ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • GFZ Data Services  (336)
  • GFZ German Research Centre for Geosciences  (29)
  • Physika-Verlag, Würzburg  (29)
  • Singapore : Springer
  • English  (409)
  • Latin
  • Russian
  • 2015-2019  (409)
  • 2018  (336)
  • 2017  (73)
Collection
Language
  • English  (409)
  • Latin
  • Russian
  • German  (64)
Years
  • 2015-2019  (409)
Year
  • 1
    Monograph available for loan
    Monograph available for loan
    Singapore : Springer
    Call number: PIK B 522-17-91195
    Description / Table of Contents: This book covers important issues related to managing supply chain risks from various perspectives. Supply chains today are vulnerable to disruptions with a significant impact on firms’ business and performance. The aim of supply chain risk management is to identify the potential sources of risks and implement appropriate actions in order to mitigate supply chain disruptions. This book presents a set of models, frameworks, strategies, and analyses that are essential for managing supply chain risks. As a comprehensive collection of the latest research and most recent cutting-edge developments on supply chain risk and its management, the book is structured into three main parts: 1) Supply Chain Risk Management; 2) Supply Chain Vulnerability and Disruptions Management; and 3) Toward a Resilient Supply Chain. Leading academic researchers as well as practitioners have contributed chapters, combining theoretical findings and research results with a practical and contemporary view on how companies can manage the supply chain risks and disruptions, as well as how to create a resilient supply chain. This book can serve as an essential source for students and scholars who are interested in pursuing research or teaching courses in the rapidly growing area of supply chain risk management. It can also provide an interesting and informative read for managers and practitioners who need to deepen their knowledge of effective supply chain risk management
    Type of Medium: Monograph available for loan
    Pages: XI, 334 Seiten , Diagramme
    ISBN: 9789811041068 , 9789811041051
    Language: English
    Note: Contents: Part I: Supply Chain Risk Management -- Chapter 1: Supply Chain Risk Management: A Comprehensive Review -- Chapter 1: Supply Chain Risk Management: A Comprehensive Review -- Chapter 3: Modeling Risk Emergence and Propagation in Buyer-Supplier-Customer Relationships -- Chapter 4: Managing Reputational Risks in Supply Chains -- Chapter 5: Managing IT and Cyber Risks in Supply Chains -- Chapter 6: Developing Supply Chain Risk Mitigation Strategies -- Part II: Supply Chain Vulnerability and Disruptions Management -- Chapter7: Analyzing Supply Chain Vulnerability through Simulation -- Chapter 8: Supply Chain Disruptions Preparedness Measures Using a Dynamic Model -- Chapter 9: A Quantitative Model for Analyzing Market Response during Supply Chain Disruptions -- Chapter 10: Supply Chain Risk Management in the Transmission and Amplification of Disruptions -- Chapter 11: Strategic Sourcing Under Supply Disruption Risk -- Chapter 12: Design and Evaluation of Global Supply Chain Considering Disruption Risk -- Part III: Toward a Resilient Supply Chain -- Chapter 13: Supply Chain Resiliency: A Review -- Chapter 14: The Role of Resiliency in Managing Supply Chains Disruptions -- Chapter 15: Designing Resilience into Service Supply Chains: A Conceptual Methodology -- Chapter 16: Resiliency in Supply Chain Systems: A Triadic Framework using Family Resilience Model -- Chapter 17: Cultivating Supply Chain Agility: Managerial Actions Derived From Established Antecedents -- Chapter 18: Assessing Supply Chain Resilience upon Critical Infrastructure Disruptions: A Multilevel Simulation Modelling Approach
    Location: A 18 - must be ordered
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Call number: 9789811058011 (e-book)
    Description / Table of Contents: This book contains seven parts. The first part deals with some aspects of rainfall analysis, including rainfall probability distribution, local rainfall interception, and analysis for reservoir release. Part 2 is on evapotranspiration and discusses development of neural network models, errors, and sensitivity. Part 3 focuses on various aspects of urban runoff, including hydrologic impacts, storm water management, and drainage systems. Part 4 deals with soil erosion and sediment, covering mineralogical composition, geostatistical analysis, land use impacts, and land use mapping. Part 5 treats remote sensing and geographic information system (GIS) applications to different hydrologic problems. Watershed runoff and floods are discussed in Part 6, encompassing hydraulic, experimental, and theoretical aspects. Water modeling constitutes the concluding Part 7. Soil and Water Assessment Tool (SWAT), Xinanjiang, and Soil Conservation Service-Curve Number (SCS-CN) models are discussed. The book is of interest to researchers and practitioners in the field of water resources, hydrology, environmental resources, agricultural engineering, watershed management, earth sciences, as well as those engaged in natural resources planning and management. Graduate students and those wishing to conduct further research in water and environment and their development and management find the book to be of value
    Type of Medium: 12
    Pages: 1 Online-Ressource (xxi, 731 Seiten) , Illustrationen
    ISBN: 9789811058011 , 978-981-10-5801-1
    ISSN: 0921-092X , 1872-4663
    Series Statement: Water science and technology library 81
    Language: English
    Note: Contents Part I Rainfall Analysis Rainfall Probability Distribution Analysis in Selected Lateral Command Area of Upper Krishna Project (Karnataka), India / N. K. Rajeshkumar, P. Balakrishnan, G. V. Srinivas Reddy, B. S. Polise Gowdar and U. Satishkumar Analyzing Rainfall and Reservoir Release Pattern for Ajwa Reservoir: A Case Study / Pushkar Sharma and Sanskriti Mujumdar Preliminary Investigations on Localized Rainfall Interception Losses Under Real Field Observations / M. L. Gaur and Saket Kumar Probabilistic Estimation of Design Daily Runoff from Bamhani Watershed, India / Sarita Gajbhiye Meshram and Vijay P. Singh Part II Evapotranspiration Development of Generalized Higher-Order Neural Network-Based Models for Estimating Pan Evaporation / Sirisha Adamala, N. S. Raghuwanshi and Ashok Mishra Sensitivity Analysis of FAO-56 Penman–Monteith Reference Evapotranspiration Estimates Using Monte Carlo Simulations / Gicy M. Kovoor and Lakshman Nandagiri Quantification of Error in Estimation of Reference Crop Evapotranspiration by Class A Pan Evaporimeter and Its Correction / S. Praharaj, P. K. Mohanty and B. C. Sahoo Part III Urban Runoff Spatial and Temporal Analyses of Impervious Surface Area on Hydrological Regime of Urban Watersheds / Tauseef A. Ansari and Y. B. Katpatal An Assessment of Hydrological Impacts Due to Changes in the Urban Sprawl in Bhopal City and its Peripheral Urban-Rural Fringe / L. Patel, S. Goyal and T. Thomas Simulation of Urban Drainage System Using Disaggregated Rainfall Data / Vinay Ashok Rangari, K. Veerendra Gopi, N. V. Umamahesh and Ajey Kumar Patel Investigation of Drainage for Structures, Lithology and Priority (Flood and Landslide) Assessment Using Geospatial Technology, J&K, NW Himalaya / Umair Ali and Syed Ahmad Ali Hydrologic Design Parameters Database for Water Harvesting Structures in Madhya Pradesh / Ramadhar Singh, Karan Singh and D. M. Bhandarkar Application of Storm Water Management Model to an Urban Catchment / V. Swathi, K. Srinivasa Raju and Ajit Pratap Singh Part IV Soil Erosion and Sediment A Study of Erosional Depositional Activity and Land Use Mapping of Majuli River Island Using Landsat Data / Dipsikha Devi, Nilutpal Phukan and Bibhash Sarma Study of Soil Erosion and Deposition Around an Island in a Natural Stream / Snigdhadip Ghosh, Saptarshi Das and Vijay Kumar Dwivedi Impact Assessment of Alternate Land Cover and Management Practices on Soil Erosion: A Case Study / T. R. Nayak, R. K. Jaiswal, R. V. Galkate and T. Thomas Geostatistical Analysis of River Sedimentation Behavior in Kerala State / Mathew K. Jose, T. Chandramohan, B. K. Purandara and B. Venkatesh Study of Mineralogical Composition of Sediment in Brahmaputra River in Urban Stretch of Guwahati City, Assam, India / Mamata Das and Triptimoni Borah Part V Remote Sensing and GIS Applications Hypsometric Analysis for Assessing Erosion Status of Watershed Using Geographical Information System / S. K. Sharma, S. Gajbhiye, S. Tignath and R. J. Patil Assessment of Different Bathymetry Statistical Models Using Landsat-8 Multispectral Images / Omar Makboul, Abdelazim Negm, Saleh Mesbah and Mohamed Mohasseb Estimation of Minimum and Maximum Air Temperature Using MODIS Remote Sensing Imagery and Geographical Information System (GIS) / P. Sardhara Bharatkumar, P. Dholariya Jay, M. K. Tiwari and M. L. Gaur A RS and GIS Approaches for the Estimation of Runoff and Soil Erosion in SA-13 Watershed / H. N. Bhange and V. V. Deshmukh Rainwater Harvesting Structure Site Suitability Using Remote Sensing and GIS / B. K. Gavit, R. C. Purohit, P. K. Singh, Mahesh Kothari and H. K. Jain Land Surface Temperature Estimation Using Remote Sensing Data / Vijay Solanky, Sangeeta Singh and S. K. Katiyar Watershed Prioritization of Wardha River Basin, Maharashtra, India Using Morphometric Parameters: A Remote Sensing and GIS-Based Approach / B. S. Manjare, S. Khan, S. A. Jawadand and M. A. Padhye Flood Assessment of Lolab Valley from Watershed Characterization Using Remote Sensing and GIS Techniques / Mannan Bashir Wani, Syed Ahmad Ali and Umair Ali Delineation of Paleochannels in Periyar River Basin of Kerala Using Remote Sensing and Electrical Resistivity Methods / C. P. Priju, Jiby Francis, P. R. Arun and N. B. Narasimha Prasad Application of EO-1 Hyperion Data for Mapping and Discrimination of Agricultural Crops / H. Ramesh and P. P. Soorya Geomatica-Based Approach for Automatic Extraction of Lineaments from ASTER-GDEM Data, in Part of Al-Rawdah, Shabwah, Southeast Yemen / Mohammed Sultan Alshayef and Akram Javed Part VI Watershed Runoff and Floods Morpho-Mathematical Analysis of Bharar River Basin District Chhatarpur-Central India / Pradeep Kumar Jain Application of Principal Component Analysis for Grouping of Morphometric Parameters and Prioritization of Watershed / Sarita Gajbhiye Meshram and S. K. Sharma Velocity Distribution in Vortex Chamber at High Water Abstraction Ratio / Mohammad Athar and Shivani Srotriya Performance Appraisal of Friction Factor Estimators / Abhishek Mishra, Aditya Deshpande and Bimlesh Kumar Experimental Investigations of Wave Height Attenuation by Submerged Artificial Vegetation / Beena Mary John, I. Mohit Babu, Kiran G. Shirlal and Subba Rao Developing Rating Curves for Nubia Lake, Sudan, Using RS/GIS / Mohamed Elsahabi, Abdelazim Negm and Kamal Ali A Spreadsheet Approach for Prediction of Rating Curve Parameters / Mohammad Muzzammil, Javed Alam and Mohammad Zakwan Experimental Study on Role of Emergent Artificial Coastal Vegetation in Controlling Wave Run Up / Beena Mary John, R. T. Arun Vignesh, Kiran G. Shirlal and Subba Rao Development of Regional Soil Water Retention (SWR) Characteristics / R. K. Jaiswal, T. Thomas, R. V. Galkate, S. Singh and J. V. Tyagi Revision of Empirical Coefficients of Commonly Used Flood Formulae Using Flow Data from Karnataka Rivers / T. Chandramohan, Mathew K. Jose, B. K. Purandara and B. Venkatesh Reservoir Inflow Forecasting Using Extreme Learning Machines / Mukesh Kumar Tiwari and Sanjeet Kumar Quantifying Discontinuity, Connectivity, Variability, and Hierarchy in Overland Flow Generation: Comparison of Different Modeling Methods / Xuefeng Chu Nondimensional UH-Based Smoothing of S-Curve-Derived UH Oscillations / P. R. Patil, S. K. Mishra, Nayan Sharma and Vijay P. Singh Fuzzy-Based Comprehensive Evaluation of Environmental Flow Alteration / Kairong Lin, Fan Zhang, Qiang Zhang, Xinjun Tu and Yang Hu Part VII Watershed Modeling Spatial Characters of a Tropical River Basin, South-West Coast of India / Girish Gopinath, N. Ramisha, Ajith G. Nair and N. P. Jesiya Streamflow Estimation Using SWAT Model Over Seonath River Basin, Chhattisgarh, India / Sabyasachi Swain, Mani Kant Verma and M. K. Verma Revisiting the Soil Conservation Service Curve Number Method / S. K. Mishra, Vijay P. Singh and P. K. Singh Hydrological Impacts of Rejuvenating Degraded Hilly Watershed in Shivalik Region / A. K. Tiwari and V. K. Bhatt Modeling of a River Basin Using SWAT Model / B. Venkatesh, T. Chandramohan, B. K. Purandara, Mathew K. Jose and P. C. Nayak Performance of the Xinanjiang Model / A. Ahirwar, M. K. Jain and M. Perumal
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Call number: 9789811088544 (e-book)
    Description / Table of Contents: This proceedings contains articles submitted to the sixth International Conference on Cognitive Neurodynamics (ICCN2017). The Meeting included plenary lectures, specialized symposia, and posters presentations. The main topics of the meeting addressed the general substrates underlying neural functions and the neural dynamics in sensory, motor, and cognitive systems. Other important neuroscience fields covered in the meeting were learning and memory processes and the functionally-related changes in synaptic strength, neural oscillations, synchronizations and coherence activities between different neural circuits, and the imaging of cognitive networks. Finally, specific articles covered several fields related to neural computation and neuroengineering, the modelling higher-order functions and dysfunctions and the experimental design of brain-to-computer and brain-to-brain interactions. All articles were peer-reviewed. The ICCN is a series conference that takes place every two years since 2007.
