phase and condensed water path of the upper cloud strongly modulate the radiative cooling both at the top and within the lower-level cloud. While sensitivity to cloud overlap and phase has been shown previously, the characteristic RHR profiles are markedly different between the different cloud classifications.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2018-03-01
    Description: A statistical downscaling algorithm is introduced to forecast surface wind speed at a location. The downscaling algorithm consists of resolved and unresolved components to yield a time series of synthetic wind speeds at high time resolution. The resolved component is a bias-corrected numerical weather prediction model forecast of the 10-m wind speed at the location. The unresolved component is a simulated time series of the high-frequency component of the wind speed that is trained to match the variance and power spectral density of wind observations at the location. Because of the stochastic nature of the unresolved wind speed, the downscaling algorithm may be repeated to yield an ensemble of synthetic wind speeds. The ensemble may be used to generate probabilistic predictions of the sustained wind speed or wind gusts. Verification of the synthetic winds produced by the downscaling algorithm indicates that it can accurately predict various features of the observed wind, such as the probability distribution function of wind speeds, the power spectral density, daily maximum wind gust, and daily maximum sustained wind speed. Thus, the downscaling algorithm may be broadly applicable to any application that requires a computationally efficient, accurate way of generating probabilistic forecasts of wind speed at various time averages or forecast horizons.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2018-04-01
    Description: Volcanic ash poses an ongoing risk to safety in the airspace worldwide. The accuracy with which volcanic ash dispersion can be forecast depends on the conditions of the atmosphere into which it is emitted. In this study, meteorological ensemble forecasts are used to drive a volcanic ash transport and dispersion model for the 2010 Eyjafjallajökull eruption in Iceland. From analysis of these simulations, the authors determine why the skill of deterministic-meteorological forecasts decreases with increasing ash residence time and identify the atmospheric conditions in which this drop in skill occurs most rapidly. Large forecast errors are more likely when ash particles encounter regions of large horizontal flow separation in the atmosphere. Nearby ash particle trajectories can rapidly diverge, leading to a reduction in the forecast accuracy of deterministic forecasts that do not represent variability in wind fields at the synoptic scale. The flow-separation diagnostic identifies where and why large ensemble spread may occur. This diagnostic can be used to alert forecasters to situations in which the ensemble mean is not representative of the individual ensemble-member volcanic ash distributions. Knowledge of potential ensemble outliers can be used to assess confidence in the forecast and to avoid potentially dangerous situations in which forecasts fail to predict harmful levels of volcanic ash.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2018-04-01
    Description: A 10-yr geostationary (GEO) overshooting cloud-top (OT) detection database using Multifunction Transport Satellite (MTSAT) Japanese Advanced Meteorological Imager (JAMI) observations has been developed over the Australian region. GEO satellite imagers collect spatially and temporally detailed observations of deep convection, providing insight into the development and evolution of hazardous storms, particularly where surface observations of hazardous storms and deep convection are sparse and ground-based radar or lightning sensor networks are limited. Hazardous storms often produce one or more OTs that indicate the location of strong updrafts where weather hazards are typically concentrated, which can cause substantial impacts on the ground such as hail, damaging winds, tornadoes, and lightning and to aviation such as turbulence and in-flight icing. The 10-yr OT database produced using an automated OT detection algorithm is demonstrated for analysis of storm frequency, diurnally, spatially, and seasonally relative to known features such as the Australian monsoon, expected regions of hazardous storms along the southeastern coastal regions of southern Queensland and New South Wales, and the preferential extratropical cyclone track along the Indian Ocean and southern Australian coast. A filter based on atmospheric instability, deep-layer wind shear, and freezing level was used to identify OTs that could have produced hail. The filtered OT database is used to generate a hail frequency estimate that identifies a region extending from north of Brisbane to Sydney and the Goldfields–Esperance region of eastern Western Australia as the most hail-prone regions.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2018-03-01
    Description: Decadal prediction is a relatively new branch of climate science that bridges the gap between seasonal climate forecasts and multidecadal-to-century projections of climate change. This paper develops a three-step framework toward the potential application of decadal temperature predictions using the Community Climate System Model, version 4 (CCSM4). In step 1, the predictions are evaluated and it is found that the temperature hindcasts show skill over some regions of the United States and Canada. In step 2, the predictions are manipulated using two methods: a deterministic-anomaly approach (like climate change projections) and a probabilistic tercile-based approach (like seasonal forecasts). In step 3, the predictions are translated by adding a delta (for the anomaly manipulation) and conducting a weighted resample (for the probabilistic manipulation), as well as using a new hybrid method. Using the 2010 initialized hindcast, the framework is demonstrated for predicting 2011–15 over two case-study watersheds [Ottawa (Canada) and Colorado]. For the Colorado watershed, there was a noticeable shift toward higher temperatures, and the delta, weighted resample, and hybrid translations all were better at capturing the observed temperatures than was an approach that used climatological values. For the Ottawa watershed, the observed temperatures over the period of prediction were only subtly different than the climatological values; therefore, the difference between the translation methods was less noticeable. The advantages and disadvantages of the manipulation and translation approaches are discussed, as well as how their use will depend on the user context. The authors emphasize that skill evaluations should be tailored to particular applications and identify additional steps that are needed before the decadal temperature predictions can be readily incorporated into applications.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2018-03-01
    Description: In atmospheric dispersion models driven by meteorological data from numerical weather prediction (NWP) models, it is necessary to include a parameterization for plume spread that is due to unresolved mesoscale motions. These are motions that are not resolved by the input NWP data but are larger in size than the three-dimensional turbulent motions represented by turbulence parameterizations. Neglecting the effect of these quasi-two-dimensional unresolved mesoscale motions has been shown to lead to underprediction of plume spread and overprediction of concentrations within the plume. NWP modeling is conducted at a range of resolutions that resolve different scales of motion. This suggests that any parameterization of unresolved mesoscale motions should depend on the resolution of the input NWP data. Spectral analysis of NWP data and wind observations is used to assess the mesoscale motions unresolved by the NWP model. Appropriate velocity variances and Lagrangian time scales for these motions are found by calculating the missing variance in the energy spectra and analyzing correlation functions. A strong dependence on the resolution of the NWP data is seen, resulting in larger velocity variances and Lagrangian time scales from the lower-resolution models. A parameterization of unresolved mesoscale motions on the basis of the NWP resolution is proposed.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2018-03-01
    Description: This paper presents a case study of a strong low-level jet (LLJ) that was observed about 20 km off the coast of Ocean City, Maryland, during a measurement campaign in the summer of 2013. Doppler wind lidar observations offshore, together with analyses of 4-km WRF Model data and NARR data, are used to reconstruct the forcing mechanisms that led to the growth and rapid collapse of the jet offshore as well as to differentiate the forcing mechanisms resulting in an LLJ farther inland. It was observed that the LLJ over the mid-Atlantic coastal plain decreased gradually throughout the early morning hours relative to the LLJ along the coastal ocean as a downslope wind moved eastward from the Appalachian Mountains. The forcing of the LLJ was a result of both thermal and mechanical mechanisms linked to the topography, while synoptic forcing from an approaching cold front led to a downslope wind. Data from a wind profiler near Cambridge, Maryland, also showed an LLJ, but forced by different regional conditions, emphasizing the difficulties of inferring wind conditions offshore from onshore observations. The sudden breakdown of the jet offshore appears to have been a result of an interaction with a downslope wind from the Appalachian Mountains. This particular case study highlights the 1) importance of both large-scale and regional forcing, 2) impact that topographical forcing farther inland had on offshore wind, and 3) different responses in the wind profile as a downslope wind moved across the mid-Atlantic region.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2018-03-01
    Description: Weather and climate variability strongly influence the people, infrastructure, and economy of Alaska. However, the sparse observational network in Alaska limits our understanding of meteorological variability, particularly of precipitation processes that influence the hydrologic cycle. Here, a new 14-yr (September 2002–August 2016) dataset for Alaska with 4-km grid spacing is described and evaluated. The dataset, generated with the Weather Research and Forecasting (WRF) Model, is useful for gaining insight into meteorological and hydrologic processes, and provides a baseline against which to measure future environmental change. The WRF fields are evaluated at annual, seasonal, and daily time scales against observation-based gridded and station records of 2-m air temperature, precipitation, and snowfall. Pattern correlations between annual mean WRF and observation-based gridded fields are r = 0.89 for 2-m temperature, r = 0.75 for precipitation, r = 0.82 for snow-day fraction, r = 0.55 for first snow day of the season, and r = 0.71 for last snow day of the season. A shortcoming of the WRF dataset is that spring snowmelt occurs too early over a majority of the state, due partly to positive 2-m temperature biases in winter and spring. Strengths include an improved representation of the interannual variability of 2-m temperature and precipitation and accurately simulated (relative to regional station observations) winter and summer precipitation maxima. This initial evaluation suggests that the 4-km WRF climate dataset robustly simulates meteorological processes and recent climatic variability in Alaska. The dataset may be particularly useful for applications that require high-temporal-frequency weather fields, such as driving hydrologic or glacier models. Future studies will provide further insight on its ability to represent other aspects of Alaska’s climate.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2018-07-01
    Description: This study used the first detailed radar measurements of the vertical structure of precipitation obtained in the central Andes of southern Peru and Bolivia to investigate the diurnal cycle and vertical structure of precipitation and melting-layer heights in the tropical Andes. Vertically pointing 24.1-GHz Micro Rain Radars in Cusco, Peru (3350 m MSL, August 2014–February 2015), and La Paz, Bolivia (3440 m MSL, October 2015–February 2017), provided continuous 1-min profiles of reflectivity and Doppler velocity. The time–height data enabled the determination of precipitation timing, melting-layer heights, and the identification of convective and stratiform precipitation features. Rawinsonde data, hourly observations of meteorological variables, and satellite and reanalysis data provided additional insight into the characteristics of these precipitation events. The radar data revealed a diurnal cycle with frequent precipitation and higher rain rates in the afternoon and overnight. Short periods with strong convective cells occurred in several storms. Longer-duration events with stratiform precipitation structures were more common at night than in the afternoon. Backward air trajectories confirmed previous work indicating an Amazon basin origin of storm moisture. For the entire dataset, median melting-layer heights were above the altitude of nearby glacier termini approximately 17% of the time in Cusco and 30% of the time in La Paz, indicating that some precipitation was falling as rain rather than snow on nearby glacier surfaces. During the 2015–16 El Niño, almost half of storms in La Paz had melting layers above 5000 m MSL.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2018-08-01
    Description: The ability of cool roofs and vegetation to reduce urban temperatures and improve human thermal stress during heat wave conditions is investigated for the city of Melbourne, Australia. The Weather Research and Forecasting Model coupled to the Princeton Urban Canopy Model is employed to simulate 11 scenarios of cool roof uptake across the city, increased vegetation cover across the city, and a combination of these strategies. Cool roofs reduce urban temperatures during the day, and, if they are installed across enough rooftops, their cooling effect extends to the night. In contrast, increasing vegetation coverage reduces nighttime temperatures but results in minimal cooling during the hottest part of the day. The combination of cool roofs and increased vegetation scenarios creates the largest reduction in temperature throughout the heat wave, although the relationship between the combination scenarios is nonsynergistic. This means that the cooling occurring from the combination of both strategies is either larger or smaller than if the cooling from individual strategies were to be added together. The drier, lower-density western suburbs of Melbourne showed a greater cooling response to increased vegetation without enhancing human thermal stress due to the corresponding increase in humidity. The leafy medium-density eastern suburbs of Melbourne showed a greater cooling response to the installation of cool roofs. These results highlight that the optimal urban cooling strategies can be different across a single urban center.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2018-07-01
    Description: Unusually hot weather is a major concern to public health as well as other systems (e.g., ecological, economical, energy). This study utilized spatially continuous and homogenized observational surface climate data to examine changes in the regularity of heat waves in the continental United States. This included the examination of heat waves according only to daytime temperatures, nighttime temperatures, and both daytime and nighttime temperatures. Results confirmed a strong increase in the prevalence of heat waves between the mid-1970s and the dataset end (2015), and that increase was preceded by a mild decrease since the dataset beginning (1948). Results were unclear whether the prevalence of nighttime or simultaneous daytime–nighttime heat waves increased the most, but it was clear that increases were largest in the summer. The largest gains occurred in the West and Southwest, and a “warming hole” was most conspicuous in the northern Great plains. The changes in heat wave prevalence were similar to changes in the mean temperatures, and more so in the daytime heat waves. Daytime and nighttime heat waves coincided with one another more frequently in recent years than they did in the 1970s. Some parts of the United States (West Coast) were more likely than other parts to experience daytime and nighttime heat waves simultaneously. While linear trends were not sensitive to the climate dataset, trend estimation method, or heat wave definition, they were mildly sensitive to the start and end dates and extremely sensitive to the climate base period method (fixed in time or directly preceding any given heat wave).
