ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • energy economics  (62)
  • 550 - Earth sciences  (56)
  • English  (118)
  • 2005-2009  (118)
  • 1980-1984
  • 101
    Publication Date: 2020-02-12
    Description: The interdisciplinary Dead Sea Rift Transect (DESERT) project that was conducted in Israel, the Palestine Territories and Jordan has provided a rich palette of data sets to examine the crust and uppermost mantle beneath one of Earth’s most prominent fault systems, the Dead Sea Transform (DST). As part of the passive seismic component, thirty broad-band sensors were deployed in 2000 across the DST for roughly one year. During this deployment, we recorded 115 teleseismic earthquakes that are suitable for a fundamental mode Rayleigh wave analysis at intermediate periods (35–150 s). Our initial analysis reveals overall shear velocities that are reduced by up to 4 per cent with respect to reference Earth model PREM. To the west of the DST, we find a seismically relatively fast but thin lid that is about 80 km thick. Towards the east, shallow seismic velocities are low while a deeper low velocity zone is not detected. This contradicts the currently favoured thermomechanical model for the DST that predicts lithospheric thinning through mechanical erosion by an intruding plume from the Red Sea. On the other hand, our current results are somewhat inconclusive regarding asthenosphere velocities east of the DST due to the band limitation of the recording equipment in Jordan.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    Publication Date: 2020-02-12
    Description: A set of seismological stations was deployed in the Central Andes region along a ~600 km long profile at 21°S between Chile and Bolivia and operated for a period of almost two years, from March 2002 to January 2004. Here we present the results of the tomographic inversion for P-wave velocity anomalies, based on teleseismic data recorded at the stations. The reliability of the results has been checked by a series of synthetic tests. The tomographic images show high-velocities on the west of the profile that are indicative of cold material from the fore-arc. A low-velocity anomaly is detected at the border between the fore- and the volcanic are where the Quebrada Blanca seismic anomaly was previously described. This anomaly might be related to the presence of fluids that originate at the cluster of earthquakes at a depth of ~100 km in the subducted plate. A strong low-velocity anomaly is detected beneath the entire Altiplano plateau and part of the Eastern Cordillera, in agreement with previous receiver function results. The Brazilian Shield is thought to be responsible for the strong high-velocity anomaly underneath the Interandean and Subandean regions.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    Publication Date: 2020-02-12
    Description: On 8 January 2006, an intermediate-depth earthquake occurred at the western part of the Hellenic trench close to the island of Kythera (southern Greece). This is the first intermediate-depth earthquake in the broader Aegean area that has produced such an extensive set of useful recordings, as it was recorded by the main permanent seismological networks and numerous acceleration sensors operating in Greece, as well as by EGELADOS, a large-scale temporary amphibian broadband seismological network deployed in the southern Aegean area. An effort to combine all the available data (broadband velocity and acceleration sensor) was made to study the properties of ground-motion attenuation of this earthquake. The combination of both types of data revealed interesting properties of the earthquake wave field, which would remain hidden if only one type of data was used. Moreover, the data have been used for a validation of existing peak ground-motion empirical prediction relations and the preliminary study of the very inhomogeneous attenuation pattern of the southern Aegean intermediate-depth events at both near- and far-source distances
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    Publication Date: 2020-02-12
    Description: We used data from both permanent and temporary seismic networks on Iceland and Greenland to investigate the crustal thickness by partly reinterpreting earlier data (P receiver functions) and adding S receiver functions to better constrain the results. We obtained good conversions from the Moho and also crustal multiples in both Iceland and Greenland. The central ice covered part of Greenland has an average crustal thickness of 40 km, typical for a craton. At the edges of Greenland the crustal thickness decreases to 30–40 km. On the east coast of Greenland, where the track of the Iceland plume is thought to have affected the lithosphere, the crustal thickness is only 24–26 km. In contrast to previous studies, we find that the crustal thickness in the east and the northwest coastal regions of Iceland is more than 40 km, similar to beneath the active volcanic region. In the southwest region of Iceland and along the mid-ocean ridge, the crustal thickness is only 25 km or less. Also in contrast to earlier receiver function interpretations, which deduced a broad crust-mantle transition zone for Iceland, we find indications for a normal, sharper Moho beneath a number of sites
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    Publication Date: 2020-02-12
    Description: Data from 90 permanent broad-band stations spread over central and eastern Europe were analysed using Ps receiver functions to study the crustal and upper-mantle structure down to the mantle transition zone. Receiver functions provide valuable information on structural features, which are important for the resolution of European lithospheric dynamics. Moho depths vary from less than 25 km in extensional areas in central Europe to more than 50 km at stations in eastern Europe (Craton) and beneath the Alpine–Carpathian belt. A very shallow Moho depth can be observed at stations in the Upper Rhine Graben area (ca. 25 km), whereas, for example, stations in the SW Bohemian Massif show a significantly deeper Moho interface at a depth of 38 km. Vp/Vs ratios vary between 1.60 and 1.96, and show no clear correlation to the major tectonic units, thus probably representing local variations in crustal composition. Delayed arrivals of converted phases from the mantle transition zone are observed at many stations in central Europe, whereas stations in the cratonic area show earlier arrivals compared with those calculated from the IASP91 Earth reference model. Differential delay times between the P410s and P660s phases indicate a thickened mantle transition zone beneath the eastern Alps, the Carpathians and the northern Balkan peninsula, whereas the transition zone thickness in eastern and central Europe agrees with the IASP91 value. The thickening of the mantle transition zone beneath the eastern Alps and the Carpathians could be caused by cold, deeply subducted oceanic slabs.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    facet.materialart.