    Type of Medium: 12
    Pages: 1 Online-Ressource (xviii, 407 Seiten) , Illustrationen
    Edition: Springer eBook Collection. Biomedical and Life Sciences
    ISBN: 9789811088544 , 978-981-10-8854-4
    ISSN: 2213-3569 , 2213-3577
    Series Statement: Advances in Cognitive Neurodynamics
    Language: English
    Note: Contents Part I Neural Dynamics in Motor and Sensory Systems and in Cognitive Functions 1 Decomposition of Superimposed Chaotic Spike Sequences by Using the Bifurcating Neuron / Akihiro Yamaguchi, Yutaka Yamaguti, and Masao Kubo 2 Neural Energy Properties and Mental Exploration Based on Neural Energy Field Gradient / Yihong Wang, Xuying Xu, and Rubin Wang 3 Information Coded in the Striatum During Decision-Making / Makoto Ito and Kenji Doya 4 A Comparison of Reward Values Encoding Function Between the Prefrontal Cortex and Striatum in Monkey / Zaizhi Wen, Jianhua Zhang, and Xiaochuan Pan 5 Injection of Muscimol into Prefrontal Cortex Impairs Monkey’s Reward Transitive Inference / Xiaochuan Pan, Rubin Wang, and Masamichi Sakagami 6 Behavioral and Cognitive Impairments Induced by Low Doses of MK-801 and Ketamine / Marta Lovera-Ulecía, Lucía Moreno-Lama, María Ángeles Gómez-Climent, José M. Delgado-García, and Agnès Gruart 7 Changes in Brain Activity During Instrumental Behavior After Additional Learning in Rats / Vladimir Gavrilov 8 Coincidence Detection and Absolute Threshold in the Auditory Brainstem / Ray Meddis 9 Simultaneous Observation and Imagery of Hand Movement Enhance Event-Related Desynchronization of Stroke Patients / Atsuhiro Ichidi, Yuka Hanafusa, Tatsunori Itakura, and Toshihisa Tanaka 10 Behavioral and Brain Activity Modulation Through Neurofeedback Training Using Electroencephalography / Takuya Kimura and Jiro Okuda Part II Cognitive Network and Multi-scale Neural Network Dynamics 11 Network Model for Dynamics of Perception with Reservoir Computing and Predictive Coding / Yuichi Katori 12 Analysis of Structure-Function Relationship Using a Whole-Brain Dynamic Model Based on MRI Images of the Common Marmoset / Hiromichi Tsukada, Hiroaki Hamada, Ken Nakae, Shin Ishii, Junichi Hata, Hideyuki Okano, and Kenji Doya 13 A Structure and Function of Hippocampal Memory Networks in Consolidating Spatiotemporal Contexts / Hiromichi Tsukada, Minoru Tsukada, and Yoshikazu Isomura 14 A Pseudo-neuron Device and Firing Dynamics of Their Networks Similar to Neural Synchronizing Phenomena Between Far Local Fields in the Brain /Tomoyuki Yano, Yoshitomo Goto, Tomoyuki Nagaya, Ichiro Tsuda, and Shigetoshi Nara 15 Neurodynamics on Up and Down Transitions of Membrane Potential: From Single Neuron to Network / Xuying Xu, Rubin Wang, and Jianting Cao 16 Effects of Temporal Integration on Computational Performance of Spiking Neural Network / Fangzheng Xue, Yang Zhang, Hongjun Zhou, and Xiumin Li 17 Anticipatory Top-Down Interactive Neural Dynamics / Steven L. Bressler 18 Coherence-Based Coding in Spiking Neural Network with Global Inhibitory Feedback / Jinli Xie, Qinjun Zhao, and Jianyu Zhao 19 Time-Varying Scalp EEG Network Patterns for Music Tempo Perception /Wei Xu, Yin Tian, Haiyong Zhang, Huiling Zhang, Zhongyan Wang, Li Yang, Shuxing Zheng, Yupan Shi, Xing Zhao, Dechun Zhao, Xiuxing Wang, Yu Pang, and Zhangyong Li 20 Serotonin 5-HT1A Receptors Modulate Neural Rhythms in Prefrontal Cortex and Hippocampus and Prefronto-Hippocampal Connectivity in Alert Mice / Thomas Gener, Adrià Tauste-Campo, Maria Alemany-González, Cristina Delgado-Sallent, and Maria Victoria Puig Part III Neuroengineering, Neuroinformation and Brain Computer Interaction 21 A New Paradigm Based on Dynamic Visual Stimulation in BCI / Zhaoyang Qiu, Jing Jin, Hanhan Zhang, Yu Zhang, Bei Wang, and Xingyu Wang 22 Asynchronous Stimulation Method for N100-P300 Speller / Natsuki Morita and Yoshikazu Washizawa 23 Attention Evaluation Based on Single Prefrontal EEG / Jianhai Zhang, Gaomin Liu, Shaokai Zhao, and Wenhao Huang 24 Multi-Linc: A New Approach for Exploring Inter-areal Spike Communication / Yoshikazu Isomura 25 Intra-body Communication as an Emerging Approach to Neuromodulation / Javier Reina-Tosina, M. Amparo Callejón, Laura Fernández, and Laura M. Roa 26 Electrophysiology Techniques in Visual Prosthesis / Alejandro Barriga-Rivera and Gregg Jorgen Suaning 27 Application of Video-Oculography for the Analysis of the Vestibulo-Ocular Reflex in Acute Hypoxic Mice / Juan Carlos López-Ramos, Ana Belén García Cebrián, and José M. Delgado-García 28 RatButton: A User-Friendly Touchscreen Presentation Software / Celia Andreu-Sánchez, Miguel Ángel Martín-Pascual, Agnès Gruart, and José María Delgado-García 29 ERFo: An Algorithm for Extracting a Range of Optimal Frequencies for Filtering Electrophysiological Recordings / C. Rocío Caro-Martín, Agnès Gruart, José M. Delgado-García, and Alessandro E. P. Villa 30 VISSOR: An Algorithm for the Detection, Identification, and Classification of the Action Potentials Distributed Across Electrophysiological Recordings / C. Rocío Caro-Martín, José M. Delgado-García, Agnès Gruart, and Raudel Sánchez-Campusano Part IV Modelling Higher-Order Functions and Dysfunctions 31 Influence of β-Amyloid Plaques on the Local Network Activity in the APP/PS1 Mouse Model of Alzheimer’s Disease / Patricia Castano-Prat, Guillermo Aparicio-Torres, Alberto Muñoz, and Maria V. Sanchez-Vives 32 Altered Functional Connectivity in a Mouse Model of Fragile X Syndrome / Miguel Dasilva, Alvaro Navarro-Guzman, Luca Maiolo, Andres Ozaita, and Maria V. Sanchez-Vives 33 Multiple Epileptogenic Foci Can Promote Seizure Discharge Onset and Propagation / Denggui Fan and Qingyun Wang 34 An ERP Study Reveals How Training with Dual N-Back Task Affects Risky Decision Making in a Gambling Task in ADHD Patients / Sarah K. Mesrobian, Alessandra Lintas, Manon Jaquerod, Michel Bader, Lorenz Götte, and Alessandro E. P. Villa 35 Working Memory Development in Attention Deficit Children and Adolescents / Elena I. Rodríguez-Martínez, Antonio Arjona-Valladares, Francisco J. Ruíz-Martínez, Manuel Morales, Catarina I. Barriga-Paulino, Jaime Gómez-González, and Carlos M. Gómez 36 Spectral Power and Maturational Frequency-Coupling Differences Between Attention Deficit and Control Children and Adolescents / Elena I. Rodríguez-Martínez, Brenda Y. Angulo-Ruíz, Antonio Arjona-Valladares, Francisco J. Ruíz-Martinez, Jaime Gómez-González, and Carlos M. Gómez 37 Event-Related Potentials During a Delayed Match-to-Sample Test to Evaluate Working Memory Development in Control and Attention Deficit Children and Adolescents / Antonio Arjona-Valladares, Elena I. Rodríguez-Martínez, Francisco J. Ruíz-Martínez, Jaime Gómez-González, and Carlos M. Gómez 38 Postnatal Development of Sleep-Wake Cycle in Wild-Type Mice / Ángeles Prados-Pardo, Sandra Yaneth Prieto-Soler, and Eduardo Domínguez-del-Toro 39 Complexity of Heart Rate As a Value of Behavioral Complexity / Anastasiia Bakhchina 40 Neural Generators of the N2 Component for Abstinent Heroin Addicts in a Dot-Probe Task / Hongqian Li, Qinglin Zhao, Bin Hu, Yu Zhou, and Quanying Liu Part V Oscillation, Synchronization, Neural Plasticity, and Coordination Dynamics from Neural to Social Systems 41 Changes in Phase Synchronization of EEG During Development of Symbolic Communication Systems / Masayuki Fujiwara, Takashi Hashimoto, Guanhong Li, Jiro Okuda, Takeshi Konno, Kazuyuki Samejima, and Junya Morita 42 Effect of Spike-Timing-Dependent Plasticity on Stochastic Spike Synchronization in an Excitatory Neuronal Population / Sang-Yoon Kim and Woochang Lim 43 Alpha Phase Is Regulated by Gamma Power in Mouse Hippocampus / Tao Zhang, Xiaxia Xu, and Zhuo Yang 44 Quantitative Analysis of Functional Connectivity Between Prefrontal Cortex and Striatum in Monkey / Zaizhi Wen, Jianhua Zhang, Xiaochuan Pan, and Rubin Wang 45 Spontaneous Theta Rhythm Predicts Insomnia Duration: A Resting-State EEG Study / Wenrui Zhao, Dong Gao, Faguo Yue, Yanting Wang, Dandan Mao, Tianqiang Liu, and Xu Lei 46 Differences in Perceiving Narratives Through Screens or Reality / Miguel Ángel Martín-Pascual, Celia Andreu-Sánchez, José M. Delgado-García, and Agnès Gruart 47 Self-Organization with Constraints: The Significance of Invariant Manifolds / Ichiro Tsuda 48 On the Nature of Coordination in Nature / Emmanuelle Tognoli,
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: Life sciences ; Developmental biology ; Evolutionary biology ; Animal genetics ; Entomology ; Biomathematics ; Life Sciences ; Animal Genetics and Genomics ; Evolutionary Biology ; Mathematical and Computational Biology ; Developmental Biology ; Entomology
    Description / Table of Contents: Foreword --- Preface --- Contributors --- Part I. The Nympalid Groundplan (NGP) and Diversification --- Chapter1:The common developmental origin of eyespots and parafocal elements;And a new model-mechanism for color pattern formation --- Chapter2:Exploring color pattern diversification in early lineages of Satyrinae (Nymphalidae) --- Chapter3:Camouflage variation on a theme of the Nymphalid Ground Plan --- Chapter4:Morphological evolution repeatedly caused by mutations in signaling ligand genes --- Part II. Eyespots and Evolution --- Chapter5:Physiology and evolution of wing pattern plasticity in Bicyclus butterflies: a critical review ofthe literature --- Chapter6:Spatial variation in boundary conditions can govern selection and location of eyespots inbutterfly wings --- Chapter7:Self-Similarity, Distortion Waves, and the Essence of Morphogenesis: A Generalized View ofColor Pattern Formation in Butterfly Wings --- Part III. Developmental Genetics --- Chapter8:A practical guide to CRISPR/Cas9 genome editing in Lepidoptera --- Chapter9:What can we learn about adaptation from the wing pattern genetics of Heliconiusbutterflies? --- Chapter10:Molecular mechanism and evolutionary process underlying female-limited Batesian mimicry in Papilio polytes --- Part IV. Ecological Aspects and Adaptation --- Chapter11:Chemical Ecology of Poisonous Butterflies: Model or Mimic?— A Paradox of Sexual Dimorphisms in Müllerian Mimicry --- Chapter12:A model for population dynamics of the mimetic butterfly Papilio polytesin Sakishima Islands, Japan (II) --- Chapter13:Evolutionary trends in phenotypic elements of seasonal forms of the tribe Junoniini(Lepidoptera: Nymphalidae) --- Chapter14:Estimating the mating success of male butterflies in the field.-Part V. Color Patterns of Larva and Other Insects --- Chapter15:Molecular Mechanisms of Larval Color Pattern Switch in the Swallowtail Butterfly --- Chapter16:Drosophila guttifera as a model system for elucidating color pattern formation --- Chapter17:Molecular mechanisms underlying color vision and color formation in dragonflies
    Pages: Online-Ressource (XII, 321 pages) , 103 illustrations, 89 illustrations in color
    ISBN: 9789811049569
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Keywords: Business ; Leadership ; Knowledge management ; Organization ; Planning ; Personnel management ; Business and Management ; Knowledge Management ; Organization ; Business Strategy/Leadership ; Human Resource Management ; Industrial and Organizational Psychology
    Description / Table of Contents: Part 1: Strategy Development --- Part 2: Management Techniques --- Part 3: Collaboration Mechanisms --- Part 4: Knowledge Sharing and Learning --- Part 5: Knowledge Capture and Storage
    Pages: Online-Ressource (XVI, 1140 pages) , 358 illustrations
    ISBN: 9789811009839
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Keywords: Life sciences ; Agriculture ; Plant science ; Botany ; Sustainable development ; Life Sciences ; Agriculture ; Plant Sciences ; Sustainable Development
    Description / Table of Contents: Part 1. Introduction of Sago Resources- Chapter 1: Status and Outlook of Global Food Security and the Role of Under-Utilized Food Resource: Sago Palm (Hiroyuki Konuma) --- Chapter 2: Growing Area of Sago Palm and Its Environment (M. H. Bintoro) --- Chapter 3: Life and Livelihood in Sago Growing Area (Yukio Toyoda) --- Part 2. Diversity of Sago Resource in Asia and Pacific --- Chapter 4: Genetic Variation, Agronomic Features of Sago Palm in Asia and Pacific (Hiroshi Ehara) --- Chapter 5: Genetic Diversity of Sago Palm Resources in Indonesia (Barahima Abbas) --- Part 3. Sago Industry Contributes for Food Security and Rural Development in Core Producing Countries --- Chapter 6: An Overview of Sago Industry Development from 20th c. to 21st c. (Jong Foh Shoon) --- Chapter 7: Suitability of Peat Swamp Areas for Commercial Production of Sago Crop - Sarawak Experience (Roland Yong Chiew Ming) --- Chapter 8: Feasibility of Small Scale Sago Industries on Small Island in East Indonesia (Wardis Girsang) --- Chapter 9: Addressing Food Insecurity through Food Safety and Cropping of Sago in Papua New Guinea (Aisak G Pue) --- Chapter 10: Conservation and Sustainable Utilization of the Fiji Sago Palm (Dick Watling) --- Part 4. Agricultural Botany of Sago Palm --- Chapter 11: Matter Production as A Basis of Starch Production in Sago Palm (Yoshinori Yamamoto) --- Chapter 12: Morphogenesis of Sago Palm (Satoshi Nakamura) --- Chapter 13: Morphological and Anatomical Characteristics of Sago Palm Starch (Yoji Nitta) --- Part 5. Growth Environment --- Chapter 14: Soil Environment in Sago Palm Forest (Masanori Okazaki) --- Chapter 15: Interaction between Microbes Activities and Sago Palm Growth (Koki Toyoda) --- Part 6. Starch Production and Utilization --- Chapter 16: Study on the Transformation in Extraction and Consumption Processes of Sago Starch in a Traditional Society of Indonesia (Yoshihiko Nishimura) --- Chapter 17: Improvement of Sago Processing Machine (Darma) --- Chapter 18: The Structure and Characteristics of Sago Starch (Masanori Okazaki) --- Chapter 19: Recovery of Starch from Sago Pith Waste and Waste Water Treatment (Budi Santoso) --- Chapter 20: Acid modification of sago starch and its fiber for industrial application (Titi Candra Sunarti) --- Part 6. New Carbohydrate Resources --- Chapter 21: Starch Properties and Uses as food for Human Health and Welfare (Kazuko Hirao) --- Chapter 21: Production, Purification and Health Benefits of Sago Sugar (Kazuko Hirao) --- Chapter 22: Production, Purification and Health Benefits of Sago Sugar (Kopli Bujang) --- Chapter 23: New Sago Starch Resources and Its Properties from Starch Pith Waste and Pacific Sago Palms (Takashi Mishima) --- Part 8. Conclusion --- Chapter 24: Outcomes and Recommendations from the 12th International Sago Symposium (Yoshinori Yamamoto)
    Pages: Online-Ressource (XIII, 330 pages) , 106 illustrations, 71 illustrations in color
    ISBN: 9789811052699
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Keywords: Medicine ; Neurosciences ; Pharmacology ; Neurology ; Biomedicine ; Neurosciences ; Neurology ; Pharmacology/Toxicology
    Description / Table of Contents: 1.Overview --- 2.In vivo imaging of nicotinic acetylcholine receptors in the central nervous system --- 3.A new aspect of cholinergic transmission in the central nervous system --- 4.Nicotinic acetylcholine receptor signaling: roles in neuroprotection --- 5.Regulation by nicotinic acetylcholine receptors of microglial glutamate transporters: role of microglia in neuroprotection --- 6.Shati/Nat8l and N-acetylaspartate (NAA) have important roles in regulating nicotinic acetylcholine receptors in neuronal and psychiatric diseases in animal models and humans --- 7.Nicotinic acetylcholine receptors in regulation of pathology of cerebrovascular disorders --- 8.Roles of nicotinic acetylcholine receptors in the pathology and treatment of Alzheimer’s and Parkinson’s diseases --- 9.SAK3-induced neuroprotection is mediated by nicotinic acetylcholine receptors --- 10.Removal of blood amyloid as a therapeutic strategy for Alzheimer’s disease: the influence of smoking and nicotine
    Pages: Online-Ressource (X, 191 pages) , 62 illustrations, 20 illustrations in color
    ISBN: 9789811084881
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Keywords: Earth sciences ; Climate change ; Environmental sciences ; Remote sensing ; Environmental law ; Environmental policy ; Earth Sciences ; Environmental Science and Engineering ; Remote Sensing/Photogrammetry ; Climate Change Management and Policy ; Environmental Law/Policy/Ecojustice ; Environmental Policy ; Climate Change
    Description / Table of Contents: Satellite Earth Observations in Environmental Problem-Solving --- Policy and Earth Observation Innovation Cycle (PEOIC) Project (Japan) --- Innovation in Earth Observations as a National Strategic Investment: The Experience of the U.S --- Benefits Assessment of Applied Earth Science --- ESA’s Earth Observation Strategy and Copernicus --- Earth Observation--UK Perspective and Policy --- Benefit Assessment of the Application of Satellite Earth Observation for Society and Policy: Assessing the Socio-economic Impacts of the Development of Downstream, Space-based Earth Observation Applications --- Chinese Earth Observation Program and Policy --- Greenhouse Gas Observation from Space --- Japanese Satellite Earth Observation: Status and Policy Issues --- The New 10-Year GEOSS Strategy for 2016 and Beyond --- The Value of Global Earth Observations --- Earth Observation Support to the UN Framework Convention on Climate Change: The Example of REDD+ --- Quantitative Assessment of the Earth Observation Data and Methods Used to Generate Reference Emission Levels for REDD+ --- Evaluation of Space Programs: Select Findings from the OECD Space Forum --- Integrating Earth Observation Systems and International Environmental Regimes --- Conclusion
    Pages: Online-Ressource (XXV, 221 pages) , 57 illustrations, 51 illustrations in color
    ISBN: 9789811037139
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Unknown
    Singapore : Springer
    Keywords: Environment ; Industrial management ; Environmental aspects ; Ecotoxicology ; Pollution prevention ; Water pollution ; Environmental sociology ; Environment ; Industrial Pollution Prevention ; Environmental Sociology ; Environmental Communication ; Ecotoxicology ; Corporate Environmental Management ; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
    Description / Table of Contents: 1. Introduction --- 2. Lecture on the methylmercury poisoning occurred in Minamata (MPM) --- 3. Assignment to students
    Pages: Online-Ressource (IX, 67 pages) , 18 illustrations, 13 illustrations in color
    ISBN: 9789811073922
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Keywords: Earth sciences ; Natural disasters ; Geotechnical engineering ; System safety ; Mechanics ; Mechanics, Applied ; Earth Sciences ; Geotechnical Engineering & Applied Earth Sciences ; Natural Hazards ; Security Science and Technology ; Applications of Nonlinear Dynamics and Chaos Theory ; Theoretical and Applied Mechanics
    Description / Table of Contents: Introduction.-  Experimental Materials and Equipment --- The Mechanism and Predicting Theory-Based Rockburst Evolution --- Three-dimensional Reconstruction Model and Numerical Simulation of Rock Fissures.- The Patterns of Dynamic Evolution of Cracks in Rock Failure.- Experiment Investigation of AE Precursor Information for Rockburst --- Experimental Investigations on Multi-means and Synergistic Prediction for Rockburst --- Predicting Model of Rockburst Based on Nondeterministic Theory --- Field Case
    Pages: Online-Ressource (XIX, 188 pages) , 92 illustrations, 77 illustrations in color
    ISBN: 9789811075483
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Keywords: Earth sciences ; Natural disasters ; Geotechnical engineering ; System safety ; Mechanics ; Mechanics, Applied ; Earth Sciences ; Geotechnical Engineering & Applied Earth Sciences ; Natural Hazards ; Security Science and Technology ; Applications of Nonlinear Dynamics and Chaos Theory ; Theoretical and Applied Mechanics
    Description / Table of Contents: Introduction.-  Experimental Materials and Equipment --- The Mechanism and Predicting Theory-Based Rockburst Evolution --- Three-dimensional Reconstruction Model and Numerical Simulation of Rock Fissures.- The Patterns of Dynamic Evolution of Cracks in Rock Failure.- Experiment Investigation of AE Precursor Information for Rockburst --- Experimental Investigations on Multi-means and Synergistic Prediction for Rockburst --- Predicting Model of Rockburst Based on Nondeterministic Theory --- Field Case
    Pages: Online-Ressource (XIX, 188 pages) , 92 illustrations, 77 illustrations in color
    ISBN: 9789811075483
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Unknown
    Singapore : Springer
    Keywords: Environment ; Industrial management ; Environmental aspects ; Ecotoxicology ; Pollution prevention ; Water pollution ; Environmental sociology ; Environment ; Industrial Pollution Prevention ; Environmental Sociology ; Environmental Communication ; Ecotoxicology ; Corporate Environmental Management ; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
    Description / Table of Contents: 1. Introduction --- 2. Lecture on the methylmercury poisoning occurred in Minamata (MPM) --- 3. Assignment to students
    Pages: Online-Ressource (IX, 67 pages) , 18 illustrations, 13 illustrations in color
    ISBN: 9789811073922
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Keywords: Business ; Management ; Industrial management ; Technical education ; Sustainable development ; Business and Management ; Innovation/Technology Management ; Sustainable Development ; Engineering/Technology Education
    Description / Table of Contents: Overview --- Introduction --- Summary of Main Research Findings and Storylines: India, Indonesia, Sri Lanka, Viet Nam --- Case Study of a Private Sector Firm in Indonesia --- A Holistic Approach to Greening TVET: A Case Study and Analysis of Bac Thang Long Economic Technical College Practices --- Summary, Conclusions, and the Way Ahead: Cross-Country Concerns, Issues, and Prospects
    Pages: Online-Ressource (XXII, 198 pages) , 19 illustrations in color
    ISBN: 9789811065590
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Unknown
    Singapore : Springer
    Keywords: Market research ; Statistics ; Market Research/Competitive Intelligence ; Statistics for Business/Economics/Mathematical Finance/Insurance
    Description / Table of Contents: Part I. Introduction --- Chapter 1. Market segmentation --- Chapter 2. Market segmentation analysis --- Part II. Ten steps of market segmentation analysis --- Chapter 3. STEP 1: Deciding (not) to segment --- Chapter 4. STEP 2: Specifying the ideal target segment --- Chapter 5. STEP 3: Collecting data --- Chapter 6. STEP 4: Exploring data --- Chapter 7. STEP 5: Extracting segments --- Chapter 8. STEP 6: Profiling segments --- Chapter 9. STEP 7: Describing segments --- Chapter 10. STEP 8: Selecting (the) target segment(s) --- Chapter 11. STEP 9: Customising the marketing mix --- Chapter 12. STEP 10: Evaluation and monitoring.