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2018-06-01
    Description: To study regional-scale carbon dioxide (CO2) transport, temporal variability, and budget over the Southern California Air Basin (SoCAB) during the California Research at the Nexus of Air Quality and Climate Change (CalNex) 2010 campaign period, a model that couples the Weather Research and Forecasting (WRF) Model with the Vegetation Photosynthesis and Respiration Model (VPRM) has been used. Our numerical simulations use anthropogenic CO2 emissions of the Hestia Project 2010 fossil-fuel CO2 emissions data products along with optimized VPRM parameters at “FLUXNET” sites, for biospheric CO2 fluxes over SoCAB. The simulated meteorological conditions have been validated with ground and aircraft observations, as well as with background CO2 concentrations from the coastal Palos Verdes site. The model captures the temporal pattern of CO2 concentrations at the ground site at the California Institute of Technology in Pasadena, but it overestimates the magnitude in early daytime. Analysis of CO2 by wind directions reveals the overestimate is due to advection from the south and southwest, where downtown Los Angeles is located. The model also captures the vertical profile of CO2 concentrations along with the flight tracks. The optimized VPRM parameters have significantly improved simulated net ecosystem exchange at each vegetation-class site and thus the regional CO2 budget. The total biospheric contribution ranges approximately from −24% to −20% (daytime) of the total anthropogenic CO2 emissions during the study period.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2018-04-01
    Description: Using cyclone-centered compositing and a database of extratropical-cyclone locations, the distribution of precipitation frequency and rate in oceanic extratropical cyclones is analyzed using satellite-derived datasets. The distribution of precipitation rates retrieved using two new datasets, the Global Precipitation Measurement radar–microwave radiometer combined product (GPM-CMB) and the Integrated Multisatellite Retrievals for GPM product (IMERG), is compared with CloudSat, and the differences are discussed. For reference, the composites of AMSR-E, GPCP, and two reanalyses are also examined. Cyclone-centered precipitation rates are found to be the largest with the IMERG and CloudSat datasets and lowest with GPM-CMB. A series of tests is conducted to determine the roles of swath width, swath location, sampling frequency, season, and epoch. In all cases, these effects are less than ~0.14 mm h−1 at 50-km resolution. Larger differences in the composites are related to retrieval biases, such as ground-clutter contamination in GPM-CMB and radar saturation in CloudSat. Overall the IMERG product reports precipitation more often, with larger precipitation rates at the center of the cyclones, in conditions of high precipitable water (PW). The CloudSat product tends to report more precipitation in conditions of dry or moderate PW. The GPM-CMB product tends to systematically report lower precipitation rates than the other two datasets. This intercomparison provides 1) modelers with an observational uncertainty and range (0.21–0.36 mm h−1 near the cyclone centers) when using composites of precipitation for model evaluation and 2) retrieval-algorithm developers with a categorical analysis of the sensitivity of the products to PW.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2018-07-01
    Description: This research is Part II of a two-part study that evaluates the ability of image-processing and select machine-learning algorithms to detect, classify, and track midlatitude mesoscale convective systems (MCSs) in radar-reflectivity images for the conterminous United States. This paper focuses on the tracking portion of this framework. Tracking is completed through a two-step process using slice (snapshots of instantaneous MCS intensity) data generated in Part I. The first step is to perform spatiotemporal matching, which associates slices through temporally adjacent radar-reflectivity images to generate swaths, or storm tracks. When multiple slices are found to be matches, a difference-minimization procedure is used to associate the most similar slice with the existing swath. Once this step is completed, a second step combines swaths that are spatiotemporally close. Tracking performance is assessed by calculating select metrics for all available swath-building perturbations to determine the optimal approach in tracking. Frequency maps and time series generated from the swaths suggest that the spatiotemporal occurrence of these swaths is reasonable as determined from previous work. Further, these events exhibit a diurnal cycle that is distinct from that of overall convection for the conterminous United States. Last, machine-learning predictions are found to limit areas of high MCS frequency to the central and eastern Great Plains.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2018-05-01
    Description: Low-level-jet (LLJ) periods are investigated by exploiting a long-term record of ground-based remote sensing Doppler wind lidar measurements supported by tower observations and surface flux measurements at the Jülich Observatory for Cloud Evolution (JOYCE), a midlatitude site in western Germany. LLJs were found 13% of the time during continuous observations over more than 4 yr. The climatological behavior of the LLJs shows a prevailing nighttime appearance of the jets, with a median height of 375 m and a median wind speed of 8.8 m s−1 at the jet nose. Significant turbulence below the jet nose only occurs for high bulk wind shear, which is an important parameter for describing the turbulent characteristics of the jets. The numerous LLJs (16% of all jets) in the range of wind-turbine rotor heights below 200 m demonstrate the importance of LLJs and the associated intermittent turbulence for wind-energy applications. Also, a decrease in surface fluxes and an accumulation of carbon dioxide are observed if LLJs are present. A comprehensive analysis of an LLJ case shows the influence of the surrounding topography, dominated by an open pit mine and a 200-m-high hill, on the wind observed at JOYCE. High-resolution large-eddy simulations that complement the observations show that the spatial distribution of the wind field exhibits variations connected with the orographic flow depending on the wind direction, causing high variability in the long-term measurements of the vertical velocity.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2018-05-01
    Description: The Short-Range Ensemble Forecast (SREF) system is verified and bias corrected for fire weather days (FWDs) defined as having an elevated probability of wildfire occurrence using a statistical Fire Weather Index (FWI) over a subdomain of the northeastern United States (NEUS) between 2007 and 2014. The SREF is compared to the Rapid Update Cycle and Rapid Refresh analyses for temperature, relative humidity, specific humidity, and the FWI. An additive bias correction is employed using the most recent previous 14 days [sequential bias correction (SBC)] and the most recent previous 14 FWDs [conditional bias correction (CBC)]. Synoptic weather regimes on FWDs are established using cluster analysis (CA) on North American Regional Reanalysis sea level pressure, 850-hPa temperature, 500-hPa temperature, and 500-hPa geopotential height. SREF severely underpredicts FWI (by two indices at FWI = 3) on FWDs, which is partially corrected using SBC and largely corrected with CBC. FWI underprediction is associated with a cool (ensemble mean error of −1.8 K) and wet near-surface model bias (ensemble mean error of 0.46 g kg−1) that decreases to near zero above 800 hPa. Although CBC improves reliability and Brier skill scores on FWDs, ensemble FWI values exhibit underdispersion. CA reveals three synoptic weather regimes on FWDs, with the largest cool and wet biases associated with a departing surface low pressure system. These results suggest the potential benefit of an operational analog bias correction on FWDs. Furthermore, CA may help elucidate model error during certain synoptic weather regimes.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2018-05-01
    Description: We report on measurements of drop size distributions (DSD) using collocated instruments (a Droplet Measurement Technologies, Inc., Meteorological Particle Spectrometer and a 2D-video disdrometer) from two locations with different rainfall climates (Greeley, Colorado, and Huntsville, Alabama, with measurements from the latter that include the outer rainbands of Hurricane Irma). The combination of the two instruments gives what we term as the “full” DSD spectra, the shape of which generally cannot be represented by the standard gamma model, but instead requires the additional flexibility of the generalized gamma model, which includes two shape parameters (μ and c). The double-moment normalization of DSDs using the third and fourth moments is used to arrive at the intrinsic shapes of the DSD with two shape parameters that are shown to capture simultaneously the drizzle mode as well as the precipitation mode, together with a “plateau” region between the two. The estimation of μ and c is done with a global search using nonlinear least squares, and the error residuals are examined to check the sensitivity of the parameters to a preselected, allowed tolerance around the minimum error in the μ, c plane. This leads to a range of plausible fits for a given normalized DSD mainly governed by the c parameter. The stability or invariance of the shape of the normalized DSDs from the two sites is examined, and on average the shapes are similar with some variability at the large normalized diameter end that is explained by the aforementioned range of plausible fits. Heuristic goodness-of-fit methods are described that demonstrate that the generalized gamma model outperforms the standard gamma model with only one shape parameter (μ).