    Unknown
    In:  The Andes - Active Subduction Orogeny | Frontiers in Earth Sciences
    Publication Date: 2020-02-12
    Description: The Andes were formed by Cenozoic tectonic shortening of the South American plate margin overriding the subducting Nazca Plate. Using coupled, thermo-mechanical, numerical modeling of the dynamic interaction between subducting and overriding plates, we searched for factors controlling the intensity of the tectonic shortening. From our modeling, constrained by geological and geophysical observations, we infer that the most important factor was fast and accelerating (from 2 to 3 cm yr(hoch)-1) westward drift of the South American Plate, whereas possible changes in the convergence rate were not as important. Other important factors are the crustal structure of the overriding plate and the shear coupling at the plate interface. The model in which the South American Plate has a thick (40-45 km at 35 Ma) crust and relatively high friction coefficient (0.05) at the Nazca-South American plate interface generates more than 300 km of tectonic shortening over the past 35 million years and replicates well the crustal structure and evolution of the high Central Andes, However, modeling does not confirm that possible climate-controlled changes to the sedimentary trench-fill during the last 30 million years might have significantly influenced the upperplate shortening rate. The model with initially thinner (less than 40 km) continental crust and a lower friction coefficient (less than 0.015) results in less than 40 ikm of shortening in the South American Plate, replicating the situation in the Southern Andes. During upper-plate deformation, the processes that cause a reduction in lithospheric strength and an increase in interplate coupling are particularly important. The most significant of these processes appears to be: (1) delamination of the lower crust and mantle lithosphere, driven by gabbro-eclogite transformation in the thickening lower crust, and (2) mechanical failure of the foreland sediments. The modeling demonstrates that delaminating lithosphere interacts with subduction-zone corner flow, influencing both the rate of tectonic shortening and magmatic-arc productivity, and suggests an anti-correlation between these two parameters. Our model also predicts that the down-dip limit of the frictional coupling domain between the Nazca and South American Plates should be ~15-20 km deeper in the Southern Andes (south of 28° S) compared to the high Central Andes, which is consistent with GPS and seismological observations.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/bookPart
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    facet.materialart.
    Unknown
    In:  Geophysical Journal International
    Publication Date: 2020-02-12
    Description: Receiver functions (RF) are used to investigate the upper mantle structure beneath the Eifel, the youngest volcanic area of Central Europe. Data from 96 teleseismic events recorded by 242 seismological stations from permanent and a temporary network has been analysed. The temporary network operated from 1997 November to 1998 June and covered an area of approximately 400 × 250 km2 centred on the Eifel volcanic fields. The average Moho depth in the Eifel is approximately 30 km, thinning to ca. 28 km under the Eifel volcanic fields. RF images suggest the existence of a low velocity zone at about 60–90 km depth under the West Eifel. This observation is supported by P- and S-wave tomographic results and absorption (but the array aperture limits the resolution of the tomographic methods to the upper 400 km). There are also indications for a zone of elevated velocities at around 200 km depth, again in agreement with S-wave and absorption tomographic results. This anomaly is not visible in P-wave tomography and could be due to S-wave anisotropy. The RF anomalies at the Moho, at 60–90 km, and near 200 km depth have a lateral extent of about 100 km. The 410 km discontinuity under the Eifel is depressed by 15–25 km, which could be explained by a maximum temperature increase of +200°C to +300°C. In the 3-D RF image of the Eifel Plume we also notice two additional currently unexplained conversions between 410 and 550 km depth. They could represent remnants of previous subduction or anomalies due to delayed phase changes. The lateral extent of these conversions and the depression of the 410 km discontinuity is about 200 km. The 660 km discontinuity does not show any depth deviation from its expected value. Our observations are consistent with interpretation in terms of an upper mantle plume but they do not rule out connections to processes at larger depth.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    Publication Date: 2020-02-12
