ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Language
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie  (69)
  • Basel, Boston, Berlin : Birkhäuser  (7)
  • Deutsches GeoForschungsZentrum GFZ  (6)
  • Washington, DC : Mineralogical Society of America  (6)
  • Springer Berlin Heidelberg
  • English  (85)
  • Japanese  (3)
  • 2000-2004  (88)
  • 2002  (88)
Collection
Language
Years
  • 2000-2004  (88)
Year
  • 1
    Keywords: Comprehensive Nuclear-Test-Ban Treaty ; CTBT ; nuclear explosions ; data processing ; infrasound
    Description / Table of Contents: On September 10, 1996, The United Nations General Assembly adopted the Copmprehensive Nuclear-Test-Ban Treaty (CTBT), prohibiting nuclear explosions worldwide, in all environments. The treaty calls for a global verification system, including a network of 321 monitoring stations distributed around the globe, a data communications network, an international data center (IDC), and on-site inspections, to verify compliance. This volume presents certain recent research results pertaining on methods used to process data recorded by instruments of the International Monitoring System (IMS) and addressing recording infrasound signals generated by atmospheric explosions. Six papers treating data processing provide an important selection of topics expected to contribute to improving our ability to successfully monitor a CTBT. Five papers concerning infrasound include descriptions of ways in which that important research area can contribute to CTBT monitoring, the automatic processing of infrasound data, and site conditions that serve to improve the quality of infrasound data.
    Pages: Online-Ressource (283 Seiten)
    ISBN: 9783764366766
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Unknown
    Washington, DC : Mineralogical Society of America
    Description / Table of Contents: This book has been several years in the making, under the experienced and careful oversight of Ed Grew (University of Maine), who edited (with Larry Anovitz) a similar, even larger volume in 1996: Boron: Mineralogy, Petrology, and Geochemistry (RiMG Vol. 33, reprinted with updates and corrections, 2002). Many of the same reasons for inviting investigators to contribute to a volume on B apply equally to a volume on Be. Like B, Be poses analytical difficulties, and it has been neglected in many studies. However, with recent improvements in analytical technology, interest in Be and its cosmogenic isotopes has increased greatly. Chapter 1 (Grew) is an overview of Be studies in the earth sciences backed by an extensive reference list, and an annotated list of the 110 mineral species reported to contain essential Be as of 2002, together with commentary on their status. A systematic classification of Be minerals based on their crystal structure is presented in Chapter 9 (Hawthorne and Huminicki), while analysis of these minerals by the secondary ion mass spectroscopy is the subject of Chapter 8 (Hervig). Chapter 13 (Franz and Morteani) reviews experimental studies of systems involving Be. Chapter 2 (Shearer) reviews the behavior of Be in the Solar System, with an emphasis on meteorites, the Moon and Mars, and the implications of this behavior for the evolution of the solar system. Chapter 3 (Ryan) is an overview of the terrestrial geochemistry of Be, and Chapter 7 (Vesely, Norton, Skrivan, Majer, Krám, Navrátil, and Kaste) discusses the contamination of the environment by this anthropogenic toxin. The cosmogenic isotopes Be-7 and Be-10 have found increasing applications in the Earth sciences. Chapter 4 (Bierman, Caffee, Davis, Marsella, Pavich, Colgan and Mickelson) reports use of the longer lived Be-10 to assess erosion rates and other surficial processes, while Chapter 5 (Morris, Gosse, Brachfeld and Tera) considers how this isotope can yield independent temporal records of geomagnetic field variations for comparison with records obtained by measuring natural remnant magnetization, be a chemical tracer for processes in convergent margins, and can date events in Cenozoic tectonics. Chapter 6 (Kaste, Norton and Hess) reviews applications of the shorter lived isotope Be-7 in environmental studies. Beryllium is a lithophile element concentrated in the residual phases of magmatic systems. Residual phases include acidic plutonic and volcanic rocks, whose geochemistry and evolution are covered, respectively, in Chapters 11 (London and Evensen) and 14 (Barton and Young), while granitic pegmatites, which are well-known for their remarkable, if localized, Be enrichments and a wide variety of Be mineral assemblages, are reviewed in Chapter 10 (Cerny). Not all Be concentrations have obvious magmatic affinities; for example, one class of emerald deposits results from Be being introduced by heated brines (Chapters 13; 14). Pelitic rocks are an important reservoir of Be in the Earth's crust and their metamorphism plays a critical role in recycling of Be in subduction zones (Chapter 3), eventually, anatectic processes complete the cycle, providing a source of Be for granitic rocks (Chapters 11 and 12).