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2018-07-01
    Description: This research evaluates the ability of image-processing and select machine-learning algorithms to identify midlatitude mesoscale convective systems (MCSs) in radar-reflectivity images for the conterminous United States. The process used in this study is composed of two parts: segmentation and classification. Segmentation is performed by identifying contiguous or semicontiguous regions of deep, moist convection that are organized on a horizontal scale of at least 100 km. The second part, classification, is performed by first compiling a database of thousands of precipitation clusters and then subjectively assigning each sample one of the following labels: 1) midlatitude MCS, 2) unorganized convective cluster, 3) tropical system, 4) synoptic system, or 5) ground clutter and/or noise. The attributes of each sample, along with their assigned label, are used to train three machine-learning algorithms: random forest, gradient boosting, and “XGBoost.” Results using a testing dataset suggest that the algorithms can distinguish between MCS and non-MCS samples with a high probability of detection and low probability of false detection. Further, the trained algorithm predictions are well calibrated, allowing reliable probabilistic classification. The utility of this two-step procedure is illustrated by generating spatial frequency maps of automatically identified precipitation clusters that are stratified by using various reflectivity and probabilistic prediction thresholds. These results suggest that machine learning can add value by limiting the amount of false-positive (non-MCS) samples that are not removed by segmentation alone.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2018-05-04
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2018-05-01
    Description: The wind stress formulation in an atmospheric model over shallow waters is investigated using year-long observations of the wind profile within the first 100 m of the atmosphere and mesoscale simulations. The model experiments use a range of planetary boundary layer parameterizations to quantify the uncertainty related to the turbulent closure assumptions and thus to isolate the dominant influence of the surface roughness formulation. Results indicate that a positive wind speed bias exists when common open-ocean formulations for roughness are adopted for a region with a water depth of 30 m. Imposition of a wind stress formulation that is consistent with previous shallow-water estimates is necessary to reconcile model wind speeds with observations, providing modeling evidence that supports the increase of surface drag over shallow waters. The possibility of including water depth in the parameterization of roughness length is examined.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2018-04-01
    Description: Accurate estimation of passive microwave land surface emissivity (LSE) is crucial for numerical weather prediction model data assimilation, for microwave retrievals of land precipitation and atmospheric profiles, and for a better understanding of land surface and subsurface characteristics. In this study, global instantaneous LSE is estimated for a 9-yr period from the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) and for a 5-yr period from the Advanced Microwave Scanning Radiometer 2 (AMSR2) sensors. Estimates of LSE from both sensors were obtained by using an updated algorithm that minimizes the discrepancy between the differences in penetration depths from microwave and infrared remote sensing observations. Concurrent ancillary datasets such as skin temperature from the Moderate Resolution Imaging Spectroradiometer (MODIS) and profiles of air temperature and humidity from the Atmospheric Infrared Sounder are used. The latest collection 6 of MODIS skin temperature is used for the LSE estimation, and the differences between collections 6 and 5 are also comprehensively assessed. Analyses reveal that the differences between these two versions of infrared-based skin temperatures could lead to approximately a 0.015 difference in passive microwave LSE values, especially in arid regions. The comparison of global mean LSE features from the combined use of AMSR-E and AMSR2 with an independent product—Tool to Estimate Land Surface Emissivity from Microwave to Submillimeter Waves (TELSEM2)—shows spatial pattern correlations of order 0.92 at all frequencies. However, there are considerable differences in magnitude between these two LSE estimates, possibly because of differences in incidence angles, frequencies, observation times, and ancillary datasets.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2018-04-30
    Description: Chaff is a radar countermeasure typically used by military branches in training exercises around the United States. Chaff within view of the S-band WSR-88D beam can appear prominently on radar users’ displays. Knowledge of chaff characteristics is useful for radar users to discriminate between chaff and weather echoes and for automated algorithms to do the same. The WSR-88D network provides dual-polarimetric capabilities across the United States, leading to the collection of a large database of chaff cases. This database is analyzed to determine the characteristics of chaff in terms of the reflectivity factor and polarimetric variables on large scales. Particular focus is given to the dynamics of differential reflectivity ZDR in chaff and its dependence on height. In contrast to radar observations of chaff for a single event, this study is able to reveal a repeatable and new pattern of radar chaff observations. A discussion about the observed characteristics is presented, and hypotheses for the observed ZDR dynamics are put forth.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2018-03-29
    Description: Heat waves are projected to increase in magnitude and frequency throughout this century because of increasing global temperatures, making it critically important to acquire improved understanding of their genesis and interactions with large cities. This study presents an application of the method of factor separation to assess combined impacts of a synoptic-scale heat wave, urban land cover, and urban energy and momentum fluxes on temperatures and winds over New York City, New York, via use of high-resolution simulations (1-km grid spacing) with an urbanized version of the Weather Research and Forecasting (WRF) Model. Results showed that factors behaved different throughout the day, with synoptic conditions dominating afternoon temperature contributions (〉7°C). At night, combined urban surface factors contributed over 5°C during the heat wave and up to 1.5°C on non-heat-wave days. Positive interactions among all factors during morning and nighttime indicate an amplification of the urban heat island of up to 4°C during the heat wave. Midtown Manhattan vertical cross sections, where urban canopies are most dense, showed a change in the sign (from positive to negative) of the contribution of the urban fluxes between night and day below 500 m, possibly as a result of decreased radiative cooling from trapping by buildings and increased thermal storage by buildings as well as frictional effects that oppose the incoming warm air.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2018-04-01
    Description: A 17-yr “climatology” of tropical-system activity, track, size, and 24-h intensity change in the southwest Indian Ocean (SWIO) is developed and analyzed in comparison with other intensively studied basins such as the North Atlantic Ocean. A first formulation of the empirical maximum potential intensity of SWIO tropical systems is also proposed, along with the climatology of sea surface temperatures from September to June. Systems with a 34-kt (1 kt = 0.514 m s−1) wind radius that does not exceed 46 km are considered to be very small or midget systems, on the basis of the 5th percentile of storm size distribution. Using the 95th percentile of overwater intensity changes, rapid intensification (RI) is statistically defined by a minimum increase of 15.4 m s−1 day−1 in the maximum 10-min mean surface wind speed (VMAX). This value is similar to the 30-kt threshold commonly used in the North Atlantic basin for 1-min sustained wind speeds. Rapid decay (RD) can be statistically defined by a minimum weakening of 13.9 m s−1 day−1, although the spread in the 5th percentile of intensity changes among the different intensity classes indicates that it is not as appropriate to use a unique RD threshold for all systems. It is shown that 43% of all tropical systems and all very intense tropical cyclones (VMAX ≥ 59.6 m s−1) underwent RI at least once during their lifetimes. It is highlighted that systems have a greater propensity to intensify rapidly for an initial intensity between 65 and 75 kt. Statistics indicate that operational intensity forecast errors are significantly greater at short range for RI cases while track errors are reduced.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2018-04-01
    Description: The Ontario Winter Lake-Effect Systems (OWLeS) field campaign during the winter season of 2013/14 provided unprecedented data with regard to the structure and behavior of long-lake-axis-parallel (LLAP) lake-effect storms. One of the interesting characteristics of LLAP storm bands is their ability to initiate lightning. The OWLeS datasets provide an opportunity to examine more thoroughly the kinematics and microphysics of lake-effect thunder-snowstorms than ever before. The OWLeS facilities and field personnel observed six lake-effect thunderstorms during December–January 2013/14. Most of them produced very little lightning (fewer than six cloud-to-ground strokes or intracloud pulses recorded by the National Lightning Detection Network). The 7 January 2014 storm had over 50 strokes and pulses, however, which resulted in 20 flashes over a 6-h period (0630–1230 UTC), making it the most electrically active storm during the field campaign. Relative to the 18 December 2013 storm, which only had three flashes, the 7 January 2014 case had a deeper boundary layer and greater instability. Also, 45% of the lightning during the 7 January storm was likely due to flashes initiated by wind turbines or other man-made antennas, along with all of the lightning observed during 18 December. No lightning was documented over Lake Ontario, the primary source of instability for these storms.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2018-02-01
    Description: Inference about time series in weather data can be made in several ways. Current practice focuses on computing summary measures, such as mean and variance, or constructing a reference year from small subsets of data derived from multiple years. Some applications require the selection of an instance of observed data over a fixed time frame, typically a year or more, for modeling. In addition, many current methods do not include rainfall as a parameter of interest. This paper reviews and refines existing methods for determining a reference year by creating a metric that measures the (abstract) distance between observed patterns of rainfall. The reference year is then chosen from a group of potential reference years. This method is computationally efficient, easily explained, and robust against differences in the index of reporting, to include leap years. Application of the distance metric to data from Philadelphia, Pennsylvania, and Norfolk, Virginia, shows that it appropriately identifies not only the years that are most typical for a location, but extreme years as well. Both are particularly useful in applications related to urban hydrology, which formed the basis for development of this method. Results also demonstrate that the proposed method is functionally different than existing methods. The distance metric represents an evolutionary step forward, overcomes some difficulties present from other approaches, and would be applicable to a number of cross-disciplinary applications.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2018-07-30
    Description: Turbulent wind data measured by sonic anemometers installed at various heights on a 140-m-tall micrometeorological tower located at a coastal site are used to obtain vertical profiles of the velocity standard deviations σi, Lagrangian decorrelation local time scales TLi, and eddy diffusivities Kα for distinct stability conditions. The novelty of the study lies in the use of turbulent data directly measured over the extension of the atmospheric surface layer at a coastal site for that purpose. Furthermore, the approach employs the Hilbert–Huang transform to determine the wind energy spectral peak frequencies. These are applied to the asymptotic spectral equation from Taylor statistical diffusion theory to obtain the turbulent dispersion parameters, which are shown to generally agree well with those provided by a classical autocorrelation approach. For neutral and stable situations the vertical profiles of momentum eddy diffusivities agree well with those derived from the spectral and autocorrelation method. Additionally, the turbulent integral time scales and eddy diffusivities determined by the method at a coastal location are found to overestimate those predicted from analytical expressions based on continental field observations. The turbulence parameters found are suitable to be employed in air pollution dispersion models.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2018-08-01
    Description: Recent improvements to an algorithm to be used operationally for downscaling screen temperatures from numerical weather prediction models are described. Testing against very high resolution dynamically downscaled screen temperatures and intensive field measurements taken during the Cold-Air Pooling Experiment (COLPEX) is performed. The improvements are based on a physical understanding of the processes involved in the formation of cold-air pools (CAPs) that is informed by recent research. The algorithm includes a parameterization of sidewall sheltering effects that lead to lower temperatures in valley-bottom CAPs on clear, calm nights. Advection and adjustment over exposed hilltops results in higher screen temperatures than on flat ground but lower temperatures relative to the free air above the valley at the same elevation, and a treatment of this effect has also been developed. These processes form the major contributions to the often dramatic small-scale variations in temperature in complex terrain in stable boundary layer conditions, even when height variation is fairly shallow. The improvements result in qualitatively better reproduction of subgrid temperature patterns in complex terrain during CAPs. Statistical forecast errors are subsequently improved.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2018-07-01