    Pages: Online-Ressource (XXI, 324 pages) , 123 illustrations, 51 illustrations in color
    ISBN: 9789811088186
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Unknown
    Singapore : Springer
    Keywords: Materials science ; Spectroscopy ; Chemistry, Physical and theoretical ; Nanoscale science ; Nanoscience ; Nanostructures ; Microscopy ; Nanotechnology ; Materials Science ; Nanotechnology ; Theoretical and Computational Chemistry ; Nanoscale Science and Technology ; Characterization and Evaluation of Materials ; Spectroscopy/Spectrometry ; Spectroscopy and Microscopy
    Description / Table of Contents: 1. Descriptors for Machine Learning of Materials Data --- 2. Potential Energy Surface Mapping of Charge Carriers in Ionic Conductors Based on a Gaussian Process Model --- 3. Machine learning predictions of factors affecting the activity of heterogeneous metal catalysts --- 4. Machine Learning-based Experimental Design in Materials Science --- 5. Persistent homology and materials informatics --- 6. Polyhedron and Polychoron codes for describing Atomic Arrangements --- 7. Topological Data Analysis for the Characterization of Atomic Scale Morphology from Atom Probe Tomography Images --- 8. Atomic-scale nanostructures by advanced electron microscopy and informatics --- 9. High spatial resolution hyperspectral imaging with machine-learning techniques --- 10. Fabrication, Characterization, and Modulation of Functional Nanolayers --- 11. Grain Boundary Engineering of Alumina Ceramics --- 12. Structural relaxation of oxide compounds from the high-pressure phase.-13.Synthesis and structures of novel solid-state electrolytes
    Pages: Online-Ressource (VIII, 298 pages) , 188 illustrations, 142 illustrations in color
    ISBN: 9789811076176
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    Physika-Verlag, Würzburg
    In:  Herausgeberexemplar (Archiv der DGG in Leipzig) | 8 Z NAT 2148
    Publication Date: 2021-03-29
    Description: ROSSBACH, A.: Die Geokorona und ihre Bedeutung für die Hochatmosphäre . . . 557 ; Binder, O.: Untersuchungen von Intensitätsschwankungen der kosmischen Strahlung im Periodenbereich zwischen 20 und 28 Stunden . . . 565 ; LIEGER, P. F.: Eine im Winter bei mittlerer Breite auftretende Senke des Elektroneninhalts . . . 581 ; NEGI, J. G., and T. LAL: Deformation of the Shape of Seismic Pulses by a Layer of Non-Uniform Velocity Distributions . . . 589 ; Briefe an den Herausgeber: WOOSTER, W. S.., A. J. LEE, G. DIETRICH: Redefinition of Salinity . . . 611 ; In memoriam: O. LUCKE, B. BROCKAMP, F. ERRULAT . . . 615
    Description: research
    Description: DGG, DFG, SUB Göttingen
    Keywords: 550 ; Geophysik ; Physische Geografie ; Atmosphäre ; Geokorona ; Strahlung ; Seismik ; Ionosphäre ; Salinität ; FID-GEO-DE-7
    Language: German , English
    Type: anthology_digi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    Physika-Verlag, Würzburg
    In:  Herausgeberexemplar (Archiv der DGG in Leipzig) | 8 Z NAT 2148
    Publication Date: 2021-03-29
    Description: Inhalt: GIESE, P.: Die Geschwindigkeitsverteilung im obersten Bereich des Kristallins, abgeleitet aus Refraktionsbeobachtungen auf dem Profil Böhmischbruck—Eschenlohe . . . 197 ; BOSE, S. K.: A Wave Theory for the Generation of Love, G and Sa Waves . . . 215 ; ÖCAL‚ N.: Aufbau der Erdkruste in Anatolien . . . 227 ; PLAUMANN, S.: Kontinuierliche Schweremessungen im Roten Meer mit einem Askania-Seegravimeter vomTyp GssZ nach GRAF . . . 233 ; Verzeichnis der geophysikalischen Vorlesungen . . . 257 ;
    Description: research
    Description: DGG, DFG, SUB Göttingen
    Keywords: 550 ; Geophysik ; Physische Geografie ; Gravitation ; Geomorphologie ; Wellen ; Love Wave ; Geophysik ; Seismik ; Elektrodynamik ; FID-GEO-DE-7
    Language: German , English
    Type: anthology_digi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    Physika-Verlag, Würzburg
    In:  Herausgeberexemplar (Archiv der DGG in Leipzig) | 8 Z NAT 2148
    Publication Date: 2021-03-29
    Description: Inhalt: BHATTACHARYA, J. and DAS GUPTA, S. C.: On leaking modes coupled with shear waves . . . 101 ; TEUPSER, CH. und ULLMANN, W.: Ein neuer Vertikalseismograph mit galvanometrischer Registrierung . . . 115 ; BURKARD‚ O.: Ionosphärenbeobachtungen zur Sonnenfinsternis am 15. Februar 1961 . . . 123 ; (ROSENBACH‚ O. und SCHMITT, 0.: Programmsteuerung der Empfindlichkeit seismischer Meßapparaturen . . . 129 ; Buchbesprechungen . . . 145 ; Berichtigung . . . 148 ,
    Description: research
    Description: DGG, DFG, SUB Göttingen
    Keywords: 550 ; Geophysik ; Physische Geografie ; Wellen ; Seismik ; Ionosphäre ; Atmosphäre ; Elastographie ; FID-GEO-DE-7
    Language: German , English
    Type: anthology_digi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    Physika-Verlag, Würzburg
    In:  Herausgeberexemplar (Archiv der DGG in Leipzig)
    Publication Date: 2021-03-29
    Description: FABIAN, P. and W. F. LIBBY: Ozone in the Atmesphere of Venus . . . 1 ; KOENIG, M.: Digitalisierung modellseismischer Signale . . . 9 ; RUMMEL F.: Studies of time-dependent deformation of some granite and eclogite rock samples under uni-axial, constant compressives tress and temperatures up to 400 °C . . . 17 ; BEHREHS, J., L. DRESEN und E. HINZ: Modellseismische Untersuchungen der dynamischen Parameter von Kopfwelle und Reflexion im überkritischen Bereich . . . 43 ; SCHMIDTKE, G.: EUV-Laborspektrophotometrie zur Vorbereitung von optischen Flugexperimenten (mit Falttafeln} . . . 69 ; STROWALD, J.: Schlierenoptische Untersuchung der Ω-Welle . . . 83 ; STILLER H. und C. WAGNER: Eine Einrichtung für Ultraschallmessungen an Gesteinen unter hydrostatischem Druck bis 2 kbar . . . 97 ; Buchbesprechungen . . . 103
    Description: research
    Description: DGG, DFG, SUB Göttingen
    Keywords: 550 ; Geophysik ; Photometrie ; Physische Geografie ; Seismik ; Ozon ; Venus ; Ultraschall ; Optik ; FID-GEO-DE-7
    Language: German , English
    Type: anthology_digi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    Physika-Verlag, Würzburg
    In:  Herausgeberexemplar (Archiv der DGG in Leipzig) | 8 Z NAT 2148
    Publication Date: 2021-03-29
    Description: INHALTSVERZEICHNIS: BOSUM, W. & HAHN, A.: Diagrams for the computation of magnetic field components, for their transformation into one another and for their upward continuation (two-dimensional case) . . . 1 ; FRÖLICH, F. und H. LÖFFLER: Einflüsse auf die Korundtyp-Wechselwirkungen im System Hämatit-Ilmenit . . . 26 ; SCHNEIDER, G.‚ MÜLLER, ST. und L. KNOPOFF: Gruppengeschwindigkeitsmessungen an kurzperiodischen Oberflächenwellen in Mitteleuropa . . . 33 ; Briefe an den Herausgeber . . . 58 ; Buchbesprechungen . . . 61 ;
    Description: research
    Description: DGG, DFG, SUB Göttingen
    Keywords: 550 ; Geophysik ; Physische Geografie ; Magnetismus ; Mineralogie ; Seismik ; FID-GEO-DE-7
    Language: German , English
    Type: anthology_digi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    Physika-Verlag, Würzburg
    In:  Herausgeberexemplar (Archiv der DGG in Leipzig) | 8 Z NAT 2148
    Publication Date: 2021-03-29
    Description: Lorch, S.: Messung des Wassergehaltes in Böden mit der Neutronensonde. ; Thrasher, J. E. & Scheidegger, A. E.: On the Connection Between Stress and Displacements in Faulted Regions. SUMMARY 1 [Lorch, S.: Messung des Wassergehaltes in Böden mit der Neutronensonde.]: Based on results of experimental and theoretical investigations it is shown that the calibration curve of a neutron probe depends essentially on the configuration between neutron source and detector. SUMMARY 2 [Thrasher, J. E. & Scheidegger, A. E.: On the Connection Between Stress and Displacements in Faulted Regions. ]: This paper demonstrates a method of obtaining the principal direction of the stress tensor in a faulted area when the principal directions of the displacement tensor are known. Also, the mean and standard deviation of the maximum principal stress axes are determined for a randomly faulted area with null axes parallel to a plane, provided the displacement component normal to this plane has always the same sign; it is then shown that the mean is normal to the plane of the null axes. This result is important in connection with the statistical analysis of earthquake fault plane solutions inasmuch as it proves that the tectonic motion direction obtained as the “most orthogonal” direction to the null axes of an area must coincide with the average (maximum) principal stress direction.
    Description: Lorch, S.: Messung des Wassergehaltes in Böden mit der Neutronensonde. ; Thrasher, J. E. & Scheidegger, A. E.: On the Connection Between Stress and Displacements in Faulted Regions. ZUSAMMENFASSUNG 1 [Lorch, S.: Messung des Wassergehaltes in Böden mit der Neutronensonde.]: An Hand der Ergebnisse experimenteller und theoretischer Untersuchungen an der Neutronensonde wird gezeigt, daß die Form der Eichkurven im wesentlichen von der Art der Anordnung Quelle-Detektor abhängt. ZUSAMMENFASSUNG 2 [Thrasher, J. E. & Scheidegger, A. E.: On the Connection Between Stress and Displacements in Faulted Regions.]: Die Arbeit präsentiert eine Methode, die gestattet, die tektonischen Hauptspannungsrichtungen in einem von Brüchen durchzogenen Gebiet aus den Hauptachsen des Verzerrungstensors herzuleiten. Der Mittelwert und die Streuung der größten Hauptspannungsrichtung sind für eine willkürlich von Brüchen durchzogene Gegend berechnet, solange man annimmt, daß die Nullachsen der Brüche einer Ebene parallel sind und die Verschiebungskomponente normal zu dieser Nullachse immer dasselbe Vorzeichen aufzeigt. Dieses Resultat ist im Zusammenhange mit der Theorie der Verschiebungsebenen in Erdbebenherden wichtig, da es zeigt, daß die tektonische Bewegungsachse, die man dadurch erhält, daß man die beste Normale zu den Nullachsen in einem Gebiet findet, dieselbe sein muß, wie die mittlere Hauptspannungsrichtung.