    Pages: Online-Ressource (XII, 691 Seiten)
    ISBN: 0939950626
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Description / Table of Contents: This volume was produced in response to the need for a comprehensive introduction to the continually evolving state of the art of synchrotron radiation applications in low-temperature geochemistry and environmental science. It owes much to the hard work and imagination of the devoted cadre of sleep-deprived individuals who blazed a trail that many others are beginning to follow. Synchrotron radiation methods have opened new scientific vistas in the earth and environmental sciences, and progress in this direction will undoubtedly continue. The organization of this volume is as follows. Chapter 1 (Brown and Sturchio) gives a fairly comprehensive overview of synchrotron radiation applications in low temperature geochemistry and environmental science. The presentation is organized by synchrotron methods and scientific issues. It also has an extensive reference list that should prove valuable as a starting point for further research. Chapter 2 (Sham and Rivers) describes the ways that synchrotron radiation is generated, including a history of synchrotrons and a discussion of aspects of synchrotron radiation that are important to the experimentalist. The remaining chapters of the volume are organized into two groups. Chapters 3 through 6 describe specific synchrotron methods that are most useful for single-crystal surface and mineral-fluid interface studies. Chapters 7 through 9 describe methods that can be used more generally for investigating complex polyphase fine-grained or amorphous materials, including soils, rocks, and organic matter. Chapter 3 (Fenter) presents the elementary theory of synchrotron X-ray reflectivity along with examples of recent applications, with emphasis on in situ studies of mineral-fluid interfaces. Chapter 4 (Bedzyk and Cheng) summarizes the theory of X-ray standing waves (XSW), the various methods for using XSW in surface and interfaces studies, and gives a brief review of recent applications in geochemistry and mineralogy. Chapter 5 (Waychunas) covers the theory and applications of grazing-incidence X-ray absorption and emission spectroscopy, with recent examples of studies at mineral surfaces. Chapter 6 (Hirschmugl) describes the theory and applications of synchrotron infrared microspectroscopy. Chapter 7 (Manceau, Marcus, and Tamura) gives background and examples of the combined application of synchrotron X-ray microfluorescence, microdiffraction, and microabsorption spectroscopy in characterizing the distribution and speciation of metals in soils and sediments. Chapter 8 (Sutton, Newville, Rivers, Lanzirotti, Eng, and Bertsch) demonstrates a wide variety of applications of synchrotron X-ray microspectroscopy and microtomography in characterizing earth and environmental materials and processes. Finally, Chapter 9 (Myneni) presents a review of the principles and applications of soft X-ray microspectroscopic studies of natural organic materials. All of these chapters review the state of the art of synchrotron radiation applications in low temperature geochemistry and environmental science, and offer speculations on future developments. The reader of this volume will acquire an appreciation of the theory and applications of synchrotron radiation in low temperature geochemistry and environmental science, as well as the significant advances that have been made in this area in the past two decades (especially since the advent of the third-generation synchrotron sources). We hope that this volume will inspire new users to "see the light" and pursue their research using the potent tool of synchrotron radiation.
    Pages: Online-Ressource (XXII, 579 Seiten)
    ISBN: 0939950618
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: data analysis ; earthquake ; modelling ; numerical simulation
    Description / Table of Contents: In the last decade of the 20th century, there has been great progress in the physics of earthquake generation; that is, the introduction of laboratory-based fault constitutive laws as a basic equation governing earthquake rupture, quantitative description of tectonic loading driven by plate motion, and a microscopic approach to study fault zone processes. The fault constitutive law plays the role of an interface between microscopic processes in fault zones and macroscopic processes of a fault system, and the plate motion connects diverse crustal activities with mantle dynamics. An ambitious challenge for us is to develop realistic computer simulation models for the complete earthquake process on the basis of microphysics in fault zones and macro-dynamics in the crust-mantle system. Recent advances in high performance computer technology and numerical simulation methodology are bringing this vision within reach. The book consists of two parts and presents a cross-section of cutting-edge research in the field of computational earthquake physics. Part I includes works on microphysics of rupture and fault constitutive laws, and dynamic rupture, wave propagation and strong ground motion. Part II covers earthquake cycles, crustal deformation, plate dynamics, and seismicity change and its physical interpretation. Topics in Part II range from the 3-D simulations of earthquake generation cycles and interseismic crustal deformation associated with plate subduction to the development of new methods for analyzing geophysical and geodetical data and new simulation algorithms for large amplitude folding and mantle convection with viscoelastic/brittle lithosphere, as well as a theoretical study of accelerated seismic release on heterogeneous faults, simulation of long-range automaton models of earthquakes, and various approaches to earthquake predicition based on underlying physical and/or statistical models for seismicity change.