    Description: Dynamical downscaling (DDS) was conducted over Japan by using a regional atmospheric model with reanalysis data to investigate the rainfall duration bias over Kyushu, Japan, in July and August from 2006 to 2015. The model results showed that DDS had a positive rainfall duration bias over Kyushu and a dry bias over almost all of Kyushu, which were emphasized for extreme rainfall events. Investigated was the rainfall duration bias for heavy rainfall days, accompanied by synoptic-scale forcing, in which daily precipitation exceeded 30 mm day−1 and covered over 20% of the Kyushu area. Heavy rainfall days were sampled from observed rainfall data that were based on rain gauge and radar observations. A set of daily climatic variables of horizontal wind and equivalent potential temperature at 850 hPa and sea level pressure, around southwestern Japan, corresponding to the sampled dates, was selected to conduct a self-organizing map (SOM) and K-means method. The SOM and K-means method objectively classified three synoptic patterns related to heavy rainfall over Kyushu: strong monsoon, weak monsoon, and typhoon patterns. Rainfall duration had a positive bias in western Kyushu for the strong monsoon pattern and a positive bias in southern and east-coast Kyushu for the typhoon pattern, whereas there was little rainfall duration bias in the weak monsoon pattern. The bias for the typhoon pattern was related to rainfall events with a strong rainfall peak. The results suggest that bias correction for rainfall duration would be required for accurately estimating direct runoff in a catchment area in addition to the precipitation amount.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2018-07-01
    Description: Canadian Global Environmental Multiscale (GEM) numerical model output was compared with the meteorological data from an enhanced observational network to investigate the model’s ability to predict Lake Ontario lake breezes and their characteristics for two cases in the Greater Toronto Area—one in which the large-scale wind opposed the lake breeze and one in which it was in the same direction as the lake breeze. An enhanced observational network of surface meteorological stations, a C-band radar, and two Doppler wind lidars were deployed among other sensors during the 2015 Pan and Parapan American Games in Toronto. The GEM model was run for three nested domains with grid spacings of 2.5, 1, and 0.25 km. Comparisons between the model predictions and ground-based observations showed that the model successfully predicted lake breezes for the two events. The results indicated that using GEM 1 and 0.25 km increased the forecast accuracy of the lake-breeze location, updraft intensity, and depth. The accuracy of the modeled lake breeze timing was approximately ±135 min. The model underpredicted the surface cooling caused by the lake breeze. The GEM 0.25-km model significantly improved the temperature forecast accuracy during the lake-breeze circulations, reducing the bias by up to 72%, but it mainly underpredicted the moisture and overpredicted the surface wind speed. Root-mean-square errors of wind direction forecasts were generally high because of large biases and high variability of errors.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2018-07-01
    Description: Series of aerosol transport hindcasts for West Africa were conducted using the Weather Research and Forecasting (WRF) Model coupled to chemistry within the NASA-Unified WRF (NU-WRF) framework. The transport of biomass-burning aerosols in April and December 2009 was investigated over two types of simulation domains. One-month simulations with 9-km grid spacing for April or December 2009 covered most of North and West Africa and were evaluated by comparison with measurements of the total-column aerosol optical depth, Ångström exponent, and horizontal wind components at various pressure levels. The horizontal wind components at 700 hPa were identified as key factors in determining the transport patterns of biomass-burning aerosols from sub-Saharan West Africa to the Sahel. The vertical accumulation of biomass-burning aerosols close to 700 hPa was demonstrated in 1-day simulations with 1-km horizontal grid spacing. A new simple parameterization for the effects of heat release by biomass burning was designed for this resolution and tested together with the conventional parameterization based on fixed smoke injection heights. The aerosol vertical profiles were somewhat sensitive to the selection of parameterization, except for cases with the assumption of excessive heating by biomass burning. The new parameterization works reasonably well and offers flexibility to relate smoke transport to biomass-burning plume rise that can be correlated with the satellite fire radiative power measurements, which is advantageous relative to the conventional parameterization.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2018-10-30
    Description: Analyses of the radar-observed structure and derived rainfall statistics of warm-season convection developing columns of enhanced positive differential reflectivity ZDR over England’s southwest peninsula are presented here. Previous observations of ZDR columns in developing cumulonimbus clouds over England were rare. The observations presented herein suggest otherwise, at least in the southwesterly winds over the peninsula. The results are the most extensive of their kind in the United Kingdom; the data were collected using the National Centre for Atmospheric Science dual-polarization X-band radar (NXPol) during the Convective Precipitation Experiment (COPE). In contrast to recent studies of ZDR columns focused on deep clouds that developed in high-instability environments, the COPE measurements show relatively frequent ZDR columns in shallower clouds, many only 4–5 km deep. The presence of ZDR columns is used to infer that an active warm rain process has contributed to precipitation evolution in convection deep enough for liquid and ice growth to take place. Clouds with ZDR columns were identified objectively in three COPE deployments, with both discrete convection and clouds embedded in larger convective complexes developing columns. Positive ZDR values typically extended to 1–1.25 km above 0°C in the columns, with ZDR ≥ 1 dB sometimes extending nearly 4 km above 0°C. Values above 3 dB typically occurred in the lowest 500 m above 0°C, with coincident airborne measurements confirming the presence of supercooled raindrops. Statistical analyses indicated that the convection that produced ZDR columns was consistently associated with the larger derived rainfall rates when compared with the overall convective population sampled by the NXPol during COPE.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2018-05-01
    Description: Forecast climatologies are used to remove systematic errors from forecasts and to express forecasts as departures from normal. Forecast climatologies are computed from hindcasts by various averaging, smoothing, and interpolation procedures. Here the Climate Forecast System, version 2 (CFSv2), monthly forecast climatology provided by the NCEP Environmental Modeling Center (EMC) is shown to be biased in the sense of systematically differing from the hindcasts that are used to compute it. These biases, which are unexpected, are primarily due to fitting harmonics to hindcast data that have been organized in a particular format, which on careful inspection is seen to introduce discontinuities. Biases in the monthly near-surface temperature forecast climatology reach 2°C over North America for March targets and start times at the end of January. Biases in the monthly Niño-3.4 forecast climatology are also largest for start times near calendar-month boundaries. A further undesirable consequence of this fitting procedure is that the EMC forecast climatology varies discontinuously with lead time for fixed target month. Two alternative methods for computing the forecast climatology are proposed and illustrated. The proposed methods more accurately fit the hindcast data and provide a clearer representation of the CFSv2 model climate drift toward lower Niño-3.4 values for starts in March and April and toward higher Niño-3.4 values for starts in June, July, and August.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2018-06-01
    Description: Hydrologic extremes of drought and flooding stress water resources and damage communities in the Red River basin, located in the south-central United States. For example, the summer of 2011 was the third driest summer in Oklahoma state history and the driest in Texas state history. When the long-term drought conditions ended in the spring of 2015 as El Niño brought record precipitation to the region, there were also catastrophic floods that caused loss of life and property. Hydrologic extremes such as these have occurred throughout the historical record, but decision-makers need to know how the frequency of these events is expected to vary in a changing climate so that they can mitigate these impacts and losses. Therefore, the goals of this study focus on how these hydrologic extremes impact water resources in the Red River basin, how the frequency of such events is expected to change in the future, and how this study can aid local water-resource managers and decision-makers. Heavy-precipitation events were defined at the historical 90th and 99th percentiles, and severe-drought events were identified at a threshold of the standardized precipitation evapotranspiration index’s value of less than or equal to −1. The results show an increase in the frequency of severe-drought events in the western Red River basin and a rise in heavy-rainfall events in the east by the end of the century, especially under RCP 8.5. Therefore, decision-makers and water-resource managers will likely need to prepare for both hydrologic extremes depending on their location within the basin.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2018-07-01
    Description: Synoptic-scale atmospheric conditions play a critical role in determining the frequency and intensity of snow-cover-ablation events. Using a synoptic weather-classification technique, distinct regional circulation patterns influencing the Great Lakes basin of North America are identified and examined in conjunction with daily snow-ablation events from 1960 to 2009. An ablation event is considered in this study to be an interdiurnal decrease in areal-weighted average snow depth of greater than 2.54 cm in magnitude over the entire Great Lakes basin. General meteorological characteristics associated with ablation-causing synoptic types are examined, and three individual case studies from prominent synoptic types are presented to understand the diversity of meteorological influences on regional snow ablation. Results indicate that a variety of synoptic weather conditions lead to snow ablation in the Great Lakes basin. The 10 most common synoptic types accounted for 66% of the 349 ablation events detected from 1960 to 2009. Snow ablation in the Great Lakes basin most commonly occurs when there is advection of warm and moist air into the region to provide the sensible and latent heat fluxes that are needed for melt, but ablation frequently occurs during rain-on-snow events and in instances of high pressure overhead. Ablation magnitude is highest during rain-on-snow synoptic types, and the interannual frequency of these types significantly decreased by 37% over 1960–2009. Conversely, the frequency of high-pressure-overhead synoptic types significantly increased by more than 30% from 1960 to 2009. Such changes may influence the hydrologic impact of these synoptic types on ablation over time.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2018-03-01
    Description: Spatiotemporal precipitation patterns were investigated on the western slopes of the central Andes Mountains by applying EOF and cluster analysis as well as the Weather Research and Forecasting (WRF) Model. In the semiarid catchment area in the highlands of Lima, Peru, the precipitation is assumed to be a cross-scale interplay of large-scale dynamics, varying sea surface temperatures (SSTs), and breeze-dominated slope flows. The EOF analysis was used to encompass and elucidate the upper-level circulation patterns dominating the transport of moisture. To delineate local precipitation regimes, a partitioning cluster analysis was carried out, which additionally should illustrate local effects such as the altitudinal gradient of the Andes. The results demonstrated that especially during the transition to the dry season, synoptic-scale circulation aloft controls the precipitation (correlation coefficients between 0.6 and 0.9), whereas in the remaining seasons the slope breezes due to the altitudinal gradient mainly determine the precipitation behavior. Further analysis with regard to the spatiotemporal precipitation variability revealed an inversion of the precipitation distribution along the elevational gradient within the study area, mainly during February (29%) and March (35%), that showed correlations with coastal SST patterns ranging between 0.56 and 0.67. WRF simulations of the underlying mechanisms disclosed that the large-scale circulation influences the thermally induced upslope flows while the strength of southeastern low-level winds related to the coastal SSTs caused a blocking of easterlies in the middle troposphere through a reduced anticyclonic effect. This interplay enables the generation of precipitation in the usually drier environment at lower elevations, which leads to a decrease in rainfall with increasing elevation.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2018-03-01