    Description: Teleseismic data recorded during one and a half years are investigated with the receiver function technique to determine the crustal and upper-mantle structures underneath the highly elevated Altiplano and Puna plateaus in the central Andes. A series of converting interfaces are determined along two profiles at 21°S and 25.5°S, respectively, with a station spacing of approximately 10 km. The data provide the highest resolution gained from a passive project in this area, so far. The oceanic Nazca plate is detected down to 120 km beneath the Altiplano whereas beneath the Puna, the slab can unexpectedly be traced down to 200 km depth at longer periods. A shallow crustal low-velocity zone is determined beneath both plateaus exhibiting segmentation. In the case of the Altiplano, the segments present vertical offsets and are separated by inclined interfaces, which coincide with major fault systems at the surface. An average depth to Moho of about 70 km is determined for the Altiplano plateau. A strong negative velocity anomaly located directly below the Moho along with local crustal thinning is interpreted beneath the volcanic arc of the Altiplano plateau between 67°W and 68.5°W. A deep section of the Puna profile reveals thinning of the mantle transition zone. Although poorly resolved, the detected anomaly may suggest the presence of a mantle plume, which may constitute the origin of the anomalous temperatures at the depth of the upper-mantle discontinuities.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    Publication Date: 2020-02-12
    Description: To study the applicability of the passive seismic interferometry technique to near-surface geological studies, seismic noise recordings from a small scale 2-D array of seismic stations were performed in the test site of Nauen (Germany). Rayleigh wave Green's functions were estimated for different frequencies. A tomographic inversion of the traveltimes estimated for each frequency from the Green's functions is then performed, allowing the laterally varying 3-D surface wave velocity structure below the array to be retrieved at engineering–geotechnical scales. Furthermore, a 2-D S-wave velocity cross-section is obtained by combining 1-D velocity structures derived from the inversion of the dispersion curves extracted at several points along a profile where other geophysical analyses were performed. It is shown that the cross-section from passive seismic interferometry provides a clear image of the local structural heterogeneities that are in excellent agreement with georadar and geoelectrical results. Such findings indicate that the interferometry analysis of seismic noise is potentially of great interest for deriving the shallow 3-D velocity structure in urban areas.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    Publication Date: 2020-02-12
    Description: As part of the DEad Sea Integrated REsearch project (DESIRE) a 235 km long seismic wide-angle reflection/refraction (WRR) profile was completed in spring 2006 across the Dead Sea Transform (DST) in the region of the southern Dead Sea basin (DSB). The DST with a total of about 107 km multi-stage left-lateral shear since about 18 Ma ago, accommodates the movement between the Arabian and African plates. It connects the spreading centre in the Red Sea with the Taurus collision zone in Turkey over a length of about 1 100 km. With a sedimentary infill of about 10 km in places, the southern DSB is the largest pull-apart basin along the DST and one of the largest pull-apart basins on Earth. The WRR measurements comprised 11 shots recorded by 200 three-component and 400 one-component instruments spaced 300 m to 1.2 km apart along the whole length of the E–W trending profile. Models of the P-wave velocity structure derived from the WRR data show that the sedimentary infill associated with the formation of the southern DSB is about 8.5 km thick beneath the profile. With around an additional 2 km of older sediments, the depth to the seismic basement beneath the southern DSB is about 11 km below sea level beneath the profile. Seismic refraction data from an earlier experiment suggest that the seismic basement continues to deepen to a maximum depth of about 14 km, about 10 km south of the DESIRE profile. In contrast, the interfaces below about 20 km depth, including the top of the lower crust and the Moho, probably show less than 3 km variation in depth beneath the profile as it crosses the southern DSB. Thus the Dead Sea pull-apart basin may be essentially an upper crustal feature with upper crustal extension associated with the left-lateral motion along the DST. The boundary between the upper and lower crust at about 20 km depth might act as a decoupling zone. Below this boundary the two plates move past each other in what is essentially a shearing motion. Thermo-mechanical modelling of the DSB supports such a scenario. As the DESIRE seismic profile crosses the DST about 100 km north of where the DESERT seismic profile crosses the DST, it has been possible to construct a crustal cross-section of the region before the 107 km left-lateral shear on the DST occurred.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    Publication Date: 2020-02-12