    Description: research
    Description: DGG, DFG, SUB Göttingen
    Keywords: 550 ; Geophysik ; Physische Geografie ; Boden ; Hydrologie ; Tektonik ; Geophysik ; FID-GEO-DE-7
    Language: German , English
    Type: anthology_digi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    Physika-Verlag, Würzburg
    In:  Herausgeberexemplar (Archiv der DGG in Leipzig) | 8 Z NAT 2148
    Publication Date: 2021-03-29
    Description: INHALTSVERZEICHNIS: Angenheister, G. und v. Consbruch C.: Pulsation des erdmagnetischen Feldes in Göttingen von 19531-1958 . . . 103 ; Fritsch, V.: Die geoelektrische Untersuchung der Heilwässer in der Umgebung des Neusiedlersees im Burgenland . . . 112 ; Schneider, G.: Mikroseismik-Ausbreitung in Nord- und Mitteleuropa . . . 118 ; Frölich, F.‚ Stiller, H. und Wagner, F. Ch: Erfahrungen mit Laborverfahren für Gesteinsuntersuchungen . . . 136 ; Druckfehlerberichtigung . . . 149 ;
    Description: research
    Description: DGG, DFG, SUB Göttingen
    Keywords: 550 ; Geophysik ; Physische Geografie ; Geophysik ; Geomagnetismus ; Geoelektrik ; Seismik ; FID-GEO-DE-7
    Language: German , English
    Type: anthology_digi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    Physika-Verlag, Würzburg
    In:  Herausgeberexemplar (Archiv der DGG in Leipzig) | 8 Z NAT 2148
    Publication Date: 2021-03-29
    Description: INHALTSVERZEICHNIS: Hédervári, P.: On the Geophysical Interpretation of the Seismical Great-circle of the Earth . . . 1 ; Kunkis, A., und G. Ries: Anlage zur Messung und Registrierung der luftelektrischen Elemente mit automatischer Stundenmittelauswertung . . . 5 ; Stiller, H., and F. Frölich: Studies on Rock Forming Magnetic Minerals . . . l3 ; Macke, W., P. Rennert, F. Rieger und K. Voss: Über die Gestalt und das Schwerefeld der Erde . . . 21 ; Weaver, J. T.: On the Separation of Local Geomagnetic Fields . . . 29 ; Angenheister‚ G.: Kolloquium zum Thema: Gesteinsmagnetismus . . . 37 ; Der radioaktive Kollektor bei luftelektrischen Sondierungen . . . 43 ; Briefe an den Herausgeber . . . 45 ; Buchbesprechungen . . . 48 ;
    Description: research
    Description: DGG, DFG, SUB Göttingen
    Keywords: 550 ; Geophysik ; Physische Geografie ; Geophysik ; Elektrik ; Geomagnetismus ; Gravitation ; Radioaktivität ; Seismik ; FID-GEO-DE-7
    Language: German , English
    Type: anthology_digi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    Physika-Verlag, Würzburg
    In:  Herausgeberexemplar (Archiv der DGG in Leipzig) | 8 Z NAT 2148
    Publication Date: 2021-03-29
    Description: INHALTSVERZEICHNIS: Berckhemer H.‚ St. Müller und M. Sellevoll: Die Krustenstruktur in Südwestdeutschland aus Phasen-Geschwindigkeitsmessungen an Rayleigh-Wellen . . . 151 ; Schäffner, H. J.: Interpretation von Herdmechanismen durch asymmetrische Dislokationen . . . 164 ; Refai E.: Magnetic anomalies and magnetization of basalts in the area around Kemnath (Oberpfalz) . . . 175 ; Dürschner, H. : Über den Reflexionscharakter und die Laufzeitkurven nach Geschwindigkeitslogs . . . 188 ; Duda S. J.: Phänomenologische Untersuchung einer Nachbebenserie aus dem Gebiet der Aläuten- Inseln . . . 207 ; Bewersdorff, A.: Der Einfluß der Entmischung auf remanente Magnetisierung von Titanomagnetiten . . . 213 ;
    Description: research
    Description: DGG, DFG, SUB Göttingen
    Keywords: 550 ; Geophysik ; Physische Geografie ; Geomagnetismus ; Seismik ; FID-GEO-DE-7
    Language: German , English
    Type: anthology_digi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    Physika-Verlag, Würzburg
    In:  Herausgeberexemplar (Archiv der DGG in Leipzig) | 8 Z NAT 2148
    Publication Date: 2021-03-29
    Description: Übersichtsartikel: REMER, M.: Das raumzeitliche Verhalten der Hochatmosphäre, erschlossen aus Bahnänderungen künstlicher Satelliten . . . 217 ; ASHOUR, A. A.: The Effect of the Earth‘s Conductivity on Ionosperic Shielding . . . 269 ; BROCKAMP, B. und H. RÜTER: Die Abhängigkeit der elastischen Parameter des Eisens vom hydrostatischen Druck bis zu 400 bar . . . 277 ; PROS, Z., J. VANĚK, K. KLÍMA und V. BABUŠKA: Experimentelle Untersuchungen des Wellenbildes bei der Ultraschall-Durchstrahlung einer Kugel . . . 287 ; SCHÖDEL, J. P.: On the Existence of Sometimes Considerable Transport Effects in the Nighttime Ionosphere . . . 297 ; NITZSCHE, P.: The dependence of ionospheric absorption of radio waves on equivalent frequency, with special emphasis on the winter anomaly . . . 303 ; Berichtigung und Ergänzung: HASSE, L.: Zum Einfluß von Instrumententrägheit . . . 311 ; Briefe an den Herausgeber: NIX, N.: Anreicherungsverfahren für atmosphärische Ionen mittels elektrostatischer Linse . . . 313 ; Kurzmitteilung . . . 315
    Description: research
    Description: DGG, DFG, SUB Göttingen
    Keywords: 550 ; Geophysik ; Physische Geografie ; Atmosphäre ; Ionosphäre ; Druck ; Wellen ; Ultraschall ; FID-GEO-DE-7
    Language: German , English
    Type: anthology_digi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    Physika-Verlag, Würzburg
    In:  Herausgeberexemplar (Archiv der DGG in Leipzig) | 8 Z NAT 2148
    Publication Date: 2021-03-29
    Description: SCHULT, A. and M. SCHOBER: Measurement of electrical conductivity of natural olivine at temperatures up to 950 °C and pressures up to 42 kbar . . . 105 ; STROBACH, K.: Über die Natur der elastischen Wellen der Seegangs-Mikroseismik . . . 113 ; FUCHS, K: On the properties of deep crustal reflectors . . . 133 ; VOPPEL, D.: Ein Spulentheodolit zur Messung der erdmagnetischen Komponenten mit dem Protonenmagnetometer . . . 151 ; FRITSCH, V. und A. F. TAUBER: Geoelektrische Untersuchungen von Salzwasservorkommen . . . 161 ; BEHRENS, J. und L. DRESEN: Eine Möglichkeit zur Laufzeitbestimmung reflektierter Wellen im Bereich der kritischen Entfernung . . . 175 ; WEIDELT, P.: Zur Tiefenlage und Größe des Dichtemaximums der induzierten Erdströme . . . 191 ; Briefe an den Herausgeber: ISRAËL, H., und N. NIX: Ein neues Verfahren zur Untersuchung von Kondensation und Verdampfung an Einzelteilchen von Kleinaerosolen . . . 207 ; ROSE‚ G. und H. U. WIDDEL: Zur Möglichkeit des direkten Nachweises vertikaler Luftbewegungen im Höhenbereich 75 - 80km . . . 211 ; Buchbesprechungen . . . 213
    Description: research
    Description: DGG, DFG, SUB Göttingen
    Keywords: 550 ; Geophysik ; Protonenmagnetometer ; Physische Geografie ; Elektrik ; Geoelektrik ; Seismik ; Geomagnetismus ; Wellen ; FID-GEO-DE-7
    Language: German , English
    Type: anthology_digi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    Physika-Verlag, Würzburg
    In:  Herausgeberexemplar (Archiv der DGG in Leipzig) | 8 Z NAT 2148
    Publication Date: 2021-03-29
    Description: KAHLE, H.-G.: Abschätzung der Störungsmasse im Nördlinger Ries . . . 317 ; MÜLLER; G; Theoretical Seismograms for some Types of Point-sources in Layered Media Part III: Single Force and Dipole Sources of Arbitary Orientation . . . 347 ; EBEL, A., G. HARTMANN, R. LEITINGER, G. SCHMIDT, J. P. SCHÖDEL: Vergleichende Auswertung von Faraday-Effekt-Beobachtungen zweier Empfangsstationen . . . 373 ; EICHMEIER J.: Grenzbeweglichkeiten und Auflösungsvermögen eines Ionenbeweglichkeitsspektrometers mit plattenförmigem Aspirationskondensator . . . 413 ; BJÖRNSSON, A.: Aufzeichnung und Auswertung erdmagnetischer Pulsationen in Island und Göttingen . . . 419 ; Briefe an den Herausgeber: FUCHS, K.: The Method of Stationary Phase as a Diagnostic Aid in Estimating the Field Pattern of Body Waves Reflected from Transition Zones . . . 431 ; Buchbesprechungen . . . 437
    Description: research
    Description: DGG, DFG, SUB Göttingen
    Keywords: 550 ; Geophysik ; Physische Geografie ; Seismik ; Ionosphäre ; Geomagnetismus ; Wellen ; Gravitation ; Atmosphäre ; FID-GEO-DE-7
    Language: German , English
    Type: anthology_digi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    Physika-Verlag, Würzburg
    In:  Herausgeberexemplar (Archiv der DGG in Leipzig) | 8 Z NAT 2148
    Publication Date: 2021-03-29
    Description: INHALTSVERZEICHNIS: SIEDLER, G.: Zum Mechanismus des Wasseraustausches zwischen dem Roten Meer und dem Golf von Aden ; JACOBY, W.: Schweremessungen auf Helgoland - Auswertung mit Ausgleichsverfahren ; PÍCHA, J .: Einige Ergebnisse der Erdgezeitenbeobachtungen in der ČSSR ; TOMCZAK, M.‚ jun.: Über winderzeugte interne Wellen ; HIRSCHLEBER, H. B. und H. MENZEL: Das Amplituden-Ladungs-Gesetz für Sprengungen im Kleinen Belt ; GUTDEUTSCH, R.: Modellseismische Experimente über die Ausbreitung von Rayleighwellen an keilförmigen Schichten ; SCHNEIDER, G., SCHICK, R. and H. BERCKHEMER: Fault-plane Solutions of Earthquakes in Baden-Württemberg ; JAESCHKE, R.: Upper Atmosphere Winds Deduced from Vapour Trail Drifts ; RAWER, K.: Ionosphären-Messungen bei zwei Raketen-Aufstiegen in der Sahara ; MÜHLEISEN, R.: Sferiks von ozeanischen Gewittern und luftelektrische Feldstärke über dem Atlantik während der Expedition 1965 des deutschen Forschungsschiffes „Meteor“ ; STEVELlNG, E.: Erdmagnetische Tiefensondierung mit 9 gleichzeitig registrierenden Pulsationsstationen zwischen Göttingen und Goslar ; VOELKER, H.: Beobachtungen von pt’s auf einer Stationskette von Nordskandinavien bis Deutschland ; ZÜRN, V.: Statistische Untersuchungen über langperiodische Pulsationen des erdmagnetischen Feldes ; SAXOV, S. and N. ABRAHAMSEN: Some Geophysical Investigations in the Faroe Islands ; SEIDL, D., MÜLLER, ST. und L. KNOPOFF: Dispersion von Rayleigh-Wellen in Südwestdeutschland und in den Alpen ; WANIEK‚ L. und V. SCHENK: Modellseismischer Beitrag zur Deutung des Krustenaufbaues in der bayerischen Molasse ; GIESE, P.: Neue Gesichtspunkte zur Gliederung der Erdkruste auf Grund refraktionsseismischer Messungen ; BERKTOLD, A.: Erste Auswertung von Messungen des zeitlich variablen erdmagnetischen Feldes entlang eines Profiles vom Oberpfälzer Wald bis zu den Kitzbüheler Alpen ; SENGPIEL, K.-P.: Das induzierte erdelektrische Feld, beobachtet längs zweier Profile durch die bayerische Molasse ; LATKA, R.: Modellrechnungen zur Induktion im elektrisch leitfähigen Untergrund ; FRITSCH, V.: Geoelektrische Probleme der elektrischen Bodenverfestigung ; SCHOPPER, J. R.: Untersuchungen über elektrische und hydraulische Eigenschaften poröser Gesteine ; SOFFEL, H. und N. PETERSEN: Druckabhängigkeit der magnetischen Bereichsstrukturen von natürlichem Magnetit ; RAMMNER, R.: Ausgewählte Beispiele geoelektrischer Meßtätigkeit ; DAVID, E.: Großmeteoriteneinschläge und Tektite ;
    Description: research
    Description: DGG, DFG, SUB Göttingen
    Keywords: 550 ; Geophysik ; Physische Geografie ; Atmosphäre ; Elektrodynamik ; Geoelektrik ; Geomagnetismus ; Gravitation ; Hydraulik ; Hydrologie ; Ionosphäre ; Meteoriten ; Mineralogie ; Seismik ; Wellen ; FID-GEO-DE-7
    Language: German , English
    Type: anthology_digi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    Physika-Verlag, Würzburg
    In:  Herausgeberexemplar (Archiv der DGG in Leipzig) | 8 Z NAT 2148
    Publication Date: 2021-03-29
    Description: INHALTSVERZEICHNIS: SOFFEL, H.: Stress dependence of the domain structure of natural magnetite . . . 63 ; KORSCHUNOW, A. : Mittlerer Tagesgang erdmagnetischer Pulsationen am Geophysikalischen Observatorium zu Fürstenfeldbruck in den Jahren 1960-1962 . . . 79 ; TRIPPLER, K.: Bericht über Untersuchungen zur ß-Aktivität der bodennahen Atmosphäre . . . 102 ; PUCHER, R.: Untersuchung magnetischer Eigenschaften an der Kontaktfläche zweier benachbarter Gesteinsarten . . . 113 ; Kurzmitteilung . . . 119 ; Briefe an den Herausgeber . . . 121 ; Verzeichnis der geophysikalischen Vorlesungen . . . 1 ;
    Description: research
    Description: DGG, DFG, SUB Göttingen
    Keywords: 550 ; Geophysik ; Physische Geografie ; Magnetismus ; Geomagnetismus ; Seismik ; Atmosphäre ; FID-GEO-DE-7
    Language: German , English
    Type: anthology_digi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    Physika-Verlag, Würzburg
    In:  Herausgeberexemplar (Archiv der DGG in Leipzig) | 8 Z NAT 2148
    Publication Date: 2021-03-29
    Description: INHALTSVERZEICHNIS: VOLLAND, H.: The Flat Earth Approximation of the Theory of LF-Propagation . . . 127 ; GUHA, S.; Modellseismische Untersuchungen zur Entstehung der, reflektierten Refraktion . . . 139 ; GEYH, M. A.: Betrachtungen über 14C-Gemischtprobendatierungen . . . 154 ; MUNDRY, E.: Berechnung des gestörten geothermischen Feldes mit Hilfe eines Relaxations-verfahrens . . . 157 ; DOLEZALEK, H. and A. L. OSTER: Ion-Spectrometer for the Terrestrial Mesosphere and the Atmosphere of Mars . . . 163 ; DAVID, E.: Bemerkung zur Arbeit: „Der Zuwachs des Erdradius“ von G. EDER . . . 173 ; Briefe an den Herausgeber . . . 175 ; Mitteilung . . . 178 ;
    Description: research
    Description: DGG, DFG, SUB Göttingen
    Keywords: 550 ; Geophysik ; Physische Geografie ; Wellen ; Seismik ; Mars ; Geothermie ; C-14 ; Atmosphäre ; Astronomie ; FID-GEO-DE-7
    Language: German , English
    Type: anthology_digi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    Physika-Verlag, Würzburg
    In:  Herausgeberexemplar (Archiv der DGG in Leipzig) | 8 Z NAT 2148
    Publication Date: 2021-03-29
    Description: INHALTSVERZEICHNIS: Caloi, P.: The crust of the earth, from the Apennines to the Atlantic, reconstructed in accordance with the data supplied by seismic surveys . . . 65 ; Budde, E.: Bestimmung der Beweglichkeitskoeffizienten der Radiumemenation in Lockergesteinen . . . 96 ; Hahn, A.: Erfahrungen mit dem Torsions-Magnetometer Gfz der ASKANIAWERKE, Berlin . . . 106 ;
    Description: research
    Description: DGG, DFG, SUB Göttingen
    Keywords: 550 ; Geophysik ; Physische Geografie ; Seismik ; Radioaktivität ; Strahlung ; Magnetismus ; FID-GEO-DE-7
    Language: German , English
    Type: anthology_digi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    Physika-Verlag, Würzburg
    In:  Herausgeberexemplar (Archiv der DGG in Leipzig) | 8 Z NAT 2148
    Publication Date: 2021-03-29
    Description: INHALTSVERZEICHNIS: Linke O., Chr.-U. Wagner: Die dynamischen Gleichungen in der Magnetosphäre II . . . 257 ; Prakash Prem: A residual method . . . 275 ; Homilius J.. Über die Auswertung geoelektrischer Sondierungskurven im Falle eines vielfach geschichteten Untergrundes . . . 282 ; Coroniti S. C.‚ H. Dolezalek, H. Israël: On the Electrical Feature of the Upper Stratosphere of Mesosphere . . . 301 ;
    Description: research
    Description: DGG, DFG, SUB Göttingen
    Keywords: 550 ; Geophysik ; Physische Geografie ; Geophysik ; Atmosphäre ; Magnetosphäre ; Geoelektrik ; Stratosphere ; Mesosphere ; FID-GEO-DE-7
    Language: German , English
    Type: anthology_digi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    Physika-Verlag, Würzburg
    In:  Herausgeberexemplar (Archiv der DGG in Leipzig) | 8 Z NAT 2148
    Publication Date: 2021-03-29
    Description: Inhalt: Bisztricsány, E.: On the problem of magnitude determination. ; Förtsch, O.: Ergebnisse seismischer Untersuchungen auf Gletschern der Ostalpen. ; Richter, G.: Über die Polarisation von SKS. ; Stefanescu, S. S.: Über die magnetische Wirkung einiger heterogener Medien in der elektrischen Bodenforschung. ; Vogler, G.: Die Grenzen der Anwendung von Erdungsmessern für Aufgaben in der angewandten Geophysik. ; Barta, G.: Über die Säkularbewegung des magnetischen Zentrums und der magnetischen Pole der Erde. ; Kertz, W.: Tages- und jahreszeitliche Variationen des erdmagnetischen äquatorialen Ringstromes. ; Schmucker, U.: Einige Ergebnisse der erdmagnetischen Tiefensondierung in Norddeutschland. ; Volland, H.: Modelle erdmagnetisch induzierter Ströme im inhomogenen Erdinnern. ; Frölich, F.: Zur magnetischen Stabilität von Erdkrustengesteinen. ; Luck, O.: Über den physikalischen Zustand der Materie im Erdinnern, ; Egyed, L. and Stegena, L.: Physical background of a dynamical Earth model, ; Dolezalek, H.: Die Problematik luftelektrisch-synoptischer Betrachtung. ; Israël, H.: Die luftelektrische Unruhe. ; Lucke, O. & Sparrer, H.: Die Gerätekonstante des elektrodynamischen Theodoliten des VEB WTBG, Berlin und die Vermessung der Primärspule mit dem Meßgerät des VEB Carl Zeiß, Jena. ; Reusche, H.-G.: Ein absoluter magnetischer Theodolit. ; Verö, J.: Über einige Ergebnisse des Erdstrom-Observatoriums bei Nagycenk in Ungarn. ; Schulze, R.: Die modernen Askania-Gravimeter: Erfahrungen, Verbesserungen und ihre Leistungsfähigkeit. ; Fanselau, G.: Über quadratische Mittelwerte des geomagnetischen Potentials. ; Grosse, S.: Ergebnisse gravimetrischer Regionalvermessungen im Westerzgebirge. ; Geier, S.: Die Berechnung von geoelektrischen Modellkurven bei beliebiger Elektroden-Anordnung auf horizontal geschichteten Medien. ; Neumenn, W.: Neue Untersuchung der irregulären geomagnetischen Anomalien bei Berggießhübel in Sachsen. ; Noßke, G. & Franke, R.: Einige Erfahrungen bei der geoelektrischen Kartierung von Mineralgängen, Spalten und Verschiebungen im Mittelgebirge. ; Rische, H.: Geschwindigkeitsbestimmung aus reflexionsseismischen Messungen bei Anwendung von Luftschüssen. ;