    Description: Using state-level monthly heating degree-day data, reconstructed per capita natural gas (NGr) consumption records for each state of the continental United States were calculated for 1895–2014 using linear regressions. The regressed monthly NGr values estimate the effects of twentieth- and early twenty-first-century climate variation on per capita natural gas usage, assuming a modern (1990–2013) consumption environment. Using these extended consumption records, the hypothetical effects of climate on past, current, and future natural gas (NG) use are estimated. By controlling for nonclimatic consumption effects, these extended reconstructions provide estimates of the sensitivity of NG consumption to historical climate variation, particularly long-term warming trends, occurring before the period of available consumption records. After detrending, the reconstructions are used to form improved estimates of interannual NG variation under current climate conditions. Given estimates of each state’s current consumption climatology and long-term trends in per capita consumption and current population trends, the net effect of warming and increasing population on future consumption is estimated. Significant long-term negative trends in per capita NG consumption are found in western and northeastern states and in Florida, while southeastern consumption effects reflect a multidecadal temperature cycle. Climate-related consumption effects found here are generally consistent with previous studies, with long-term trend effects limited to less than 12% and multidecadal regime effects limited to less than 9%. Given the stronger positive effects of increasing population on total state natural gas consumption, reduced per capita use associated with warming trends has a weak moderating effect on estimates of projected total consumption in 2043.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2018-07-30
    Description: During the North American monsoon global positioning system (GPS) Transect Experiment 2013, daily convective-permitting WRF simulations are performed in northwestern Mexico and the southern Arizona border region using the operational Global Forecast System (GFS) and North American Mesoscale Forecast System (NAM) models as lateral boundary forcing and initial conditions. Compared to GPS precipitable water vapor (PWV), the WRF simulations display a consistent moist bias in the initial specification of PWV leading to convection beginning 3–6 h early. Given appreciable observed rainfall, days are classified as strongly and weakly forced based only on the presence of an inverted trough (IV); gulf surges did not noticeably impact the development of mesoscale convective systems (MCSs) and related convection in northwestern Mexico. Strongly forced days display higher modeled precipitation forecast skill than weakly forced days in the slopes of the northern Sierra Madre Occidental (SMO) away from the crest, especially toward the west where MCSs account for the greatest proportion of all monsoon-related precipitation. A case study spanning 8–10 July 2013 illustrates two consecutive days when nearly identical MCSs evolved over northern Sonora. Although a salient MCS is simulated on the strongly forced day (9–10 July 2013) when an IV is approaching the core monsoon region, a simulated MCS is basically nonexistent on the weakly forced day (8–9 July 2013) when the IV is farther away. The greater sensitivity to the initial specification of PWV in the weakly forced day suggests that assimilation of GPS-derived PWV for these types of days may be of greatest value in improving model precipitation forecasts.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2018-06-01
    Description: It is necessary to calculate the saturation vapor pressure of water and of ice for some purposes in many disciplines. A number of formulas are available for this calculation. These formulas either are tedious or are not very accurate. In this study, a new formula has been developed by integrating the Clausius–Clapeyron equation. This new formula is simple and easy to remember. In comparison with the International Association for the Properties of Water and Steam reference dataset, the mean relative errors from this new formula are only 0.001% and 0.006% for the saturation vapor pressure of water and of ice, respectively, within a wide range of temperatures from −100° to 100°C. In addition, this new formula yields a mean relative error of 0.0005% within the commonly occurring temperature range (10°–40°C). Therefore, this new formula has significant advantages over the improved Magnus formula and can be used to calculate the saturation vapor pressure of water and of ice in a wide variety of disciplines.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2018-03-01
    Description: A statistical model for the occurrence of convective hazards was developed and applied to reanalysis data to detect multidecadal trends in hazard frequency. The modeling framework is based on an additive logistic regression for observed hazards that exploits predictors derived from numerical model data. The regression predicts the probability of a severe hazard, which is considered as a product of two components: the probability that a storm occurs and the probability of the severe hazard, given the presence of a storm [P(severe) = P(storm) × P(severe|storm)]. The model was developed using lightning data as an indication of thunderstorm occurrence and hazard reports across central Europe. Although it uses only two predictors per component, it is capable of reproducing the observed spatial distribution of lightning and yields realistic annual cycles of lightning, hail, and wind fairly accurately. The model was applied to ERA-Interim (1979–2016) across Europe to detect any changes in lightning, hail, and wind hazard occurrence. The frequency of conditions favoring lightning, wind, and large hail has increased across large parts of Europe, with the exception of the southwest. The resulting predicted occurrence of 6-hourly periods with lightning, wind, and large hail has increased by 16%, 29%, and 41%, respectively, across western and central Europe and by 23%, 56%, and 86% across Germany and the Alps during the period considered. It is shown that these changes are caused by increased instability in the reanalysis rather than by changes in midtropospheric moisture or wind shear.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2018-07-01
    Description: Sea-breeze circulations are a prominent source of diurnal wind variability along coastlines throughout the world. For Delaware, the sea breeze is the largest source of variability in the coastal wind field. We developed a detailed, year-round sea-breeze climatology for the Delaware coastline using 9 years of meteorological station data and an objective sea-breeze detection algorithm. Sea-breeze fronts were identified and characterized by timing, speed, and duration as well as the resulting temperature and humidity changes. The observed temperature change associated with the Delaware sea-breeze front varied spatially, as well as with season, time of day, location, and developmental stage of the front. The observed sea breeze also had some unique features because of the location of southern Delaware on the Delmarva Peninsula and the complicated shape of the local coastline. Details of the summertime sea breeze were further explored using simulations with the Weather Research and Forecasting Model for June–August of 2000–09. Model-simulated sea-breeze characteristics were then compared with the observed sea-breeze climatology whenever possible. Results suggest that the mesoscale atmospheric model is capable of simulating the complex, observed spatial and temporal characteristics of the Delaware Sea breeze. However, the sea breeze in the model was weaker than that observed and tended to dissipate earlier in the afternoon, making it a challenging phenomenon to detect and characterize in the model. Improved detection and simulation of the sea-breeze fronts will increase our understanding of the impact this regional phenomenal has on the local climate and on the populations living by the coast.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2018-06-01
    Description: TRMM PR 2A25, version 7 (V7), retrievals of reflectivity Z and rainfall rate R are compared with WSR-88D dual-polarimetric S-band radar data for 28 radars over the southeastern United States after matching their horizontal resolution and sampling. TRMM Ku-band measurements are converted to S-band approximations to more directly compare reflectivity estimates. Rain rates are approximated from WSR-88D data using the CSU–hydrometeor identification rainfall optimization (HIDRO) algorithm. Tropics-wide TRMM retrievals confirm previous findings of a low overlap fraction between extreme convective intensity, as approximated by the maximum 40-dBZ height, and extreme near-surface rain rates. WSR-88D data also confirm this low overlap but show that it is likely higher than TRMM PR retrievals indicate. For maximum 40-dBZ echo heights that extend above the freezing level, mean WSR-88D reflectivities at low levels are approximately 2 dB higher than TRMM PR reflectivities. Higher WSR-88D-retrieved rain rates for a given low-level reflectivity combine with these higher low-level reflectivities for a given maximum 40-dBZ height to produce rain rates that are approximately double those retrieved by the TRMM PR for maximum 40-dBZ heights that extend above the freezing level. TRMM PR path-integrated attenuation, and WSR-88D specific differential phase, differential reflectivity, and hail fraction indicate that the TRMM PR 2A25 V7 algorithm is possibly misidentifying low–midlevel hail and/or graupel as greater attenuating liquid, or vice versa. This misidentification, coupled with underestimation of path-integrated attenuation caused by nonuniform beamfilling and higher rain rates produced by specific differential phase (KDP)–R than Z–R relationships, results in low-biased 2A25 V7 rain rates in intense convection.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2018-06-01
    Description: A low-level turbulence (LLT) forecasting algorithm is proposed and implemented within the Graphical Turbulence Guidance (GTG) turbulence forecasting system. The LLT algorithm provides predictions of energy dissipation rate (EDR; turbulence dissipation to the one-third power), which is the standard turbulence metric used by the aviation community. The algorithm is based upon the use of distinct log-Weibull and lognormal probability distributions in a statistical remapping technique to represent accurately the behavior of turbulence in the atmospheric boundary layer for daytime and nighttime conditions, respectively, thus accounting for atmospheric stability. A 1-yr-long GTG LLT calibration was performed using the High-Resolution Rapid Refresh operational model, and optimum GTG ensembles of turbulence indices for clear-air and mountain-wave turbulence that minimize the mean absolute percentage error (MAPE) were determined. Evaluation of the proposed algorithm with in situ EDR data from the Boulder Atmospheric Observatory tower covering a range of altitudes up to 300 m above the surface demonstrates a reduction in the error by a factor of approximately 2.0 (MAPE = 55%) relative to the current operational GTG system (version 3). In addition, the probability of detection of typical small and large EDR values at low levels is increased by approximately 15%–20%. The improved LLT algorithm is expected to benefit several nonconventional turbulence-prediction sectors such as unmanned aerial systems and wind energy.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2018-04-01
    Description: The hail day climatology from 1961 to 2005 was previously studied based on hundreds of surface stations in China. Recently, both hail occurrence and maximum hail diameter (MHD) data from more than 2000 surface stations were released by the National Meteorological Information Center of China. These data enable hail climatology to be explored using both hail frequency (HF), which is defined as annual mean hail occurrence, and MHD records from more stations over the entire country. Following quality control, hail data from 2254 stations were selected for the period of 1980–2015. In general, HF increased with station topography height, with a maximum of more than 30 events per year in the Tibetan Plateau and a minimum of less than 1 event per year in southern China, whereas the station mean MHD decreased with topography height. The highest peak of the 80th-percentile cumulative distribution function of the annual MHD cycle in southern China occurred in May but was delayed to July in the north. Severe hail (MHD ≥ 20 mm; 5.32% of all cases) mainly occurred along the edge of the plain, near the mountainsides, and was most likely to develop in the afternoon.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2018-03-01
    Description: A case study in terms of variations in differential reflectivity ZDR observed at X band and snow crystal riming is presented for a light-snow event that occurred near Greeley, Colorado, on 26–27 November 2015. In the early portion of the event, ZDR values at near-surface levels were low (0–0.25 dB). During a second time period approximately 8 h later, ZDR values became distinctly positive (+2–3 dB). Digital photographs of the snow particles were obtained by a Multi-Angle Snowflake Camera (MASC) installed at a range of 13 km from the radar. Image-processing and machine-learning techniques applied to the MASC data showed that the snow particles were more heavily rimed during the low-ZDR time period. The aerodynamic effects of these rime deposits promoted a wider distribution of hydrometeor canting angles. The shift toward more random particle orientations underlies the observed reduction in ZDR during the period when more heavily rimed particles were observed in the MASC data.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2018-03-22