    Description: Mt. Merapi is one of the most dangerous volcanoes in Indonesia, located within the tectonically active region of south-central Java. This study investigates how Mt. Merapi affected - and was affected by - nearby tectonic earthquakes. In 2001, a Mw6.3 earthquake occurred in conjunction with an increase in fumarole temperature at Mt. Merapi. In 2006, another Mw6.3 earthquake took place, concomitant with an increase of magma extrusion and pyroclastic flows. Here, we develop theoretical models to study the amount of stress transfer between the earthquakes and the volcano, showing that dynamic, rather than static, stress changes are likely responsible for the temporal and spatial proximity of these events. Our examination of the 2001 and 2006 events implies that volcanic activity at Mt. Merapi is influenced by stress changes related to remote tectonic earthquakes, a finding that is important for volcano hazard assessment in this densely inhabited area.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    Publication Date: 2020-02-12
    Description: From November 1999 through July 2000, a broadband seismic experiment was carried out at Popocatépetl Volcano to record seismic activity over a wide period range (0.04–100 s). We present an overview of the seismicity recorded during this experiment and discuss results of analyses of long-period (LP) and very-long-period (VLP) seismic signals recorded at stations nearest to the crater over a four-month interval December 1999–March 2000. Three families of LP signals (Types-I, II, and III) are identified based on distinctive waveform features observed periods shorter than 1 s, periods longer than 15 s, and within the period range 0.5–2.5 s. Type-I LP events have impulsive first arrivals and exhibit a characteristic harmonic wave train with dominant periods in the 1.4–1.9 s range during the first 10 s of signal. These events are also associated with a remarkable VLP wavelet with period near 30 s. Type-II LP events represent pairs of events occurring in rapid succession and whose signatures are superimposed. These are typically marked by slowly emergent first arrivals and by a characteristic VLP wave train with dominant period near 30 s, made of two successive wavelets whose shapes are quasi-identical to those of the VLP wavelets associated with Type-I events. Type-III LP events represent the most energetic signals observed during our experiment. These have an emergent first arrival and display a harmonic signature with dominant period near 1.1 s. They are dominated by periods in the 0.25–0.35 s band and contain no significant energy at periods longer than 15 s. Hypocentral locations of the three types of LP events obtained from phase picks point to shallow seismic sources clustered at depths shallower than 2 km below the crater floor. Observed variations in volcanic eruptive activity correlate with defined LP families. Most of the observed seismicity consists of Type-I events that occur in association with 1–3-min-long degassing bursts (“exhalations”). Eruptive activity increased in intensity in February, coinciding with an increasing occurrence of Type-II LP events. Type-III events were first observed at the end of February and during March, in coincidence with the formation of a new lava dome. Vulcanian eruptions occurred in April and May. These events typically exhibit broadband signatures extending over the full period range of the sensors and lasting 30–80 min.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    Publication Date: 2020-02-12
    Description: The Bohemian Massif is part of the Variscan belt of central Europe. We carried out a high resolution mapping of lithospheric thickness beneath central Europe by investigating 264 teleseismic events recorded at 80 broad band stations in the western Bohemian Massif with the method of S receiver function analysis. A negative phase beneath the Saxothuringian and north-eastern Teplá-Barrandian units at about 9-10 s before the S onset is interpreted as caused by the lithosphere-asthenosphere boundary (LAB) at 80 - 90 km depth. In the Moldanubian unit, the negative phase occurs at 13-15 s before the S onset, corresponding to lithospheric thickness of 120 - 130 km. The boundary between the domains is oriented E-W and probably marks the northern extension of Moldanubian Saxothuringian to the Moldanubian unit. The observed crustal/lithospheric domains could represent two distinct microplates with a relatively sharp boundary cutting through the whole lithosphere.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    facet.materialart.