    Description: research
    Description: DGG, DFG, SUB Göttingen
    Keywords: 550 ; Geophysik ; Physische Geografie ; Atmosphäre ; Elektrodynamik ; Geodäsie ; Geoelektrik ; Geomagnetismus ; Gletscher ; Gravitation ; Seismik ; FID-GEO-DE-7
    Language: German , English
    Type: anthology_digi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    Physika-Verlag, Würzburg
    In:  Herausgeberexemplar (Archiv der DGG in Leipzig) | 8 Z NAT 2148
    Publication Date: 2021-03-29
    Description: INHALTSVERZEICHNIS: Crustal Structure in Western Germany . . . 209 ; Bose, S. K.: A Wave Theory for the Generation of T-Waves . . . 235 ; Mälzer‚H.: Eine Tintenregistrierung für Seismographen . . . 245 ; Strobach, K.: Kolloquium der Deutschen Forschungsgemeinschaft zum Schwerpunktprogramm: Geophysikalische Erforschung des tieferen Untergrundes Mitteleuropas . . . 249 ; Verzeichnis der geophysikalischen Vorlesungen an den deutschsprachigen Universitäten und Hochschulen . . . 254 ; Briefe an den Herausgeber . . . 258 ; Buchbesprechung . . . 260 ;
    Description: Waves
    Description: research
    Description: DGG, DFG, SUB Göttingen
    Keywords: 550 ; Geophysik ; Physische Geografie ; Waves ; Wellen ; Geologie ; Mitteleuropa ; Germany ; Crustal Structure ; Seismographie ; Seismik ; FID-GEO-DE-7
    Language: German , English
    Type: anthology_digi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    Physika-Verlag, Würzburg
    In:  Herausgeberexemplar (Archiv der DGG in Leipzig) | 8 Z NAT 2148
    Publication Date: 2021-03-29
    Description: Übersichtsartikel: MEISSNER, R.: Der gegenwärtige Stand der Mondforschung 441 ; SCHMIDBAUER E: Magnetic properties of oxidized Fe – Cr spinels . . . 475 ; RÖSSLER, F., und D. BOCK: Messung des diffusen Himmelslichtes mittels Ballonen . . . 485 ; CREER, K. M., and N. PETERSEN: Thermochemical Magnetization in Basalts . . . 501 ; WILHELM, H.: das zeitliche Verhalten des erdmagnetischen Quadrupolfeldes von 1835-1965 . . . 517 ; JESKE, H.: die Feinstruktur des Brechungsindexfeldes in Höhen zwischen 50 und 2400 m über See . . . 529 ; Briefe an den Herausgeber: GOSE, W. A.: Bemerkungen zum Artikel von E. SCHENK: „Über die Magnetisierung der Tuffe und Paläosole im Paläovulkan des Vogelsbergs“ . . . 551 ; SCHENK, E.: Die Magnetisierung von Tuffen und Paläosolen. (Stellungnahme zu den Bemerkungen von W.A. Gose) . . . 553 ; Buchbesprechung und Kurzmitteilung . . . 556
    Description: research
    Description: DGG, DFG, SUB Göttingen
    Keywords: 550 ; Geophysik ; Physische Geografie ; Mond ; Magnetismus ; Licht ; Geomagnetismus ; Vulkanismus ; FID-GEO-DE-7
    Language: German , English
    Type: anthology_digi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    Physika-Verlag, Würzburg
    In:  Herausgeberexemplar (Archiv der DGG in Leipzig) | 8 Z NAT 2148
    Publication Date: 2021-03-29
    Description: INHALTSVERZEICHNIS: PARASNIS, D. S.: The electric potential and apparent resistivity due to a pair of long line electrodes in the presence of a vertical outropping vein . . . 261 ; MAYER, W.: Neuberechnung der BLUTschen Ergebnisse für Reflexion und Brechung elastischer Wellen an Unstetigkeitsflächen . . . 275 ; HELLENTHAL, W.: Magnetische Eigenschaften ferromagnetischer Granulate . . . 282 ; BOSE, S. K.: The Vertical Component of Lg and Rg. . . . 294 ; STILLER, S.: Freiluftisolator für luftelektrische Messungen . . . 301 ; Nachtrag zum Verzeichnis der geophysikalischen Vorlesungen an den deutschsprachigen Universitäten und Hochschulen (in Heft 5) . . . 307 ; Buchbesprechung . . . 307 ;
    Description: research
    Description: DGG, DFG, SUB Göttingen
    Keywords: 550 ; Geophysik ; Physische Geografie ; Geophysik ; Elektrik ; Seismik ; Geomagnetismus ; FID-GEO-DE-7
    Language: German , English
    Type: anthology_digi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    Physika-Verlag, Würzburg
    In:  Herausgeberexemplar (Archiv der DGG in Leipzig) | 8 Z NAT 2148
    Publication Date: 2021-03-29
    Description: INHALTSVERZEICHNIS: STILKE, G.: Registrierung von Luftdruckwellen im Subschallgebiet . . . 147 ; SCHMELOVSKY, K. H. and D. FELKSE: Results from multifrequency observations of electron density with S 66 satellite . . . 155 ; JACOBY, W.: Zur Berechnung der Schwerewirkung beliebig geformter dreidimensionaler Massen mit digitalen Rechenmaschinen . . . 163 ; SCHEIDEGGER, A. E.: The Tectonic Stress in the Vicinity of the Alps . . . 167 ; KIRSTEN, G., VOLLSTÄDT, H., FRÖLICH, F.: Applications of the Neutron Diffraction Method to Decide Self Reversal and other Petrological Problems . . . 182 ; ISRAËL, H. und C. DE LA RIVA: Atmosphärische Radioaktivität und Austausch . . . 188 ; AHORNER, L.: Einige Bemerkungen zum Aufbau der Erdkruste in West-Deutschland auf Grund von Nahbeben-Untersuchungen . . . 193 ; GUTDEUTSCH, R. und H. MENZEL: Bemerkungen zur sogenannten 2-dimensionalen Theorie der Modellseismik . . . 200 ; Vorlesungsverzeichnis . . . 206 ; Buchbesprechungen . . . 210 ;
    Description: research
    Description: DGG, DFG, SUB Göttingen
    Keywords: 550 ; Geophysik ; Physische Geografie ; Astronomie ; Atmosphäre ; Geologie ; Gravitation ; Luftdruck ; Mineralogie ; Radioaktivität ; Schall ; Seismik ; Tektonik ; Wellen ; FID-GEO-DE-7
    Language: German , English
    Type: anthology_digi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    Physika-Verlag, Würzburg
    In:  Herausgeberexemplar (Archiv der DGG in Leipzig) | 8 Z NAT 2148
    Publication Date: 2021-03-29
    Description: INHALTSVERZEICHNIS: S. P. DAS GUPTA: Effect of Low Velocity Layer in Earthquakes . . . 1 ; W. GIESEL: Geschwindigkeiten elastischer Wellen und Wärmeleitfähigkeit im Steinsalz . . . 9 ; N. HENZEL und O. STREBEL: Modelluntersuchungen über Tiefenverlagerung von Fallout in verschiedenen Böden . . . 33 ; H. ISRAËL and S. BJÖRNSSON: Radon (Rn222) and Thoron (Rn220) in soil air over Faults . . . 48 ; Nachtrag zum Vorlesungsverzeichnis (Wintersemester 1966/67; Heft 5/6) . . . 64 ;
    Description: research
    Description: DGG, DFG, SUB Göttingen
    Keywords: 550 ; Geophysik ; Physische Geografie ; Seismik ; Mineralogie ; Radioaktivität ; FID-GEO-DE-7
    Language: German , English
    Type: anthology_digi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    Physika-Verlag, Würzburg
    In:  Herausgeberexemplar (Archiv der DGG in Leipzig) | 8 Z NAT 2148
    Publication Date: 2021-03-29
    Description: INHALTSVERZEICHNIS: SEILER, E. Und W. KERTZ: Der polare Elektrojet . . . 371 ; LORCH S.: Messung zeitlicher Wassergehaltsänderungen im Boden . . . 403 ; KAUTZLEBEN, H.: Zur Interpretation des geomagnetischen Hauptfeldes als vektorielles Zufallsfeld . . . 415 ; BORISEVIČ, E. S.: Sowjetische Geräte für die Erdbebenregistrierung . . . 425 ; R. MEISSNER: Vergleiche seismischer Weitwinkelmessungen in der UdSSR und im bayrischen Molassebecken . . . 439 ; Briefe an den Herausgeber: HIERONYMUS, H.: Eine Zweipolschollen-Hypothese der Kontinentverschiebung . . . 453 ; BURKHARDT, H., F. KELLER, G MÜLLER, O. ROSENBACH und R. VEES: Bemerkungen zur Einsatzmöglichkeit der Magnetband-Refraktionsapparaturen MARS 66 in großen Registrierentfernungen . . . 455 ; Kurzmitteilung: SCHULT, A.: The effect of hydrostatic pressure on the compensation temperature of magnetization in a Li-Cr-ferrite . . . 458 ; Buchbesprechungen . . . 462 ;
    Description: research
    Description: DGG, DFG, SUB Göttingen
    Keywords: 550 ; Geophysik ; Physische Geografie ; Atmosphäre ; Geoelektrik ; Geomagnetismus ; Hydrologie ; Ionosphäre ; Magnetismus ; Mineralogie ; Seismik ; Seismographie ; Tektonik ; FID-GEO-DE-7
    Language: German , English
    Type: anthology_digi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    Physika-Verlag, Würzburg
    In:  Herausgeberexemplar (Archiv der DGG in Leipzig) | 8 Z NAT 2148
    Publication Date: 2021-03-29
    Description: INHALTSVERZEICHNIS: GIESE, P., C. PRODEHL und C. BEHNKE: Ergebnisse refraktionsseismischer Messungen 1965 zwischen dem Französischen Zentralmassiv und den Westalpen . . . 215 ; WAGNER, F. CH.: Die Stabilität einiger Serpentinitproben aus Granulitgebirge von Sachsen . . . 262 ; MÜHLEISEN‚R.: Über atlantische und tropische Gewitter . . . 273 ; Kurzmitteilung: TREUMANN, R.: Induktionspfeile über ideal horizontalen Schichtungen . . . 285 ; Briefe an den Herausgeber: LORCH, S.: Ein Gerät zur Messung der Geschwindigkeit (Betrag und Richtung) des Grundwassers in einem Bohrloch . . . 287 ; PROS, Z. und V. BABUŠKA: A Method for Investigating the Elastic Anisotropy on Spherical Rock Samples . . . 289 ; Buchbesprechungen . . . 292 ;
    Description: research
    Description: DGG, DFG, SUB Göttingen
    Keywords: 550 ; Geophysik ; Physische Geografie ; Atmosphäre ; Hydrologie ; Magnetismus ; Meteorologie ; Mineralogie ; Seismik ; Strahlung ; Elektrodynamik ; Geoelektrik ; Geomagnetismus ; FID-GEO-DE-7
    Language: German , English
    Type: anthology_digi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    Physika-Verlag, Würzburg
    In:  Herausgeberexemplar (Archiv der DGG in Leipzig) | 8 Z NAT 2148
    Publication Date: 2021-03-29
    Description: Inhaltsverzeichnis: Zum neuen Jahrgang . . . 1 ; Zur Denkschrift „Physik des Erdkörpers“ . . . 3 ; Jung, K.: neuere Gedanken und Ergebnisse über die Gestalt des Erdkörpers und die Verteilung der Massen im Erdinneren . . . 7 ; Müller, G.: Theoretical Seismograms for some Types of Point-sources in Layered Media Part I: Theory . . . 15 ; Dizioğlu, M. Y.: A Method for Determining True Chargeabilities of Vertical Discontinuities and its Application to Some Types of Lead-Zinc Ores in Turkey . . . 37 ; Zech, G.: Veränderungen der magnetischen Eigenschaften von Basaltsäulen seit dem Tertiär . . . 53 ; Eichmeier, J.: Die theoretischen Grundlagen und das Auflösungsvermögen von Aspirations-Beweglichkeitsspektrographen für atmosphärische Ionen . . . 69 ; Ebel, A.: Zeitliche Variation und Genauigkeit bei der Bestimmung der Höhenveränderlichkeit geomagnetischer Elemente, abgeleitet aus Normalfeldern für Mitteleuropa . . . 87 ; Briefe an den Herausgeber: Meissner, R.: Zur Deutung der hypsometrischen Kurven von Erde und Mond . . . 99 ; Buchbesprechungen . . . 103 ;
    Description: research
    Description: DGG, DFG, SUB Göttingen
    Keywords: 550 ; Geophysik ; Physische Geografie ; Astronomie ; Atmosphäre ; Erz ; Geoelektrik ; Geomagnetismus ; Ionen ; Magnetismus ; Mond ; Seismik ; Türkei ; FID-GEO-DE-7
    Language: German , English
    Type: anthology_digi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    Physika-Verlag, Würzburg
    In:  Herausgeberexemplar (Archiv der DGG in Leipzig) | 8 Z NAT 2148
    Publication Date: 2021-03-29
    Description: ISRAEL, H. and STILLER, S.: Climatological aspects of the natural radioactivity . . . 51 ; GROTEN, E.: Berechnung des Einflusses der Meeresgezeiten auf die Registrierung der Erdgezeiten in Neunkirchen/Siegerland . . . 57 ; FEHLHABER, L.: Einfluß außerirdischer Korpuskularströme auf das Magnetfeld der Erde . . . 65 ; FRIEDEMANN, H.: Von neuen Erfindungen. Anordnung zur Voranzeige bei seismischen Messungen auf See . . . 81 ; HELBIG, K.: Some Integrals of Magnetic Anomalies and Their Relation to the Parameters of the Disturbing Body . . . 83 ; Verzeichnis der geophysikalischen Vorlesungen an den deutschen Universitäten und Hochschulen . . . 97
    Description: research
    Description: DGG, DFG, SUB Göttingen
    Keywords: 550 ; Klima ; Radioaktivität ; Tiden ; Geomagnetismus ; Seismik ; Magnetismus ; FID-GEO-DE-7
    Language: German , English
    Type: anthology_digi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    Physika-Verlag, Würzburg
    In:  Herausgeberexemplar (Archiv der DGG in Leipzig) | 8 Z NAT 2148
    Publication Date: 2021-03-29
    Description: INHALTSVERZEICHNIS: In memoriam FRANZ HALLENBACH . . . 179 ; In memoriam RUDOLF TOMASCHEK . . . 181 ; SCHEIDEGGER, A. E.: Isallo Stress Prospecting . . . 183 ; REICH, H.: Kurzer Bericht über die Bohrung Wörnitzostheim im Nordlinger Ries . . . 200 ; ISRAEL, H. und J. RÖSSLER: Zum Sonnenaufgangseffekt im Längstwellengebiet . . . 207 ; VOSS, K.: Über die Gestalt und das Schwerefeld der Erde (Teil III) . . . 216 ; BEHRENS, J. und L. DRESEN: Ein experimentelles Verfahren zur Eliminierung von Störsignalen bei modellseismischen Untersuchungen . . . 232 ; Kurzmitteilungen: THYSSEN-BORNEMISZA, S.: Depth Estimation from Vertical Gravity Observations . . . 242 ; MATTERN, G.: Zusammenhänge zwischen Dawn chorus Beobachtungen und den Güteziffern des Funkverkehrs . . . 244 ;
    Description: research
    Description: DGG, DFG, SUB Göttingen
    Keywords: 550 ; Geophysik ; Physische Geografie ; Elektrodynamik ; Gravitation ; Wellen ; Seismik ; FID-GEO-DE-7
    Language: German , English
    Type: anthology_digi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    Physika-Verlag, Würzburg
    In:  Herausgeberexemplar (Archiv der DGG in Leipzig) | 8 Z NAT 2148
    Publication Date: 2021-03-29
    Description: INHALTSVERZEICHNIS: HOFMANN, H. und H. STILLER: Die Bestimmung der CURIEtemperaturen von natürlichen Magnetiten mit der Methode der thermodynamischen Koeffizienten . . . 267 ; EISEMANN‚E.: Der nächtliche Anstieg der F-Schicht der Ionosphäre . . . 280 ; ÖCAL,N.: Geometrical Solutions of Fault-plane Problem of Some of the Destructive Earthquakes Occurred in Anatolia in the Period 1938-1955 . . . 293 ; LEDERSTEGER, K.: Zur Theorie der WIECHERTmodelle . . . 310 ; DOLEZALEK, H.: On the Measurement of Electric Fields in Space . . . 318 ; Verzeichnis der geophysikalischen Vorlesungen . . . 330 ; Prof. Dr. HERMANN REICH zum 75. Geburtstag . . . 334 ;
    Description: research
    Description: DGG, DFG, SUB Göttingen
    Keywords: 550 ; Geophysik ; Physische Geografie ; Atmosphäre ; Astronomie ; Elektrodynamik ; Ionosphäre ; Mineralogie ; Seismik ; Thermodynamik ; FID-GEO-DE-7
    Language: German , English
    Type: anthology_digi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2021-08-13
    Description: Abstract
    Description: The survey-mode GPS (sGPS) network in the IPOC region consists of 91 geodetic markers. Over the last decade, the positions of these points in the network have been periodically measured, thus enabling us to quantify the decadal patterns of deformation processes. This temporal catalogue of coordinates complement the continuous GPS (cGPS) array. Meta-data and raw data in Rinex format for the surveys carried out in 2008, 2011, 2013, 2014, 2015, and 2016 are available for 91 sites in the north of Chile and the northwest of Argentina. Included in this temporal catalogue are observations made shortly after the 2014 Pisagua-Iquique earthquake. Detailed information about data availability, metadata and site descriptions can be found at: https://kg189/gnss/IPOCSGPS. More description about the Integrated Plate Boundary Observatory Chile (IPOC) can be found at the IPOC Website (www.ipoc-network.org) and on the sGPS Survey on www.ipoc-network.org/associated-projects/gps-campaigns/.