    Description: Utilizing the cloud parameters derived from the Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner and the near-surface rainfall detected by the TRMM Precipitation Radar, the differences of cloud parameters for precipitating clouds (PCs) and nonprecipitating clouds (NPCs) are examined in tropical cyclones (TCs) during daytime from June to September 1998–2010. A precipitation delineation scheme that is based on cloud parameter thresholds is proposed and validated using the independent TC datasets in 2011 and observational datasets from Terra/MODIS. Statistical analysis of these results shows that the differences in the effective radius of cloud particles Re are small for PCs and NPCs, while thick clouds with large cloud optical thickness (COT) and liquid water path (LWP) can be considered as candidates for PCs. The probability of precipitation increases rapidly as the LWP and COT increase, reaching ~90%, whereas the probability of precipitation reaches a peak value of only 30% as Re increases. The combined threshold of a brightness temperature at 10.8 μm (BT4) of 270 K and an LWP of 750 g m−2 shows the best performance for precipitation discrimination at the pixel levels, with the probability of detection (POD) reaching 68.2% and false-alarm ratio (FAR) reaching 31.54%. From MODIS observations, the composite scheme utilizing BT4 and LWP also proves to be a good index, with POD reaching 77.39% and FAR reaching 24.2%. The results from this study demonstrate a potential application of real-time precipitation monitoring in TCs utilizing cloud parameters from visible and infrared measurements on board geostationary weather satellites.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2018-03-01
    Description: This study examines the surface wind characteristics of Brazil on the basis of the location of the maximum high pressure center in the South Atlantic basin (SAB), known as the South Atlantic anticyclone (SAA), from three reanalysis datasets for the period of 1980–2014. Linear wind speed trends determined for Brazil are geographically related to surface and macroscale atmospheric conditions found in the SAB. The daily mean position of the SAA exhibited a latitudinal poleward shift for all seasons, and a longitudinal trend was dependent upon extratropical activity found in the SAB. Results also show that wind speed and sea level pressure for northern Brazil are dependent upon the latitudinal position of the SAA. Consequently, surface wind correlations for southern Brazil tend to be related to changes in the longitudinal position of the SAA, which result from transient anticyclones migrating over the SAB. An examination of positive and negative wind anomalies shows that shifts in the position of the SAA are coupled with changes in sea level pressure for northern Brazil and air temperature for southern Brazil. From these findings, a surface wind analysis was performed to demonstrate how the geographical location of the SAA affects wind speed anomalies across Brazil and the SAB. Results from this study can assist in understanding how atmospheric systems change within the SAB so that forthcoming socioeconomic and climate-related causes of wind for the country of Brazil can be known.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2018-01-31
    Description: Global warming, in combination with the urban heat island effect, is increasing the temperature in cities. These changes increase the risk of heat stress for millions of city dwellers. Given the large populations at risk, a variety of mitigation strategies have been proposed to cool cities—including strategies that aim to reduce the ambient air temperature. This paper uses common heat stress metrics to evaluate the performance of several urban heat island mitigation strategies. The authors found that cooling via reducing net radiation or increasing irrigated vegetation in parks or on green roofs did reduce ambient air temperature. However, a lower air temperature did not necessarily lead to less heat stress because both temperature and humidity are important factors in determining human thermal comfort. Specifically, cooling the surface via evaporation through the use of irrigation increased humidity—consequently, the net impact on human comfort of any cooling was negligible. This result suggests that urban cooling strategies must aim to reduce ambient air temperatures without increasing humidity, for example via the deployment of solar panels over roofs or via cool roofs utilizing high albedos, in order to combat human heat stress in the urban environment.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2018-01-01
    Description: In this study, an analytical solution for the steady-state fractional advection–diffusion equation was obtained to simulate the atmospheric dispersion of pollutants in a vertically inhomogeneous planetary boundary layer. The authors propose a method that uses the modified generalized integral Laplace transform technique to solve the transformed problem with a fractional derivative, resulting in a more general solution. The model results were compared with the fractional Gaussian model and demonstrate that, when considering an experimental dataset under moderately unstable conditions, fractional-derivative models perform better than traditional integer-order models.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2018-02-26
    Description: The application of an ensemble reduction technique to the European branch of the World Climate Research Program Coordinated Regional Downscaling Experiment (EURO-CORDEX) ensemble at resolution “EUR-11” (~12.5 km) under the RCP8.5 scenario is presented. The technique is based on monthly mean changes between a reference and two future time periods, calculated for eight regions in Germany, of the parameters near-surface air temperature (tas), precipitation totals (pr), contribution of precipitation from very wet days to precipitation totals (R95pTOT), near-surface specific humidity (huss), and surface downwelling shortwave radiation (rsds). The sensitivity of the reduction procedure with respect to a number of tuning parameters is investigated. When the optimal combination of tuning parameters is applied, the technique allows the reduction from 15 to 7 ensemble members, while the reduced ensemble reproduces about 94% of the spread of the full ensemble. Keeping in mind that climate projection ensembles are expected to grow substantially in the near future, this ensemble reduction technique can be useful to limit the computational efforts necessary for further processing and applications such as impact modeling.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2018-02-01
    Description: This study investigates the how riming in stratiform precipitation impacts polarimetric signatures. Using a vertically pointing Doppler X-band radar, cases can be separated into one of three groups: unrimed to lightly rimed, riming with no bimodal spectra and fall speeds greater than 2.0 m s−1, and riming with bimodal velocity spectra. By averaging polarimetric variables over a 20° by 10-km box near the X-band radar, different signatures were documented for each of the three groups. These polarimetric signatures were then compared with a simplified T-matrix scattering model. Differential reflectivity ZDR was the one polarimetric variable to consistently vary across all three groups. Unrimed to lightly rimed cases had profiles of polarimetric signatures similar to numerous previous studies. Riming cases without detectable bimodal spectra had ZDR values on the order of 0.2 dB lower than unrimed to lightly rimed cases, while cases with bimodal spectra had ZDR values about 0.2–0.4 dB higher than unrimed to lightly rimed cases. Both signatures were reproduced using populations of aggregates, dendrites, and needles in the T-matrix scattering model. While these signatures show the potential to identify riming, they are not enough larger than measurement biases and case-to-case variability to be confidently used without confirmation from other data sources, such as a vertically pointing radar.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2018-02-01
    Description: Cool roofs and green roofs are two important methods used to mitigate the urban heat island (UHI) effect. The Weather Research and Forecasting Model was used to investigate the UHI effect and the effectiveness of cool and green roof mitigation strategies in the Suzhou–Wuxi–Changzhou metropolitan area during an extreme heat wave episode in the summer of 2013. Both urban land-cover change and anthropogenic heat releases exacerbated high temperatures in the urban area. Notably, urban land-cover change and anthropogenic heat release were responsible for 64% and 36% of the UHI intensity, respectively. Both cool and green roofs decreased near-surface air temperatures. The most dramatic decrease in near-surface air temperature occurred in the late morning; nocturnal air temperature decreased slightly because of the decrease in urban heat storage associated with the cool roof strategy. In addition, the UHI mitigation strategies affected the entire urban boundary layer. The decrease in the potential temperature and static stability created a stable urban boundary layer in which turbulent kinetic energy (TKE) decreased simultaneously. Analysis of an urban belt near a large water body showed that the decrease in the surface skin temperature difference between land and the water body weakened the daytime lake breeze. This effect was observed in both the inflow in the boundary layer and the return flow above the boundary layer, and it decreased the heat and moisture exchange between the lake and land boundary layers.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2018-02-01
    Description: Heavy 30-day snowfall amounts were evaluated to identify spatial and temporal characteristics east of the Rocky Mountains in the United States during the period 1900–2016. An extensive data assessment identified 507 stations for use in this long-term climate study. The top 30-day heavy snowfall amount and the average of the top five 30-day heavy snowfall amounts were examined. Both amounts generally increased with latitude; however, much higher amounts were found downwind of the Great Lakes, at higher elevations, or in locations impacted by topographic features (e.g., Rockies, Black Hills, and Appalachians). When compared with the 1981–2010 average winter snowfall, the top 30-day amount was found to be greater than the winter average in most areas of the eastern United States. The number of stations experiencing a top-five 30-day heavy snowfall period in a winter ranged from 1 to 128 (1959/60), with a greater overall occurrence in the second half of the 117-yr period. Six episodes had 10% or more stations experiencing one of the top five 30-day snowfall amounts, with the February–March 1960 episode impacting 124 stations, and these episodes were associated with large negative 500-hPa height anomalies. The northern Great Plains, Great Lakes, Midwest, and Northeast experienced more top-five periods in the second half of the 117-yr period, whereas most of the southern states experienced top-five periods throughout the study’s time frame. Examining extremes at periods beyond the daily event and less than the season contributes to our knowledge of climate and provides useful information to snow-sensitive sectors.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2018-03-01
    Description: Lightning is a natural hazard that can lead to the ignition of wildfires, disruption and damage to power and telecommunication infrastructures, human and livestock injuries and fatalities, and disruption to airport activities. This paper examines the ability of six statistical and machine-learning classification techniques to distinguish between nonlightning and lightning days at the coarse spatial and temporal scales of current general circulation models and reanalyses. The classification techniques considered were 1) a combination of principal component analysis and logistic regression, 2) classification and regression trees, 3) random forests, 4) linear discriminant analysis, 5) quadratic discriminant analysis, and 6) logistic regression. Lightning-flash counts at six locations across Australia for 2004–13 were used, together with atmospheric variables from the ERA-Interim dataset. Tenfold cross validation was used to evaluate classification performance. It was found that logistic regression was superior to the other classifiers considered and that its prediction skill is much better than using climatological values. The sets of atmospheric variables included in the final logistic-regression models were primarily composed of spatial mean measures of instability and lifting potential, along with atmospheric water content. The memberships of these sets varied among climatic zones.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2018-02-26
    Description: Direct normal irradiance (DNI) is the main input for concentrating solar power (CSP) technologies—an important component in future energy scenarios. DNI forecast accuracy is sensitive to radiative transfer schemes (RTSs) and microphysics in numerical weather prediction (NWP) models. Additionally, NWP models have large regional aerosol uncertainties. Dust aerosols can significantly attenuate DNI in extreme cases, with marked consequences for applications such as CSP. To date, studies have not compared the skill of different physical parameterization schemes for predicting hourly DNI under varying aerosol conditions over Australia. The authors address this gap by aiming to provide the first Weather and Forecasting (WRF) Model DNI benchmarks for Australia as baselines for assessing future aerosol-assimilated models. Annual and day-ahead simulations against ground measurements at selected sites focusing on an extreme dust event are run. Model biases are assessed for five shortwave RTSs at 30- and 10-km grid resolutions, along with the Thompson aerosol-aware scheme in three different microphysics configurations: no aerosols, fixed optical properties, and monthly climatologies. From the annual simulation, the best schemes were the Rapid Radiative Transfer Model for global climate models (RRTMG), followed by the new Goddard and Dudhia schemes, despite the relative simplicity of the latter. These top three RTSs all had 1.4–70.8 W m−2 lower mean absolute error than persistence. RRTMG with monthly aerosol climatologies was the best combination. The extreme dust event had large DNI mean bias overpredictions (up to 4.6 times), compared to background aerosol results. Dust storm–aware DNI forecasts could benefit from RRTMG with high-resolution aerosol inputs.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2018-02-01