    Unknown
    Koordinationsstelle Risikomanagement extremer Hochwasser, GeoForschungsZentrum Potsdam
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Language: German , English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    Publication Date: 2020-02-12
    Description: On 12 May, a great earthquake (Ms=8.0) on the Longmenshan thrust fault rumbled through Chinas Sichuan province, killing more than 69,000 people and injuring 374,000. The Longmenshan thrust is part of the eastern border of the Tibetan Plateau, but it is not the plateaus only restless margin. An even larger earthquake (Ms=8.1) on the Kunlun fault shook northeastern Tibet in 2001, fortunately in a sparsely populated area. These massive quakes underscore the importance of understanding the tectonic response of Asia to collision by India. The International Deep Profiling of Tibet and the Himalaya (INDEPTH) program explores the dynamics of the India-Asia collision. Though many past geophysical studies have focused on the Himalayas and the southern Tibetan Plateau, the INDEPTH IV project examines the deep structure of the northeastern margin of the Tibetan Plateau.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    Publication Date: 2020-02-12
    Description: The lithosphere-asthenosphere boundary corresponds to the base of the “rigid” plates – the depth at which heat transport changes from advection in the convecting deeper upper mantle to conduction in the shallow upper mantle. Although this boundary is a fundamental feature of the Earth, mapping it has been difficult because it does not correspond to a sharp change in temperature or composition. Various definitions of the lithosphere and asthenosphere are based on the analysis of different types of geophysical and geological observations. The depth to the lithosphere-asthenosphere boundary determined from these different observations often shows little agreement when they are applied to the same region because the geophysical and geological observations (i.e., seismic velocity, strain rate, electrical resistivity, chemical depletion, etc.) are proxies for the change in rheological properties rather than a direct measure of the rheological properties. In this paper, we focus on the seismic mapping of the upper mantle high velocity lid and low velocity zone and its relationship to the lithosphere and asthenosphere. We have two goals: (a) to examine the differences in how teleseismic body-wave travel-time tomography and surface-wave tomography image upper mantle seismic structure; and (b) to summarise how upper mantle seismic velocity structure can be related to the structure of the lithosphere and asthenosphere. Surface-wave tomography provides reasonably good depth resolution, especially when higher modes are included in the analysis, but lateral resolution is limited by the horizontal wavelength of the long-period surface waves used to constrain upper mantle velocity structure. Teleseismic body-wave tomography has poor depth resolution in the upper mantle, particularly when no strong lateral contrasts are present. If station terms are used, features with large lateral extent and gradual boundaries are attenuated in the tomographic image. Body-wave models are not useful in mapping the thickness of the high velocity upper mantle lid because this type of analysis often determines wave speed perturbations from an unknown horizontal average and not absolute velocities. Thus, any feature which extends laterally across the whole region beneath a seismic network becomes invisible in the Teleseismic body-wave tomographic image. We compare surface-wave and body-wave tomographic results using southern Africa as an example. Surface-wave tomographic images for southern Africa show a strong, high velocity upper mantle lid confined to depths shallower than ~200 km, whereas body-wave tomographic images show weak high velocity in the upper mantle extending to depths of ~300 km or more. However, synthetic tests show that these results are not contradictory. The absolute seismic velocity structure of the upper mantle provided by surface wave analysis can be used to map the thermal lithosphere. Priestley and McKenzie (Priestley, K., McKenzie, D., 2006. The thermal structure of the lithosphere from shear wave velocities. Earth and Planetary Science Letters 244, 285–301.) derive an empirical relationship between shear wave velocity and temperature. This relationship is used to obtain temperature profiles from the surfacewave tomographic models of the continental mantle. The base of the lithosphere is shown by a change in the gradient of the temperature profiles indicative of the depth where the mode of heat transport changes from conduction to advection. Comparisons of the geotherms determined from the conversion of surface-wave wave speeds to temperatures with upper mantle nodule-derived geotherms demonstrate that estimates of lithospheric thickness from Vs and from the nodule mineralogy agree to within about 25 km. The Lithospheric thickness map for Africa derived from the surface-wave tomographic results shows that thick lithosphere underlies most of the Archean crust in Africa. The distribution of diamondiferous kimberlites provides an independent estimate of where thick lithosphere exists. Diamondiferous kimberlites generally occur where the lower part of the thermal lithosphere as indicated by seismology is in the diamond stability field.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    Publication Date: 2020-02-12
    Description: We use the S receiver function method to study the lithosphere at the Dead Sea Transform (DST). A temporary network of 22 seismic broad-band stations was operated on both sides of the DST from 2000 to 2001 as part of the DESERT project. We also used data from six additional permanent broad-band seismic stations at the DST and in the surrounding area, that is, in Turkey, Saudi Arabia, Egypt and Cyprus. Clear S-to-P converted phases from the crust-mantle boundary (Moho) and a deeper discontinuity, which we interpret as lithosphere- asthenosphere boundary (LAB) have been observed. The Moho depth (30-38 km) obtained from S receiver functions agrees well with the results from P receiver functions and other geophysical data. We observe thinning of the lithosphere on the eastern side of the DST from 80 km in the north of the Dead Sea to about 65 km at the Gulf of Aqaba. On the western side of the DST, the few data indicate a thin LAB of about 65 km. For comparison, we found a 90-km-thick lithosphere in eastern Turkey and a 160-km-thick lithosphere under the Arabian shield, respectively. These observations support previous suggestions, based on xenolith data, heat flow observations, regional uplift history and geodynamic modelling, that the lithosphere around DST has been significantly thinned in the Late Cenozoic, likely following rifting and spreading of the Red Sea.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...