    Keywords: GPS ; Chile ; earthquakes ; subduction zone ; active deformation ; monitoring ; IPOC ; Integrated Plate Boundary Observatory Chile
    Language: English
    Type: Dataset
    Format: 2 Files
    Format: application/octet-stream
    Format: application/octet-stream
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2021-09-02
    Description: Abstract
    Description: The experimental gravity field model XGM2016 is an outcome of TUM's assessment of a 15'x15' data grid excerpt provided from NGA's updated and revised gravity data base. The assessment shall support NGA's efforts on the way on the way to the Earth Gravity Model EGM2020.
    Description: Other
    Description: XGM2016 is a combination model based on the satellite-only gravity field model GOCO05s and a global 15'x15' data grid provided from NGA's data base.
    Keywords: ICGEM ; global gravitational model ; GOCO ; Geodesy ; GOCE
    Language: English
    Type: Dataset , Dataset
    Format: 15478728 Bytes
    Format: 4 Files
    Format: application/x-zip-compressed
    Format: application/octet-stream
    Format: application/octet-stream
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2021-08-31
    Description: Abstract
    Description: Version history: This datased is an updated version of Francke et al. (2017; http://doi.org/10.5880/fidgeo.2017.003) for a revised version of this discussion paper. It contains further data collected, some of which also resulted in the revision of previous data (e.g. updated rating curves).A comprehensive hydro-sedimentological dataset for the Isábena catchment, NE Spain, for the period 2010-2018 is presented to analyse water and sediment fluxes in a Mediterranean meso-scale catchment. The dataset includes rainfall data from twelve rain gauges distributed within the study area complemented by meteorological data of twelve official meteo-stations. It comprises discharge data derived from water stage measurements as well as suspended sediment concentrations (SSC) at six gauging stations of the Isábena river and its sub-catchments. Soil spectroscopic data from 351 suspended sediment samples and 152 soil samples were collected to characterize sediment source regions and sediment properties via fingerprinting analyses.The Isábena catchment (445 km²) is located in the Southern Central Pyrenees ranging from 450 m to 2,720 m in elevation, together with a pronounced topography this leads to distinct temperature and precipitation gradients. The Isábena river shows marked discharge variations and high sediment yields causing severe siltation problems in the downstream Barasona reservoir. Main sediment source are badland areas located on Eocene marls that are well connected to the river network. The dataset features a wide set of parameters in a high spatial and temporal resolution suitable for advanced process understanding of water and sediment fluxes, their origin and connectivity, sediment budgeting and for evaluating and further developing hydro-sedimentological models in Mediterranean meso-scale mountainous catchments.The data have been published with the CUAHSI Water Data Center and is structured according to its guidelines (.csv format). For more detailed information please read the user guide on cloud publications with the CUAHSI Water Dater Center or the ODM guide for uploading data using CUAHSI´s ODM uploader added to the folder CUAHSI_ODM-Guide.zip. The database can be found in the HISCENTRAL catalogue (http://hiscentral.cuahsi.org/pub_network.aspx?n=5622). It is directly accessible via the API (http://hydroportal.cuahsi.org/isabena/cuahsi_1_1.asmx?WSDL) or in zipped archives at this DOI Landing Page (http://doi.org/10.5880/fidgeo.2018.011). For more detailed information, please read the user guide on cloud publications with the CUAHSI Water Dater Center (UserGuide.pdf) or the ODM guide for uploading data using CUAHSI´s ODM uploader in the ODM_Guide.zip archive.The data are available in four thematic zip folders:(1) hydro (hydrological data): water stage (manual readings and automatically recorded), river discharge (meterings and converted from stage)(2) meta (metadata) with the description of the different datafiles relevant for this dataset according to the CUAHSI HIS Standards(3) meteo (meteorological data): rainfall, temperature, radiation, humidity(4) sediment (sedimentological data): turbidity, suspended sediment concentration (from samples and from turbidity), sediment and soil reflectance spectraand are complemented by:(5) CUAHSI_ODM-Guide: User Guide, CUAHSI´s ODM uploader in Excel (.xlsx) and Open Office (.ods) formats(6) scripts: auxiliary R-script templates for data access, data analysis and visualisation(7) supplementary materials: stage-discharge- and turbidimeter rating curves
    Keywords: rainfall ; discharge ; suspended sediment concentration ; soil spectroscopy ; fingerprint properties ; meso-scale ; EARTH SCIENCE 〉 ATMOSPHERE 〉 PRECIPITATION ; EARTH SCIENCE 〉 SPECTRAL/ENGINEERING 〉 INFRARED WAVELENGTHS 〉 REFLECTED INFRARED ; EARTH SCIENCE 〉 TERRESTRIAL HYDROSPHERE 〉 WATER QUALITY/WATER CHEMISTRY 〉 TURBIDITY ; EARTH SCIENCE 〉 TERRESTRIAL HYDROSPHERE 〉 SURFACE WATER 〉 STAGE HEIGHT ; EARTH SCIENCE 〉 TERRESTRIAL HYDROSPHERE 〉 SURFACE WATER 〉 DISCHARGE/FLOW ; EARTH SCIENCE 〉 LAND SURFACE 〉 EROSION/SEDIMENTATION 〉 SEDIMENT TRANSPORT ; EARTH SCIENCE 〉 TERRESTRIAL HYDROSPHERE 〉 SURFACE WATER 〉 RIVERS/STREAMS
    Language: English
    Type: Dataset , Dataset
    Format: 183324730 Bytes
    Format: 10 Files
    Format: application/x-zip-compressed
    Format: application/x-zip-compressed
    Format: application/x-zip-compressed
    Format: application/x-zip-compressed
    Format: application/x-zip-compressed
    Format: application/x-zip-compressed
    Format: application/octet-stream
    Format: application/octet-stream
    Format: application/pdf
    Format: application/x-zip-compressed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2021-09-30
    Description: Abstract
    Description: We investigated the frictional properties of simulated fault gouges derived from the main lithologies present in the seismogenic Groningen gas field (NE Netherlands), employing in-situ P-T conditions and varying pore fluid salinity. Direct shear experiments were performed on gouges prepared from the Carboniferous Shale/Siltstone underburden, the Upper Rotliegend Slochteren Sandstone reservoir, the overlying Ten Boer Claystone, and the Basal Zechstein anhydrite-carbonate caprock, at 100 ºC, 40 MPa effective normal stress, and sliding velocities of 0.1-10 µm/s. As pore fluids, we used pure water, 0.5-6.2 M NaCl solutions, and a 6.9 M mixed chloride brine mimicking the formation water. Our results show a mechanical stratigraphy, with a maximum friction coefficient (µ) of ~0.65 for the Basal Zechstein, a minimum of ~0.37 for the Ten Boer claystone, ~0.6 for the reservoir sandstone, ~0.5 for the Carboniferous, and µ-values between the end-members for mixed gouges. Pore fluid salinity had no effect on frictional strength. Most gouges showed velocity-strengthening behavior, with little effect of pore fluid salinity on (a-b). However, Basal Zechstein gouge showed velocity-weakening at low salinities and/or sliding velocities, as did 50:50 mixtures with sandstone gouges, tested with the 6.9 M reservoir brine. From a Rate-and-State-Friction viewpoint, our results imply that faults incorporating Basal Zechstein anhydrite-carbonate material at the top of the reservoir are the most prone to accelerating slip, i.e. have the highest seismogenic potential. The results are equally relevant to other Dutch Rotliegend fields and to similar sequences globally. The data is provided in a .zip folder with 29 subfolders for 29 experiments/samples. Detailed information about the files in these subfolders as well as information on how the data is processed is given in the explanatory file Hunfeld-et-al-2017-Data-Description.pdf
    Keywords: Frictional properties ; Simulated fault gouge ; Groningen gas field ; EPOS ; Multi-scale laboratories ; rock and melt physical properties
    Language: English
    Type: Dataset
    Format: 69191878 Bytes
    Format: 2 Files
    Format: application/x-zip-compressed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2021-09-30
    Description: Abstract
    Description: This dataset contains the paleomagnetic supplementary material to the article Kelder et al. (subm.), which presents a magnetostratigraphic correlation of Late Miocene lacustrine sediments based on multi-polarity greigite. The multi-polarity is visible in most thermal paleomagnetic results (Zijderveld diagrams) by antipodal high and medium temperature components, while only one magnetic component was visible in the alternating field demagnetization diagrams. Based on this complex behavior, a tailored demagnetization approach was developed to allow for reliable magnetostratigraphic dating of lacustrine sediments.The dataset includes demagnetization data from four drill cores located nearby Paks, Hungary. They were not oriented, meaning that only the inclination could be used for paleomagnetism. The measurements took place at the Paleomagnetic Laboratory Fort Hoofddijk in Utrecht University, The Netherlands. For details about the methodology the reader is referred to the methodology in Kelder et al. (subm).Three types of data are distinguished:• Thermal demagnetization results (.th files)• Alternating field demagnetization results (.af files).• Interpreted magnetic vectors for demagnetization files (.dir files)The .th, .af. and .dir files can be viewed with Notepad or similar programs, and analyzed via the Open Source platform Paleomagnetism.org (Koymans et al., 2016). The .dir files only exist for the cores PAET-30 and PAET-34, because these were interpreted in detail, while the material of the other cores (PAET-26, 27) were mainly used for rock magnetic purposes.Finally, an overview of the data files, abbreviations and sample codes is provided in the data description file.
    Keywords: magnetostratigraphy ; Lake Pannon ; Hungary ; iron sulfide ; greigite ; endemic ; delta progradation ; EPOS ; Multi-scale laboratories ; Paleomagnetic and magnetic data ; paleomagnetic data
    Language: English
    Type: Dataset
    Format: 1763452 Bytes
    Format: 2 Files
    Format: application/x-zip-compressed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2021-09-30
    Description: Abstract
    Description: This dataset contains ten movies corresponding to five analog experiments of double subduction systems with opposite polarity in adjacent plate segments. The laboratory model consists of two viscous layers of silicone putty representing the lithospheric plates, on top of a tank of syrup representing the mantle. Different setups have been designed to test the influence of the width of the plates and the initial separation between them on the resulting trench retreat velocities, deformation of plates and mantle flow.The movies show the time evolution of each experiment from the top and an oblique position of the camera (indicated by "_top" and "_ob" suffixes in the file names). Model 1 and 2 consist of two plates of 30 cm width spaced 10 cm and 0.5 cm, respectively. These models are designed to study the influence of the initial separation between plates on the dynamics of the mantle flow and plates interaction. Model 3 consists of two 20 cm wide plates with an initial separation of 0.5 cm. We use this model to show the mantle flow pattern in a double subduction system. Model 4 is composed of two 10 cm wide plates with an initial separation of 0.5 cm. This model is designed to analyze the effects of the plate width on the dynamics of the system. Finally, Model 5 is designed to study the interaction of two near subducting plates with different widths (30 cm and 10 cm wide plates).For details of the model set-up and results obtained please refer to the data description file and Peral et al. (2018).
    Keywords: Subduction analog models ; ananlogue models ; double subduction system ; trench curvature ; EPOS ; Multi-scale laboratories ; analogue models of geologic processes ; analogue modelling results
    Language: English
    Type: Dataset
    Format: 949939 Bytes
    Format: 2 Files
    Format: application/pdf
    Format: video/mp4
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2022-01-17
    Description: Abstract
    Description: The data set provides GFZ VER13 orbits of altimetry satellites:ERS-1 (August 1, 1991 - July 5, 1996),ERS-2 (May 13, 1995 - February 27, 2006),Envisat (April 12, 2002 - April 8, 2012),TOPEX/Poseidon (September 23, 1992 - October 8, 2005),Jason-1 (January 13, 2002 - July 5, 2013) andJason-2 (July 5, 2008 - April 5, 2015)derived at the time spans given at the GFZ German Research Centre for Geosciences (Potsdam, Germany) within the Sea Level phase 2 project of the European Space Agency (ESA) Climate Change Initiative using "Earth Parameter and Orbit System - Orbit Computation (EPOS-OC)" software (Zhu et al., 2004) and the Altimeter Database and processing System (ADS, http://adsc.gfz-potsdam.de/ads/) developed at GFZ. The orbits were computed in the ITRF2014 terrestrial reference frame for all satellites using common, most precise models and standards available and described below.The ERS-1 orbit is computed using satellite laser ranging (SLR) and altimeter crossover data, while the ERS-2 orbit is derived using additionally Precise Range And Range-rate Equipment (PRARE) measurements. The Envisat, TOPEX/Poseidon, Jason-1, and Jason-2 orbits are based on Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) and SLR observations. For Envisat, altimeter crossover data were used additionally at 44 of 764 orbital arcs with gaps in SLR and DORIS data.The orbit files are available in the Extended Standard Product 3 Orbit Format (SP3-c). Files are gzip-compressed. File names are given as sate_YYYYMMDD_SP3C.gz, where "sate" is the abbreviation (ENVI, ERS1, ERS2, JAS1, JAS2, TOPX) of the satellite name, YYYY stands for 4-digit year, MM for month and DD for day of the beginning of the file. More details on these orbits are provided in Rudenko et al. (2018) to which these orbits are supplementary material.
    Keywords: Altimetry satellite ; Low Earth Orbit satellites ; ESA CCI Sea Level ; sea level ; ITRF2014 ; ERS-1 ; ERS-2 ; Envisat ; TOPEX/Poseidon ; Jason-1 ; Jason-2 ; Orbit ; Earth Observation Satellites 〉 ENVISAT ; Earth Observation Satellites 〉 OSTM/JASON-2 ; Earth Observation Satellites 〉 TOPEX/POSEIDON ; Earth Observation Satellites 〉 JASON-1 ; Earth Observation Satellites 〉 ERS Earth Resource Satellite 〉 ERS-2 ; Earth Observation Satellites 〉 ERS Earth Resource Satellite 〉 ERS-1 ; Earth Remote Sensing Instruments 〉 Active Remote Sensing 〉 Altimeters 〉 Radar Altimeters ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 SATELLITE ORBITS/REVOLUTION 〉 ORBITAL POSITION ; EARTH SCIENCE 〉 OCEANS 〉 SEA SURFACE TOPOGRAPHY 〉 SEA SURFACE HEIGHT
    Language: English
    Type: Dataset
    Format: 1 Files
    Format: application/octet-stream
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2022-05-09
    Description: Abstract
    Description: The data set contains hourly mean values (HMV) of the horizontal magnetic field component H as measured at the geomagnetic observatory Huancayo for 1935 to 1985. Huancayo (IAGA code HUA) is located close to the magnetic equator and is operated by Instituto Geofisico del Peru. The HMVs were taken from the World Data Centre Kyoto (WDC Kyoto) and existing data gaps (in total some 19 years from the 1960ies, 1970ies and 1980ies) were filled in by typing handwritten records of the HMV at GFZ. These handwritten records were monthly tables that were received as digital images from geomagnetic observatory Huancayo or that were received as microfilms from World Data Centre Boulder, Colorado. We also produced digital images of these microfilms. The values from the WDC Kyoto are definitive values; the monthly tables presumably also contain definitive values. Corrections to HUA HMVs from WDC Kyoto: There is a known error in the time stamping of the HUA HMVs prior to 1948 (before 1948 the data was reported in local time, rather than universal time). This error is corrected in the present dataset. Also, an attempt was made to correct for a jump in the HMV time series at this time. For further corrections, see Matzka et al, 2017. Please note that a dataset based on the data provided here will be submitted to the WDC Kyoto at a later stage and might undergo further modifications. The data file is in ASCII format and contains blank-separated first the year (YYYY), the month (MM), the day (DD) followed by the 24 HMVs of H (format HHHHH) in nanotesla (nT), starting with the HMV for 00 to 01 universal time.Geomagnetic observatories are described in e.g. Jankowski and Sucksdorf (1996).