    Description: Measurements that link surface conditions and climate can provide critical information on important biospheric changes occurring in the Earth system. As the direct driving force of energy and water fluxes at the surface–atmosphere interface, land surface temperature (LST) provides information on physical processes of land-cover change and energy-balance changes that air temperature cannot provide. Annual maximum LST (LSTmax) is especially powerful at minimizing synoptic and seasonal variability and highlighting changes associated with extreme climatic events and significant land-cover changes. The authors investigate whether maximum thermal anomalies from satellite observations could detect heat waves and droughts, a melting cryosphere, and disturbances in the tropical forest from 2003 to 2014. The 1-km2 LSTmax anomalies peaked in 2010 when 20% of the global land area experienced anomalies of greater than 1 standard deviation and over 4% of the global land area was subject to positive anomalies exceeding 2 standard deviations. Positive LSTmax anomalies display complex spatial patterns associated with heat waves and droughts across the global land area. The findings presented herein show that entire biomes are experiencing shifts in their LSTmax distributions driven by extreme climatic events and large-scale land surface changes, such as melting of ice sheets, severe droughts, and the incremental effects of forest loss in tropical forests. As climate warming and land-cover changes continue, it is likely that Earth’s maximum surface temperatures will experience greater and more frequent directional shifts, increasing the possibility that critical thresholds in Earth’s ecosystems and climate system will be surpassed, resulting in profound and irreversible changes.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2018-02-26
    Description: A critical determinant of aircraft performance is density altitude, or the density given as a height above mean sea level, which is dependent on air temperature, pressure, and humidity. These meteorological variables change on various time scales (e.g., hourly, seasonal, and decadal) and are regionally impacted by large-scale climate variability as the result of phenomena such as El Niño–Southern Oscillation or the Arctic Oscillation. Here a statistical analysis is performed to determine the impacts of climate variability on seasonally averaged density altitude, a key metric used by pilots to determine aircraft performance and efficiency, as a function of El Niño–Southern Oscillation and the Arctic Oscillation using NCEP–NCAR reanalysis data and historical aviation meteorological records. Regressions show regional dependencies and impacts to density altitudes that vary as a function of season for both El Niño–Southern Oscillation and Arctic Oscillation cases. The results highlight the importance of understanding the regional nature of the impact of climate variability on density altitude and the potential impacts on aviation operations.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2018-03-01
    Description: Sundowners are downslope windstorms that occur over the southern slopes of the east–west-trending Santa Ynez range in Santa Barbara County, California. In the past, many extreme fires in the area, including the Painted Cave, Montecito Tea, Jesusita, and Sherpa fires, have occurred during sundowner events. A high-resolution 11-yr dynamically downscaled climatology was produced using a numerical weather prediction model in order to elucidate the general dynamical characteristics of sundowners. The downscaled climatology is validated with observations during the 2016 Sherpa fire. A sundowner index (SI) is computed from the climatology that quantifies the magnitude of adiabatic warming and northerly (downslope) wind component during sundowner events. The SI allows for the classification of historical events into categories of various strengths. The primary characteristics of strong sundowners from this classification include 1) internal gravity wave breaking over the Santa Ynez range, 2) initiation in the western Santa Ynez range with eastward progression over the course of a day, 3) a maximum likelihood of occurrence in April and May near 2000 Pacific standard time, and 4) a limited downstream extent for most events, such that the long-term historical weather station, Santa Barbara airport, often does not experience moderate events. Analysis of an operational forecast rubric composed of the surface pressure difference from Bakersfield to Santa Barbara indicates that this rubric is not skillful. However, offshore pressure gradients are skillful and are related to the strong northwesterly alongshore jet. The findings presented herein can be used to provide guidance for fire weather forecasts and support resource allocation during fire suppression efforts.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2018-03-01
    Description: Wind energy requires accurate forecasts for adequate integration into the electric grid system. In addition, global atmospheric models are not able to simulate local winds in complex terrain, where wind farms are sometimes placed. For this reason, the use of mesoscale models is vital for estimating wind speed at wind turbine hub height. In this regard, the Weather Research and Forecasting (WRF) Model allows a user to apply different initial and boundary conditions as well as physical parameterizations. In this research, a sensitivity analysis of several physical schemes and initial and boundary conditions was performed for the Alaiz mountain range in the northern Iberian Peninsula, where several wind farms are located. Model performance was evaluated under various atmospheric stabilities and wind speeds. For validation purposes, a mast with anemometers installed at 40, 78, 90, and 118 m above ground level was used. The results indicate that performance of the Global Forecast System analysis and European Centre for Medium-Range Weather Forecasts interim reanalysis (ERA-Interim) as initial and boundary conditions was similar, although each performed better under certain meteorological conditions. With regard to physical schemes, there is no single combination of parameterizations that performs best during all weather conditions. Nevertheless, some combinations have been identified as inefficient, and therefore their use is discouraged. As a result, the validation of an ensemble prediction system composed of the best 12 deterministic simulations shows the most accurate results, obtaining relative errors in wind speed forecasts that are
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2018-02-01
    Description: Five years of 0.01° latitude × 0.01° longitude multiradar multisensor grids of composite reflectivity and vertically integrated signals from the maximum expected size of hail (MESH) and vertically integrated liquid (VIL) were created to examine the role of city size on thunderstorm occurrence and strength around four cities: Dallas–Fort Worth, Texas; Minneapolis–St. Paul, Minnesota; Oklahoma City, Oklahoma; and Omaha, Nebraska. A storm-tracking algorithm identified thunderstorm areas every minute and connected them together to form tracks. These tracks defined the upwind and downwind regions around each city on a storm-by-storm basis and were analyzed in two ways: 1) by sampling the maximum value every 10 min and 2) by accumulating the spatial footprint over its lifetime. Beyond examining all events, a subset of events corresponding to favorable conditions for urban modification was explored. This urban favorable (UF) subset consisted of nonsupercells occurring in the late afternoon/evening in the meteorological summer on weak synoptically forced days. When examining all thunderstorm events, regions at variable ranges upwind of all four cities generally had higher areal mean values of reflectivity, MESH, and VIL relative to downwind areas. In the UF subset, the larger cities (Dallas–Fort Worth and Minneapolis–St. Paul) had a 24%–50% increase in the number of downwind thunderstorms, resulting in a higher areal mean reflectivity, MESH, and VIL in this region. The smaller cities (Oklahoma City and Omaha) did not show such a downwind enhancement in thunderstorm occurrence and strength for the radar variables examined. This pattern suggests that larger cities could increase thunderstorm occurrence and intensity downwind of the prevailing flow under unique environmental conditions.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2018-02-01
    Description: Among the best ways to gain more certainty in climate model prediction is to compare and constrain simulations with worldwide satellite measurements of the Earth radiation budget (ERB) short- and longwave radiant fluxes (SW and LW), which drive climate processes. Recent calls to ensure orbital ERB measurements track true climate, rather than instrument changes, led to the creation of the Moon and Earth Radiation Budget Experiment (MERBE). This independent project is recalibrating multiple existing ERB devices from different international space agencies so they adhere to common SI-traceable radiometric standards, by regularly sampling the unaltering constants of lunar reflectivity/emissivity, thus ensuring no artificial trends exist. This work details the use of MODTRAN to give an instantaneous SW and LW Earth spectrum for all scenes viewed by devices in the project, to then be used with instrument spectral responses for unfiltering radiances. In the majority of cases when data from a collocated imager are available, a dual-layer unfiltering is also performed separately on cloudy and cloud-free areas, yielding clear and overcast ERB spectral results. Additionally, use is made of improved in-flight methods to derive spectral responses from a previous American Meteorological Society study, and comparisons between Earth MERBE radiances from two identical devices operating on Terra/Aqua are shown along with results from the CERES project. These demonstrate an order of magnitude improvement in relative accuracy for edition 1 MERBE results over CERES and show that the latest CERES data are less accurate and stable than claimed.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2018-02-01
    Description: Univariate quantile mapping (QM), a technique often used to statistically postprocess climate simulations, may generate physical inconsistency. This issue is investigated here by classifying physical inconsistency into two types. Type I refers to the attribution of an impossible value to a single variable, and type II refers to the breaking of a fixed intervariable relationship. Here QM is applied to relative humidity (RH) and its parent variables, namely, temperature, pressure, and specific humidity. Twelve sites representing various climate types across North America are investigated. Time series from an ensemble of ten 3-hourly simulations are postprocessed, with the CFSR reanalysis used as the reference product. For type I, results indicate that direct postprocessing of RH generates supersaturation values (〉100%) at relatively small frequencies of occurrence. Generated supersaturation amplitudes exceed observed values in fog and clouds. Supersaturation values are generally more frequent and higher when RH is deduced from postprocessed parent variables. For type II, results show that univariate QM practically always breaks the intervariable thermodynamic relationship. Heuristic proxies are designed for comparing the initial bias with physical inconsistency of type II, and results suggest that QM generates a problem that is arguably lesser than the one it is intended to solve. When physical inconsistency is avoided by capping one humidity variable at its saturation level and deducing the other, statistical equivalence with the reference product remains much improved relative to the initial situation. A recommendation for climate services is to postprocess RH and deduce specific humidity rather than the opposite.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2018-01-01
    Description: Tropical cyclones (TCs) tend to change translation direction and speed when moving across Taiwan’s Central Mountain Range (CMR), which makes forecasting of landfalling points a challenging task. This study examines the statistical characteristics of unusual TC tracks around Taiwan Island during the 66-yr period of 1949–2014. Results show that 1) about 10% more TCs were deflected to the right than to the left as they moved across the CMR, but with more occurrences of the latter on Taiwan’s eastern coast and southern strait; 2) TCs around Taiwan Island moved slower than the average speed over the western North Pacific Ocean but then exhibited anomalous acceleration along Taiwan’s eastern coast and anomalous deceleration over the southern Taiwan Strait; 3) about 33% of TCs passing the island were accompanied by terrain-induced secondary low pressure centers (SCs), more favored in the northwestern, southwestern, and southeastern quadrants, with the TC–SC separation distance varying from 33 to 643 km; 4) about 36% of landfalling TCs experienced discontinuous tracks, with an average separation distance of 141 km at the time when TC centers were replaced by SCs, and smaller Froude numbers than those associated with continuous-tracking TCs; and 5) a total of 12 TCs had looping movements near Taiwan Island, most of which were accompanied by SCs on their southern or western sides. Results also indicate that a stronger SC was likely to take place when a stronger TC approached the CMR with a shorter separation distance and that a weaker SC was likely to take place when a weaker TC approached the CMR with a longer separation distance.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2018-02-01
    Description: Because of the harsh weather conditions on the Antarctic continent, year-round observations of the low-level boundary layer must be obtained via automated data acquisition systems. Alexander Tall Tower! is an automatic weather station on the Ross Ice Shelf in Antarctica and has been operational since February 2011. At 30 m tall, this station has six levels of instruments to collect environmental data, including temperature, wind speed and direction, relative humidity, and pressure. Data are collected at 30-, 15-, 7.5-, 4-, 2-, and 1-m levels above the snow surface. This study identifies short-term trends and provides an improved description of the lowest portion of the boundary layer over this portion of the Ross Ice Shelf for the February 2011–January 2014 period. Observations indicate two separate initiations of the winter season occur annually, caused by synoptic-scale anomalies. Sensible and latent heat flux estimates are computed using Monin–Obukhov similarity theory and vertical profiles of potential air temperature and wind speed. Over the three years, the monthly mean sensible heat flux ranges between 1 and 39 W m−2 (toward the surface) and the monthly mean latent heat flux ranges between −8 and 0 W m−2. Net heat fluxes directed toward the surface occur most of the year, indicating an atmospheric sink of energy.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2018-02-01
    Description: The seasonal variability of strong afternoon winds in a northern Himalayan valley and their relationship with the synoptic circulation were examined using in situ meteorological data from March 2006 to February 2007 and numerical simulations. Meteorological observations were focused on the lower Rongbuk valley, on the north side of the Himalayas (4270 m MSL), where a wind profile radar was available. In the monsoon season (21 May–4 October), the strong afternoon wind was southeasterly, whereas it was southwesterly in the nonmonsoon season. Numerical simulations were performed using the Weather Research and Forecasting Model to investigate the mechanism causing these afternoon strong winds. The study found that during the nonmonsoon season the strong winds are produced by downward momentum transport from the westerly winds aloft, whereas those during the monsoon season are driven by the inflow into the Arun Valley east of Mount Everest. The air in the Arun Valley was found to be colder than that of the surroundings during the daytime, and there was a horizontal pressure gradient from the Arun Valley to Qomolangma Station (QOMS), China Academy of Sciences, at the 5200-m level. This explains the formation of the strong afternoon southeasterly wind over QOMS in the monsoon season. In the nonmonsoon season, the colder air from Arun Valley is confined below the ridge by westerly winds associated with the subtropical jet.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2018-01-01
    Description: Extratropical cyclones (ETCs) are responsible for most of the large storm-surge events in the northeastern United States. This study uses the ECMWF atmospheric reanalysis of the twentieth century (ERA-20C) and NOAA tide gauge data to examine the local, regional, and large-scale atmospheric circulation accompanying the 100 largest ETC-driven surge events at three locations along the northeastern coast of the United States: Sewells Point (Norfolk), Virginia; the Battery (New York City), New York; and Boston, Massachusetts. Results from a k-means cluster analysis indicate that the largest surges are generated when slowly propagating ETCs encounter a strong anticyclone, which produces a tighter pressure gradient and longer duration of onshore winds. The strength of the anticyclone is evident in the middle and upper troposphere where there are positive 500-hPa geopotential height anomalies overlying the surface anticyclone for the majority of clusters and nearly all of the five biggest surge events. Multiple clusters feature a slower-than-average storm and a strong anticyclone, indicating that various circulation scenarios can produce a large storm surge. This favorable environment for large surge events is influenced by well-known modes of climate variability including El Niño, the Arctic Oscillation (AO), the North Atlantic Oscillation (NAO), and the Pacific–North American (PNA) pattern. ETCs are more likely to produce a large surge during El Niño conditions, which have been shown to enhance the East Coast storm track. At Boston and the Battery, maximum surge occurs preferentially during the positive phase of PNA and the negative phases of AO/NAO.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2018-02-01
    Description: Recent interest in interpreting polarimetric radar observations of ice and evaluating microphysical model output with these observations has highlighted the importance of accurately computing the scattering of microwave radiation by branched planar ice crystals. These particles are often represented as spheroids with uniform bulk density, reduced from that of solid ice to account for the complex, nonuniform structure of natural branched crystals. In this study, the potential errors that arise from this assumption are examined by comparing scattering calculations of branched planar crystals with those of homogeneous, reduced-density plate crystals and spheroids with the same mass, aspect ratio, and maximum dimension. The results show that this assumption leads to significant errors in backscatter cross sections at horizontal and vertical polarization, specific differential phase (KDP), and differential reflectivity (ZDR), with the largest ZDR errors for ice crystals with the most extreme aspect ratios (
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2018-02-01
    Description: Two methods for deriving relationships between the equivalent radar reflectivity factor Ze and the snowfall rate S at three radar wavelengths are described. The first method uses collocations of in situ aircraft (microphysical observations) and overflying aircraft (radar observations) from two field programs to develop Ze–S relationships. In the second method, measurements of Ze at the top of the melting layer (ML), from radars on the Tropical Rainfall Measuring Mission (TRMM), Global Precipitation Measurement (GPM), and CloudSat satellites, are related to the retrieved rainfall rate R at the base of the ML, assuming that the mass flux through the ML is constant. Retrievals of R are likely to be more reliable than S because far fewer assumptions are involved in the retrieval and because supporting ground-based validation data are available. The Ze–S relationships developed here for the collocations and the mass-flux technique are compared with those derived from level 2 retrievals from the standard satellite products and with a number of relationships developed and reported by others. It is shown that there are substantial differences among them. The relationships developed here promise improvements in snowfall-rate retrievals from satellite-based radar measurements.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2018-01-01
    Description: Convectively induced turbulence (CIT) poses both a serious threat to aviation operations and a challenge to forecasting applications. CIT generation and propagation processes occur on scales between 10 and 1000 m and therefore are best treated with high-resolution cloud-resolving models. However, high-resolution model simulations are computationally expensive, limiting their operational use. In this study, summertime convection in the North Dakota region is simulated over a 1-week period using a variety of model setups that are similar to those utilized in operational and research applications. Eddy dissipation rate and Ellrod index, both popular turbulence metrics, are evaluated across various model resolutions and compared with pilot reports from aircraft. The Ellrod index was found to be extremely sensitive to model resolution and overestimated turbulence intensity. The variability of turbulence values with respect to model resolution and distance away from convection is also examined. Turbulence probability was found to be the greatest when farther than 20 mi (32.2 km) away from convective cores. Model resolution was found to influence the intensity of predicted turbulence, and the model setup with the highest horizontal and vertical resolution predicted the highest turbulence values. However, the influence on turbulence intensity of vertical resolution and convective properties, such as storm depth, was found to be minimal for 3-km horizontal grid spacing.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2018-02-01
    Description: The interactions between a katabatic flow on a plain and a circular basin cut into the plain and surrounded by an elevated rim were examined during a 5-h steady-state period during the Second Meteor Crater Experiment (METCRAX II) to explain observed disturbances to the nocturnal basin atmosphere. The approaching katabatic flow split horizontally around Arizona’s Meteor Crater below a dividing streamline while, above the dividing streamline, an ~50-m-deep stable layer on the plain was carried over the 30–50-m rim of the basin. A flow bifurcation occurred over or just upwind of the rim, with the lowest portion of the stable layer having negative buoyancy relative to the air within the crater pouring continuously over the crater’s upwind rim and accelerating down the inner sidewall. The cold air intrusion was deepest and coldest over the direct upwind crater rim. Cold air penetration depths varied around the inner sidewall depending on the temperature deficit of the inflow relative to the ambient environment inside the crater. A shallow but extremely stable cold pool on the crater floor could not generally be penetrated by the inflow and a hydraulic jump–like feature formed on the lower sidewall as the flow approached the cold pool. The upper nonnegatively buoyant portion of the stable layer was carried horizontally over the crater, forming a neutrally stratified, low–wind speed cavity or wake in the lee of the upwind rim that extended downward into the crater over the upwind sidewall.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2018-02-01
    Description: Long-term variations in fire weather conditions are examined throughout Australia from gridded daily data from 1950 to 2016. The McArthur forest fire danger index is used to represent fire weather conditions throughout this 67-yr period, calculated on the basis of a gridded analysis of observations over this time period. This is a complementary approach to previous studies (e.g., those based primarily on model output, reanalysis, or individual station locations), providing a spatially continuous and long-term observations-based dataset to expand on previous research and produce climatological guidance information for planning agencies. Long-term changes in fire weather conditions are apparent in many regions. In particular, there is a clear trend toward more dangerous conditions during spring and summer in southern Australia, including increased frequency and magnitude of extremes, as well as indicating an earlier start to the fire season. Changes in fire weather conditions are attributable at least in part to anthropogenic climate change, including in relation to increasing temperatures. The influence of El Niño–Southern Oscillation (ENSO) on fire weather conditions is found to be broadly consistent with previous studies (indicating more severe fire weather in general for El Niño conditions than for La Niña conditions), but it is demonstrated that this relationship is highly variable (depending on season and region) and that there is considerable potential in almost all regions of Australia for long-range prediction of fire weather (e.g., multiweek and seasonal forecasting). It is intended that improved understanding of the climatological variability of fire weather conditions will help lead to better preparedness for risks associated with dangerous wildfires in Australia.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2018-01-01
    Description: A multiscale temporal analysis of the urban heat island (UHI) for a large, rapidly growing, subtropical city (Charlotte, North Carolina) is conducted using hourly surface observations from a regional network of 12 weather and air-quality stations over a 5-yr period and monthly mean surface temperatures from two stations over a 40-yr period. Each station was classified as urban, suburban, or rural after detailed site analysis. During the 5-yr period, from temperature differences between the most central urban site and the rural reference site, over 70% of nights exhibited prominent nocturnal UHIs. The most intense UHIs occurred on winter nights with light winds, clear skies, low humidity, strong low-level stability, and no precipitation or frontal passage. The UHI maxima occurred either just after sunset or near sunrise. Maximum urban and rural cooling rates occurred within a few hours of sunset, but rural maxima were larger and preceded (by 1–2 h) the urban maxima. Daily variations in nocturnal mean UHI intensity exhibited significant positive correlations with cloud-base height, atmospheric stability, NO2 concentration, and total solar radiation and significant negative correlations with relative humidity, wind speed, and cloud cover. When optimal weather for UHI development was present, UHIs were more intense on weekdays than on weekends. During the 40-yr period, an appreciable positive trend in UHI intensity occurred. These results support the notion that weather, air pollution, and urban form change can significantly modulate UHI intensities. Similarities and differences between the Charlotte UHI and those observed in similar cities are discussed.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2018-01-01
    Description: This paper improves upon an existing extreme precipitation monitoring system that is based on the Tropical Rainfall Measuring Mission (TRMM) daily product (3B42) using new statistical models. The proposed system utilizes a regional modeling approach in which data from similar locations are pooled to increase the quality of the resulting model parameter estimates to compensate for the short data record. The regional analysis is divided into two stages. First, the region defined by the TRMM measurements is partitioned into approximately 28 000 nonoverlapping clusters using a recursive k-means clustering scheme. Next, a statistical model is used characterize the extreme precipitation events occurring in each cluster. Instead of applying the block maxima approach used in the existing system, in which the generalized extreme value probability distribution is fit to the annual precipitation maxima at each site separately, the present work adopts the peak-over-threshold method of classifying points as extreme if they exceed a prespecified threshold. Theoretical considerations motivate using the point process framework for modeling extremes. The fitted parameters are used to estimate trends and to construct simple and intuitive average recurrence interval (ARI) maps that reveal how rare a particular precipitation event is. This information could be used by policy makers for disaster monitoring and prevention. The new method eliminates much of the noise that was produced by the existing models because of a short data record, producing more reasonable ARI maps when compared with NOAA’s long-term Climate Prediction Center ground-based observations. Furthermore, the proposed method can be applied to other extreme climate records.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...