    Keywords: Geomagnetic Observatory Huancayo ; hourly mean values ; magnetic equator ; equator ; equatorial electrojet ; ionosphere
    Language: English
    Type: Dataset , Dataset
    Format: 3335118 Bytes
    Format: 1 Files
    Format: text/plain
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2022-05-11
    Description: Abstract
    Description: The Sassen climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Sassen was installed in 2011. It is located on a small elevation and next to a tree stand within a field. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, AdconBP1_BarometricPressure, KuZCMP3_PyranometerIncoming, KuZCMP3_PyranometerOutgoing, KuZCGR3_PyrgeometerIncoming, KuZCGR3_PyrgeometerOutgoing, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconSM1_Soiltemperature025cm, AdconSM1_Soiltemperature015-025cm, AdconSM1_Soiltemperature045-075cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AdconSM1_Soilmoisture100cm, AdconWET_LeafWetness and KuZCGR3_PyrgeometerIncomingThe current version of this dataset is 2.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.275 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2022-05-11
    Description: Abstract
    Description: The Sanzkow BF2 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Sanzkow BF2 was installed in 2014. It is located on grassland, next to a pylon, with organic soil. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5, ScemeSpadeSoilMoisture_Spade_6 and ScemeSpadeSoilMoisture_Spade_2_TemperatureThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.060 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2022-05-13
    Description: Abstract
    Description: Climatic change is of incredible importance in the polar regions as ice-sheets and glaciers respond strongly to change in average temperature. The analysis of seismic signals (icequakes) emitted by glaciers (i.e., cryo-seismology) is thus gaining importance as a tool for monitoring glacier activity. To understand the scaling relation between regional glacier-related seismicity and actual small-scale local glacier dynamics and to calibrate the identified classes of icequakes to locally observed waveforms, a temporary passive seismic monitoring experiment was conducted in the vicinity of the calving front of Kronebreen, one of the fastest tidewater glaciers on Svalbard (Fig. 1). By combining the local observations with recordings of the nearby GEOFON station GE.KBS, the local experiment provides an ideal link between local observations at the glacier to regional scale monitoring of NW Spitsbergen. During the 4-month operation period from May to September 2013, eight broadband seismometers and three 4-point short-period arrays were operating around the glacier front of Kronebreen.
    Keywords: Icequakes ; Glacier monitoring ; cryo-seismology
    Language: English
    Type: Dataset , temporary seismological network
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2022-06-07
    Description: Abstract
    Description: Spherical harmonic coefficients representing an estimate of Earth's mean gravity field during the specified timespan derived from GRACE mission measurements. These coefficients represent the full magnitude of land hydrology, ice, and solid Earth processes. Further, they represent atmospheric and oceanic processes not captured in the accompanying GAC product.
    Keywords: Gravity Recovery And Climate Experiment (GRACE) ; Level-2 ; SHM ; Spherical Harmonic Model ; Gravitational Field ; GSM ; Geopotential ; Gravity Field ; Mass ; Mass Transport ; Total Water Storage ; Time Variable Gravity ; Mass Balance ; Gravity Anomaly ; Satellite Geodesy ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITATIONAL FIELD ; Earth Observation Satellites 〉 NASA Earth System Science Pathfinder 〉 GRACE ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Magnetic/Motion Sensors 〉 Accelerometers 〉 GRACE ACC
    Language: English
    Type: Dataset , Dataset
    Format: 3 Files
    Format: application/octet-stream
    Format: application/octet-stream
    Format: application/octet-stream
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2022-08-17
    Description: Abstract
    Description: The dataset is composed of hyperspectral imagery acquired during airplane overflights on May 10th, 2011, June 27th, 2011 and May 24th, 2012 consisting of 367 and 368 spectral bands, respective-ly, ranging from VIS to SWIR (400 - 2500 nm) wavelength regions. The hyperspectral image data was acquired in the framework of the EnMAP preparation project HyLand (Hyperspectral remote sensing for the assessment of crop and soil parameters in precision farming and yield estimation). Within the project, innovative techniques were developed to derive crop and soil parameters from hyper-spectral remote sensing and terrestrial laser scanning data, which served as input parameters for novel yield estimation models.
    Description: Other
    Description: The Environmental Mapping and Analysis Program (EnMAP) is a German hyperspectral satellite mission that aims at monitoring and characterizing the Earth’s environment on a global scale. EnMAP serves to measure and model key dynamic processes of the Earth’s ecosystems by extract-ing geochemical, biochemical and biophysical parameters, which provide information on the status and evolution of various terrestrial and aquatic ecosystems. In the frame of the EnMAP preparatory phase, pre-flight campaigns including airborne and in-situ measurements in different environments and for several application fields are being conducted. The main purpose of these campaigns is to support the development of scientific applications for EnMAP. In addition, the acquired data are input in the EnMAP end-to-end simulation tool (EeteS) and are employed to test data pre-processing and calibration-validation methods. The campaign data are made freely available to the scientific community under a Creative Commons Attribution-ShareAlike 4.0 International License. An overview of all available data is provided in in the EnMAP Flight Campaigns Metadata Portal (http://www.enmap.org/?q=flightbeta).
    Keywords: Imaging Spectroscopy ; Precision Farming ; Yield Estimation ; EARTH SCIENCE 〉 AGRICULTURE 〉 SOILS 〉 SOIL TEXTURE ; EARTH SCIENCE 〉 AGRICULTURE 〉 AGRICULTURAL PLANT SCIENCE 〉 CROP/PLANT YIELDS ; EARTH SCIENCE 〉 SPECTRAL/ENGINEERING 〉 VISIBLE WAVELENGTHS 〉 VISIBLE IMAGERY ; EARTH SCIENCE 〉 SPECTRAL/ENGINEERING 〉 INFRARED WAVELENGTHS 〉 INFRARED IMAGERY
    Language: English
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2022-11-28
    Description: Abstract
    Description: This data set contains continuous recordings of seismic noise, which have been made on the surface of a shallow volcanic crater in the Phlegrean Fields volcanic complex near Naples, Italy, where a significant level of volcanic-hydrothermal activity is presently concentrated (MED-SUV = Mediterranean Supersite Volcanoes). As part of the Phlegrean Fields, the Solfatara crater is a 0.4 × 0.5 km sub-rectangular structure whose geometry is mainly due to the control exerted by N40–50W and N50E trending normal fault systems, along which geothermal fluids can ascend. These systems crosscut the study area and have been active several times in the past.
    Keywords: volcanic activity ; seismic noise ; arrays
    Language: English
    Type: Dataset , temporary seismological network
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2022-11-29
    Description: Abstract
    Description: This dataset contains supplementary data concerning the SELASOMA project (GIPP-Project: Madagaskar; ID: 201204; FDSN-network code: ZE): (1) For stations with Cube data loggers, the raw data files are included. (2) For stations with EDL data loggers the log and auxiliary files are included. The main purpose of this dataset is to archive raw information on the timing quality, and to allow future use of alternative Cube-to-miniseed converters. Do not use this dataset if you are interested in continuous or event-based waveform data. Instead, refer to related dataset containing continuous waveforms . The dataset contains 1) log files for the stations with EDL data loggers (organized in sub-directories according to time range and station code); 2) separated MSEED-formatted data affected by some problems (organized in sub-directories according to time range and station code) and 3) raw CUBE-formatted data (organized in sub-directories according to time range and station name).
    Keywords: Seismology
    Language: English
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2022-11-29
    Description: Abstract
    Description: LITHOS-CAPP is the German contribution to the international ScanArray experiment. ScanArray is an array of broadband seismometers with which we aim to study the lithosphere and upper mantle beneath the Scandinavian Mountains and the Baltic Shield. LITHOS-CAPP contributed 20 broadband recording stations from September 2014 to October 2016, 10 in Sweden and 10 in Finland, continuously recordings at 100 samples per second. The stations were deployed by the KIT Geophysical Institute and GFZ section 2.4 (seismology). They form part of the temporary network ScanArrayCore (FDSN network code 1G 2012-2017). This data publication contains the original log-files of the recorders.
    Keywords: Broadband seismology ; Scandinavia ; temporary seismic network
    Language: English
    Type: Dataset , temporary seismological network
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2023-03-17
    Description: Abstract
    Description: The Zarnekla BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Zarnekla BF1 was installed in 2013. It is located on the edge of a field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5, ScemeSpadeSoilMoisture_Spade_6 and ScemeSpadeSoilMoisture_Spade_1_TemperatureThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.082 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2023-03-17
    Description: Abstract
    Description: The Zarnekla climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Zarnekla was installed in 2012. It is located next to a trench, which seperates a field and grassland. Some trees are growing along the trench, in about 80m distance to the station. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, AdconBP1_BarometricPressure, KuZCMP3_PyranometerIncoming, KuZCMP3_PyranometerOutgoing, KuZCGR3_PyrgeometerIncoming, KuZCGR3_PyrgeometerOutgoing, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconWET_LeafWetness and KuZCGR3_PyrgeometerIncomingThe current version of this dataset is 2.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.279 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2023-03-17
    Description: Abstract
    Description: The Wotenick BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Wotenick BF1 was installed in 2013. It is located next to a pylon on a flat field and next to climate station Wotenick. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5, ScemeSpadeSoilMoisture_Spade_6 and ScemeSpadeSoilMoisture_Spade_4_TemperatureThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.080 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2023-03-17
    Description: Abstract
    Description: The Zarrenthin climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Zarrenthin was installed in 2011. It is located on flat terrain within a small wind farm on grassland, surrounded by agricultural used fields.' The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, AdconBP1_BarometricPressure, KuZCMP3_PyranometerIncoming, KuZCMP3_PyranometerOutgoing, KuZCGR3_PyrgeometerIncoming, KuZCGR3_PyrgeometerOutgoing, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconSM1_Soiltemperature025cm, AdconSM1_Soiltemperature015-025cm, AdconSM1_Soiltemperature045-075cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AdconSM1_Soilmoisture100cm, AdconWET_LeafWetness and KuZCGR3_PyrgeometerIncomingThe current version of this dataset is 2.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.281 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2023-03-17
    Description: Abstract
    Description: The Zarrenthin BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Zarrenthin BF1 was installed in 2012. It is located within a field, close to an irrigation water supply. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5 and ScemeSpadeSoilMoisture_Spade_6The current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.084 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2023-03-17
    Description: Abstract
    Description: The Zeitlow BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Zeitlow BF1 was installed in 2012. It is located next to a pylon on a flat field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5, ScemeSpadeSoilMoisture_Spade_6 and ScemeSpadeSoilMoisture_Spade_3_TemperatureThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.086 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2023-03-17
    Description: Abstract
    Description: The Zeitlow climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Zeitlow was installed in 2011. It is located on a former farm track between to fields, on an small elevation. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, AdconBP1_BarometricPressure, KuZCMP3_PyranometerIncoming, KuZCMP3_PyranometerOutgoing, KuZCGR3_PyrgeometerIncoming, KuZCGR3_PyrgeometerOutgoing, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature025cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AdconSM1_Soilmoisture100cm, AdconWET_LeafWetness and KuZCGR3_PyrgeometerIncomingThe current version of this dataset is 2.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.282 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2023-03-17
    Description: Abstract
    Description: The Ueckeritz climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Ueckeritz was installed in 2013. It is located on the eastern border of a natural sink, with some bushes on the western slope of the sink. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, AdconBP1_BarometricPressure, KuZCMP3_PyranometerIncoming, KuZCMP3_PyranometerOutgoing, KuZCGR3_PyrgeometerIncoming, KuZCGR3_PyrgeometerOutgoing, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconWET_LeafWetness and KuZCGR3_PyrgeometerIncomingThe current version of this dataset is 2.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.277 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2023-03-17
    Description: Abstract
    Description: The Ueckeritz BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Ueckeritz BF1 was installed in 2014. It is located next to a pylon on a flat field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5 and ScemeSpadeSoilMoisture_Spade_6The current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.071 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2023-03-17
    Description: Abstract
    Description: The Upost BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Upost BF1 was installed in 2014. It is located on a flat field, next to climate station upost. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5 and ScemeSpadeSoilMoisture_Spade_6The current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.072 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2023-03-17
    Description: Abstract
    Description: The Verchen BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Verchen BF1 was installed in 2013. It is located next to a former sand pit, with sensors below a field and equipped with a rain gauge. The station is equipped with sensor for measuring the following variables: AdconRainGauge_Precipitation, ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5 and ScemeSpadeSoilMoisture_Spade_6The current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.073 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/scsv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2023-03-17
    Description: Abstract
    Description: The Voelschow climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Voelschow was installed in 2013. It is located at the edge of a field, next to the highway. A bridge on the northern site is a major obstacle. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, AdconBP1_BarometricPressure, KuZCMP3_PyranometerIncoming, KuZCMP3_PyranometerOutgoing, KuZCGR3_PyrgeometerIncoming, KuZCGR3_PyrgeometerOutgoing, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconWET_LeafWetness and KuZCGR3_PyrgeometerIncomingThe current version of this dataset is 2.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.305 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2023-03-17
    Description: Abstract
    Description: The Warrenzin BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Warrenzin BF1 was installed in 2013. It is located next to drainage installations and climate station Warrenzin on a flat field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5, ScemeSpadeSoilMoisture_Spade_6 and ScemeSpadeSoilMoisture_Spade_1_TemperatureThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.077 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2023-03-17
    Description: Abstract
    Description: The Vorbein BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Vorbein BF1 was installed in 2013. It is located next to a pylon on a flat field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5, ScemeSpadeSoilMoisture_Spade_6 and ScemeSpadeSoilMoisture_Spade_2_TemperatureThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.076 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: applicatiapplication/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2023-03-17
    Description: Abstract
    Description: The Wietzow BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Wietzow BF1 was installed in 2012. It is located next to a pylon on a field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5, ScemeSpadeSoilMoisture_Spade_6 and ScemeSpadeSoilMoisture_Spade_3_TemperatureThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.078 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2023-03-17
    Description: Abstract
    Description: The Wilhelminenthal BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Wilhelminenthal BF1 was installed in 2012. It is located on a flat field, next to a trench. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5 and ScemeSpadeSoilMoisture_Spade_6The current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.079 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Wotenick climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Wotenick was installed in 2004. It is located on flat terrain, near to a high-voltage tower within an agricultural used field. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, KuZCMP3_PyranometerIncoming, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconST2_Soiltemperature000cm, AdconST2_Soiltemperature005cm, AdconST2_Soiltemperature010cm, AdconST2_Soiltemperature020cm, AdconST2_Soiltemperature050cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AquaCheck_Soilmoisture010cm, AquaCheck_Soilmoisture020cm, AquaCheck_Soilmoisture040cm, AquaCheck_Soilmoisture060cm, AquaCheck_Soilmoisture080cm, AquaCheck_Soilmoisture100cm and AdconWET_LeafWetnessThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.DLR.2018.021 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l. The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de). TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Warrenzin climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Warrenzin was installed in 2004. It is located on flat terrain, near to an high-voltage tower within an agricultural used field. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, KuZCM3_PyranometerIncoming, KuZCM3_PyranometerOutgoing, KuZCG3_PyrgeometerIncoming, KuZCG3_PyrgeometerOutgoing, AdconST2_Soiltemperature000cm, AdconST2_Soiltemperature005cm, AdconST2_Soiltemperature010cm, AdconST2_Soiltemperature020cm, AdconST2_Soiltemperature050cm, AquaCheck_Soilmoisture010cm, AquaCheck_Soilmoisture020cm, AquaCheck_Soilmoisture040cm, AquaCheck_Soilmoisture060cm, AquaCheck_Soilmoisture080cm, AquaCheck_Soilmoisture100cm and AdconWET_LeafWetnessThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.DLR.2018.020 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l. The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de). TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Beestland climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Beestland was installed in 2011. It is located on a boundary ridge, surrounded by agricultural used fields. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, KuZCMP3_PyranometerIncoming, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconST2_Soiltemperature000cm, AdconST2_Soiltemperature005cm, AdconST2_Soiltemperature010cm, AdconST2_Soiltemperature020cm, AdconST2_Soiltemperature050cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AquaCheck_Soilmoisture010cm, AquaCheck_Soilmoisture020cm, AquaCheck_Soilmoisture040cm, AquaCheck_Soilmoisture060cm, AquaCheck_Soilmoisture080cm, AquaCheck_Soilmoisture100cm and AdconWET_LeafWetnessThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.DLR.2018.002 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l. The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de). TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Volksdorf climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Volksdorf was installed in 2004. It is located on flat terrain, within an agricultural used field. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, KuZCMP3_PyranometerIncoming, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconST2_Soiltemperature000cm, AdconST2_Soiltemperature005cm, AdconST2_Soiltemperature010cm, AdconST2_Soiltemperature020cm, AdconST2_Soiltemperature050cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AquaCheck_Soilmoisture010cm, AquaCheck_Soilmoisture020cm, AquaCheck_Soilmoisture040cm, AquaCheck_Soilmoisture060cm, AquaCheck_Soilmoisture080cm, AquaCheck_Soilmoisture100cm and AdconWET_LeafWetnessThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.DLR.2018.019 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l. The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de). TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Verchen climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Verchen was installed in 2004. It is located on flat terrain, within an agricultural used field. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, KuZCMP3_PyranometerIncoming, KuZCMP3_PyranometerOutgoing, KuZCM3_PyranometerIncoming, KuZCM3_PyranometerOutgoing, KuZCGR3_PyrgeometerIncoming, KuZCGR3_PyrgeometerOutgoing, KuZCG3_PyrgeometerIncoming, KuZCG3_PyrgeometerOutgoing, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconST2_Soiltemperature000cm, AdconST2_Soiltemperature005cm, AdconST2_Soiltemperature010cm, AdconST2_Soiltemperature020cm, AdconST2_Soiltemperature050cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AquaCheck_Soilmoisture010cm, AquaCheck_Soilmoisture020cm, AquaCheck_Soilmoisture040cm, AquaCheck_Soilmoisture060cm, AquaCheck_Soilmoisture080cm, AquaCheck_Soilmoisture100cm, AdconWET_LeafWetness and KuZCGR3_PyrgeometerIncomingThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.DLR.2018.018 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l. The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de). TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Upost climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Upost was installed in 2004. It is located on flat terrain, within an agricultural used field. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconST2_Soiltemperature000cm, AdconST2_Soiltemperature005cm, AdconST2_Soiltemperature010cm, AdconST2_Soiltemperature020cm, AdconST2_Soiltemperature050cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AquaCheck_Soilmoisture010cm, AquaCheck_Soilmoisture020cm, AquaCheck_Soilmoisture040cm, AquaCheck_Soilmoisture060cm, AquaCheck_Soilmoisture080cm, AquaCheck_Soilmoisture100cm and AdconWET_LeafWetnessThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.DLR.2018.017 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l. The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de). TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Hohenbuessow BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Hohenbuessow BF1 was installed in 2013. It is located next to a dirt track with sensors below the southern field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5 and ScemeSpadeSoilMoisture_Spade_6The current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.026 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Kletzin climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Kletzin was installed in 2004. It is located on a hilly terrain, closed to a drainage basin, surrounded by an agricultural used field. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, KuZCMP3_PyranometerIncoming, KuZCMP3_PyranometerOutgoing, KuZCM3_PyranometerIncoming, KuZCM3_PyranometerOutgoing, KuZCGR3_PyrgeometerIncoming, KuZCGR3_PyrgeometerOutgoing, KuZCG3_PyrgeometerIncoming, KuZCG3_PyrgeometerOutgoing, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconST2_Soiltemperature000cm, AdconST2_Soiltemperature005cm, AdconST2_Soiltemperature010cm, AdconST2_Soiltemperature020cm, AdconST2_Soiltemperature050cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AquaCheck_Soilmoisture010cm, AquaCheck_Soilmoisture020cm, AquaCheck_Soilmoisture040cm, AquaCheck_Soilmoisture060cm, AquaCheck_Soilmoisture080cm, AquaCheck_Soilmoisture100cm, AdconWET_LeafWetness and KuZCGR3_PyrgeometerIncomingThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.DLR.2018.008 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l. The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de). TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Medrow climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Medrow was installed in 2004. It is located on flat terrain, near to a hedge on grassland, surrounded by agricultural used field. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, KuZCMP3_PyranometerIncoming, KuZCMP3_PyranometerOutgoing, KuZCM3_PyranometerIncoming, KuZCM3_PyranometerOutgoing, KuZCG3_PyrgeometerIncoming, KuZCG3_PyrgeometerOutgoing, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconST2_Soiltemperature000cm, AdconST2_Soiltemperature005cm, AdconST2_Soiltemperature020cm, AdconST2_Soiltemperature050cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AquaCheck_Soilmoisture010cm, AquaCheck_Soilmoisture020cm, AquaCheck_Soilmoisture040cm, AquaCheck_Soilmoisture060cm, AquaCheck_Soilmoisture080cm, AquaCheck_Soilmoisture100cm and AdconWET_LeafWetnessThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.DLR.2018.010 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l. The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de). TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Goermin climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Goermin was installed in 2004. It is located on flat terrain within an agricultural used field. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, KuZCMP3_PyranometerIncoming, KuZCMP3_PyranometerOutgoing, KuZCM3_PyranometerIncoming, KuZCM3_PyranometerOutgoing, KuZCGR3_PyrgeometerIncoming, KuZCGR3_PyrgeometerOutgoing, KuZCG3_PyrgeometerIncoming, KuZCG3_PyrgeometerOutgoing, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconST2_Soiltemperature000cm, AdconST2_Soiltemperature005cm, AdconST2_Soiltemperature010cm, AdconST2_Soiltemperature020cm, AdconST2_Soiltemperature050cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AquaCheck_Soilmoisture010cm, AquaCheck_Soilmoisture020cm, AquaCheck_Soilmoisture040cm, AquaCheck_Soilmoisture060cm, AquaCheck_Soilmoisture080cm, AquaCheck_Soilmoisture100cm, AdconWET_LeafWetness and KuZCGR3_PyrgeometerIncomingThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.DLR.2018.007 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l. The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de). TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Droennewitz climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Droennewitz was installed in 2010. It is located on flat terrain within an agricultural used field. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, KuZCMP3_PyranometerIncoming, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconST2_Soiltemperature000cm, AdconST2_Soiltemperature005cm, AdconST2_Soiltemperature010cm, AdconST2_Soiltemperature020cm, AdconST2_Soiltemperature050cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature025cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AquaCheck_Soilmoisture010cm, AquaCheck_Soilmoisture020cm, AquaCheck_Soilmoisture040cm, AquaCheck_Soilmoisture060cm, AquaCheck_Soilmoisture080cm, AquaCheck_Soilmoisture100cm and AdconWET_LeafWetnessThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.DLR.2018.006 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l. The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de). TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Kruckow climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Kruckow was installed in 2008. It is located on flat terrain within a small wind farm and a drainage basin, surrounded by agricultural used fields. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, AdconBP1_BarometricPressure, KuZCMP3_PyranometerIncoming, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AquaCheck_Soilmoisture010cm, AquaCheck_Soilmoisture020cm, AquaCheck_Soilmoisture040cm, AquaCheck_Soilmoisture060cm, AquaCheck_Soilmoisture080cm, AquaCheck_Soilmoisture100cm and AdconWET_LeafWetnessThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.DLR.2018.009 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l. The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de). TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Buchholz climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Buchholz was installed in 2007. It is located on a hilly terrain near a boundary ridge and near to a hedge surrounded by agricultural used field. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, AdconBP1_BarometricPressure, Temperature5cm_Temperature005cm, KuZCMP3_PyranometerIncoming, KuZCMP3_PyranometerOutgoing, KuZCM3_PyranometerIncoming, KuZCM3_PyranometerOutgoing, KuZCGR3_PyrgeometerIncoming, KuZCGR3_PyrgeometerOutgoing, KuZCG3_PyrgeometerIncoming, KuZCG3_PyrgeometerOutgoing, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconST2_Soiltemperature000cm, AdconST2_Soiltemperature005cm, AdconST2_Soiltemperature010cm, AdconST2_Soiltemperature020cm, AdconST2_Soiltemperature050cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AquaCheck_Soilmoisture010cm, AquaCheck_Soilmoisture020cm, AquaCheck_Soilmoisture040cm, AquaCheck_Soilmoisture060cm, AquaCheck_Soilmoisture080cm, AquaCheck_Soilmoisture100cm, AdconWET_LeafWetness and KuZCGR3_PyrgeometerIncomingThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.DLR.2018.005 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l. The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de). TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Bentzin climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Bentzin was installed in 2004. It is located on a flat terrain on a boundary ridge, surrounded by agricultural used fields. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, KuZCMP3_PyranometerIncoming, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconST2_Soiltemperature000cm, AdconST2_Soiltemperature005cm, AdconST2_Soiltemperature010cm, AdconST2_Soiltemperature020cm, AdconST2_Soiltemperature050cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AquaCheck_Soilmoisture010cm, AquaCheck_Soilmoisture020cm, AquaCheck_Soilmoisture040cm, AquaCheck_Soilmoisture060cm, AquaCheck_Soilmoisture080cm, AquaCheck_Soilmoisture100cm and AdconWET_LeafWetnessThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.DLR.2018.004 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l. The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de). TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Alt Tellin climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Alt Tellin was installed in 2011. It is located on a flat terrain within the field on grassland, surrounded by agricultural used fields. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, AdconBP1_BarometricPressure, KuZCMP3_PyranometerIncoming, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconST2_Soiltemperature000cm, AdconST2_Soiltemperature005cm, AdconST2_Soiltemperature010cm, AdconST2_Soiltemperature020cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm, AquaCheck_Soilmoisture010cm, AquaCheck_Soilmoisture020cm, AquaCheck_Soilmoisture040cm, AquaCheck_Soilmoisture060cm, AquaCheck_Soilmoisture080cm, AquaCheck_Soilmoisture100cm and AdconWET_LeafWetnessThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.DLR.2018.001 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l. The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de). TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Beggerow climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Beggerow was installed in 2012. It is located on a small wind farm on grassland, surrounded by agricultural used fields. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, KuZCMP3_PyranometerIncoming, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soiltemperature075cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconSM1_Soilmoisture070cm, AdconSM1_Soilmoisture080cm, AdconSM1_Soilmoisture090cm and AdconWET_LeafWetnessThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.DLR.2018.003 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network; upper left corner: 54°20N, 12°520E, lower right corner: 53°450N, 13°270E) test area was designed and established by the DLR in cooperation with farmers in the Demmin region in 2000. The site was used as a calibration and validation test site for national and international remote sensing missions. In 2011, the test site was integrated into the TERENO initiative.The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l. The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de). TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; Nationales Bodensegment ; Deutsches Fernerkundungsdatenzentrum ; Earth Observation Center
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Heydenhof BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Heydenhof BF1 was installed in 2012. It is located on the southern edge of a hedge row with sensors south of the station and below the field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5, ScemeSpadeSoilMoisture_Spade_6 and ScemeSpadeSoilMoisture_Spade_2_TemperatureThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.025 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Heydenhof climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Heydenhof was installed in 2013. It is located within a large field, with no obstacles surrounding the stations. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, AdconBP1_BarometricPressure, KuZCMP3_PyranometerIncoming, KuZCMP3_PyranometerOutgoing, KuZCGR3_PyrgeometerIncoming, KuZCGR3_PyrgeometerOutgoing, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconWET_LeafWetness and KuZCGR3_PyrgeometerIncomingThe current version of this dataset is 2.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.290 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Kletzin BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Kletzin BF1 was installed in 2012. It is located near a former wind turbine location within a field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5, ScemeSpadeSoilMoisture_Spade_6 and ScemeSpadeSoilMoisture_Spade_5_TemperatureThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.031 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Nossendorf BF1 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Nossendorf BF1 was installed in 2013. It is located within a field, next to some drainage installations. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5, ScemeSpadeSoilMoisture_Spade_6, ScemeSpadeSoilMoisture_Spade_1_Temperature and ScemeSpadeSoilMoisture_Spade_4_TemperatureThe current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.049 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Karlshof climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Karlshof was installed in 2013. It is located within a field, with close obstacles surrounding the station from western, northern and partly eastern direction. The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, AdconBP1_BarometricPressure, KuZCMP3_PyranometerIncoming, KuZCMP3_PyranometerOutgoing, KuZCGR3_PyrgeometerIncoming, KuZCGR3_PyrgeometerOutgoing, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconWET_LeafWetness and KuZCGR3_PyrgeometerIncomingThe current version of this dataset is 2.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.265 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Kran-droennewitz climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Kran-droennewitz was installed in 2014. It is located on top of a tower crane at 40m height, on the border of a deciduous forest to natural wetlands. The station is equipped with sensor for measuring the following variables: Temperature, Precipitation, BarometricPressure, RelativeHumidity, LeafWetness, WindDirection, WindSpeed, PyrgeometerCGR3incoming, PyrgeometerCGR3outgoing, PyranometerCMP3incoming and PyranometerCMP3outgoingThe dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (1981–2010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich – FZJ, Helmholtz Centre for Environmental Research – UFZ, Karlsruhe Institute of Technology – KIT, Helmholtz Zentrum München - German Center for Environmental Health – HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center – DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level. Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: TERENO ; TERENO Northeast ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Nielitz climate station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The agrometeorological station Nielitz was installed in 2012. It is located on a small patch of conservated land, including some trees, west of the stations The station is equipped with sensor for measuring the following variables: AdconTR1_Temperature, AdconTR1_RelativeHumidity, AdconRainGauge_Precipitation, AdconWindspeed_Windspeed, AdconWinddirection_Winddirection, AdconBP1_BarometricPressure, KuZCMP3_PyranometerIncoming, KuZCMP3_PyranometerOutgoing, KuZCGR3_PyrgeometerIncoming, KuZCGR3_PyrgeometerOutgoing, UMSTH3_Soiltemperature005cm, UMSTH3_Soiltemperature010cm, UMSTH3_Soiltemperature020cm, UMSTH3_Soiltemperature030cm, UMSTH3_Soiltemperature050cm, UMSTH3_Soiltemperature100cm, AdconSM1_Soiltemperature015cm, AdconSM1_Soiltemperature045cm, AdconSM1_Soilmoisture010cm, AdconSM1_Soilmoisture020cm, AdconSM1_Soilmoisture030cm, AdconSM1_Soilmoisture040cm, AdconSM1_Soilmoisture050cm, AdconSM1_Soilmoisture060cm, AdconWET_LeafWetness and KuZCGR3_PyrgeometerIncomingThe current version of this dataset is 2.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.271 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2023-03-24
    Description: Abstract
    Description: The Kletzin BF2 soil moisture station is part of an agrometeorological test site and aims at supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration.The site is intensively used for practical tests of remote sensing data integration in agricultural land management practices. First measurement infrastructure was installed by DLR in 1999 and instrumentation was intensified in 2011 and later as the site became part of the TERENO-NE observatory.The soil moisture station station Kletzin BF2 was installed in 2015. It is located near a wind turbine location within a field. The station is equipped with sensor for measuring the following variables: ScemeSpadeSoilMoisture_Spade_1, ScemeSpadeSoilMoisture_Spade_2, ScemeSpadeSoilMoisture_Spade_3, ScemeSpadeSoilMoisture_Spade_4, ScemeSpadeSoilMoisture_Spade_5 and ScemeSpadeSoilMoisture_Spade_6The current version of this dataset is 1.1. This version includes two additional years of data (from-year to-year)and a revised version of the data flags. A detailed overview on all changes is provided in the station description file. The version 1.0 is available in the 'previous_versions' subfolder via the Data Download link. A first version of this data was provided under http://doi.org/10.5880/TERENO.GFZ.2018.032 containing the measured data and Version 2.0 contains additionally the quality flags for each measured value and extended metadata.The dataset is also available through the TERENO Data Discovery Portal. The datafile will be extended once per year as more data is acquired at the stations and the metadatafile will be updated. New columns for new variables will be added as necessary. In case of changes in dta processing, which will result in changes of historical data, an new Version of this dataset will be published using a new doi. New data will be added after a delay of several months to allow manual interference with the quality control process.Data processing was done using DMRP version: 0.5.12. Metadataprocessing was done using DMETA version: 0.3.17.
    Description: Other
    Description: The DEMMIN test site is located within the central monitoring sites of the TERENO Northeastern German Lowland Observatory. It covers 900 km² and exhibits mostly glacial formed lowlands with terminal moraines in the southern part, containing the highest elevation of 83m a.s.l.The region between the rivers Tollense and Peene consists of flat ground moraines, whereas undulation ground moraines determine the landscape character north of the river Peene. The lowest elevation is located near the town Loitz with 0.5m a.s.l. The region is characterized by intense agricultural use and the three rivers Tollense and Trebel which confluence into the Peene River at the Hanseatic city Demmin. The present climate is characterized by a long-term (19812010) mean temperature of 8.7 °C and mean precipitation of 584 mm/year, measured at the Teterow weather station by Deutscher Wetterdienst (DWD).The Northeastern German Lowland Observatory is situated in a region shaped by recurring glacial and periglacial processes since at least half a million years. Within this period, three major glaciations covered the entire region, the last time this happened approximately 25 15 k ago (Weichselian glaciation).Since that time, a young morainic landscape developed characterized by many lakes and river systems that are connected to the shallow ground water table.The test site is instrumented with more than 40 environmental measurement stations (DLR, GFZ). Additionally, 63 soil moisture stations were installed by GFZ, a lysimeter-hexagon (DLR, FZJ) near to the village Rustow and is part of the SOILCan project. A crane completes the measurement technique currently available in the test site installed by GFZ/DLR in 2011.Data is automatically collected via a telemetry network by DLR. The quality control of all environmental data transferred via Telemetry network of DLR is carried out by DLR by visual control and, since 2012, by automatic processing by GFZ. The delivered dataset contains the measured data and quality flags indicating the validity of each measured value and detected reasons for exclusion.The TERENO (TERrestrial ENvironmental Observatories) is an initiative of the Helmholtz Centers (Forschungszentrum Jülich FZJ, Helmholtz Centre for Environmental Research UFZ, Karlsruhe Institute of Technology KIT, Helmholtz Zentrum München - German Center for Environmental Health HMGU, German Research Centre for Geosciences - GFZ, and German Aerospace Center DLR) (http://www.tereno.net/overview-de).TERENO Northeastern German Lowland Observatory.TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level.Further specific goals of the TERENO remote sensing research group at GFZ are (1) supplying environmental data for algorithm development in remote sensing and environmental modelling, with a focus on soil moisture and evapotranspiration, and (2) practical tests of remote sensing data integration in agricultural land management practices.
    Keywords: scientific and technical information ; agricultural management ; agroindustry ; in situ ; point ; abiotic environment ; terrestrial environment ; TERENO ; TERENO Northeast ; TERENO Nordost ; DEMMIN ; Durable Environmental Multidisciplinary Monitoring Information Network ; TERrestrial ENvironmental Observatories ; GFZ ; GeoForschungsZentrum
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...