    Pages: Online-Ressource (372 Seiten)
    ISBN: 9783764369163
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Unknown
    Basel, Boston, Berlin : Birkhäuser
    Keywords: earthquake mechanism
    Description / Table of Contents: In many past and recent earthquakes it has been shown that the local conditions and, in particular, the local geology have a great influence on the observed seismic ground motion and, consequently, on the damage distribution in housing, industrial stock, and life-lines. Seismic microzoning is the usual procedure to have these local effects taken into account for engineering design and land-use planning, being a useful tool for earthquake risk mitigation. This volume presents a collection of papers mainly originated from a workshop on Seismic Microzoning, organized during the 23rd General Assembly of the European Geophysical Society (EGS) in Nice, France in April 1998. The workshop dealt with various geophysical tools for analysing the effects of the local soils of subsurface geology on seismic ground motion, namely the methods using experimental data such as microtremors, and the theoretical/numerical 1-D and 2-D modelling methods. Additional contributions discussing techniques for characterising soil properties, microzoning applications to several urban areas, and others were added to the volume to broaden this important topic.
    Pages: Online-Ressource (358 Seiten)
    ISBN: 9783764366520
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Description / Table of Contents: Micas are among the most common minerals in the Earth crust: 4.5% by volume. They are widespread in most if not all metamorphic rocks (abundance: 11%), and common also in sediment and sedimentary and igneous rocks. Characteristically, micas form in the uppermost greenschist facies and remain stable to the lower crust, including anatectic rocks (the only exception: granulite facies racks). Moreover, some micas are stable in sediments and diagenetic rocks and crystallize in many types of lavas. In contrast, they are also present in association with minerals originating from the very deepest parts of the mantle—they are the most common minerals accompanying diamond in kimberlites. The number of research papers dedicated to micas is enormous, but knowledge of them is limited and not as extensive as that of other rock-forming minerals, for reasons mostly relating to their complex layer texture that makes obtaining crystals suitable for careful studies with the modern methods time-consuming, painstaking work. Micas were reviewed extensively in 1984 (Reviews in Mineralogy 13, S.W. Bailey, editor). At that time, “Micas” volume …
    Pages: Online-Ressource (XII, 499 Seiten)
    ISBN: 0939950588
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Description / Table of Contents: The scientific discoveries that have been made with noble gas geochemistry are of such a profound and fundamental nature that earth science textbooks should be full of examples. Surprisingly, this really is not so. The "first discoveries" include presolar components in our _ solar system, extinct radionuclides, primordial volatiles in the Earth, the degassing history of Mars, secular changes in the solar wind, reliable present day mantle degassing fluxes, the fluxes of extraterrestrial material to Earth, groundwater paleotemperatures and the ages of the oldest landscapes on Earth. Noble gas geochemistry has scored so many such "firsts" or "home runs" that it should permeate a lot of earth science thinking and teaching. Yet rather surprisingly it does not. Noble gas geochemistry also is a broader and more versatile field than almost any other area of geochemistry. It pervades cosmochemistry, Earth sciences, ocean sciences, climate studies and environmental sciences. Yet most modern Earth, planetary and environmental science departments do not consider noble gas geochemistry to be at the top of their list in terms of hiring priorities these days. Furthermore, with the exception of Ar geochronologists, noble gas geochemists are a surprisingly rare breed. Why is the above the case? Perhaps the reasons lie in the nature of the field itself. First, although noble gas geochemists work on big problems, the context of their data is often woefully under-constrained so that it becomes hard to make progress beyond the first order fundamental discoveries. Noble gas data are often difficult to interpret. Although some concepts are straightforward and striking in their immediate implications (e.g. mantle 3He in the oceans), others are to this day shrouded in lack of clarity. The simple reason for this is that in many situations it is only the noble gases that offer any real insights at all and the context of other constraints simply does not exist. Some examples of the big issues being addressed by noble gases are as follows and I have deliberately posed these as major unresolved questions that only exist because noble gas geochemistry has opened windows through which to view large-scale issues and processes that otherwise would be obscure. (1) Is the presolar noble gas component present in a tiny fraction of submicroscopic meteoritic C or is it ubiquitously distributed? (2) How did solar noble gases get incorporated into the Earth? (3) How did solar noble gases survive the protracted accretion of the Earth via giant impacts? (4) What is the origin of the noble gas pattern in the Earth's atmosphere? (5) Why are the Earth and Mars almost opposites in terms of the relative isotopic differences between atmosphere and mantle? (6) What is the Eresent source of Earth's primordial helium? Can we ignore the core? (7) What is the 2~e/ 2Ne of the mantle, how was it acquired and why is it different from the atmosphere? (8) How does one reconcile the stronlJ fractionation in terrestrial Xe with data for other noble gases? (9) How much radiogenic Ar should the Earth have? How well do we know KIU? (10) Are the light isotopes of Xe the same in the mantle and the atmosphere? If not, why not? (11) How are noble gases transported through the creeping solid earth? (12) How does one explain the heat - helium paradox? (13) How incompatible are the noble gases during melting? (14) How are atmospheric components incorporated into volcanic samples? (15) How are the excess air components incorporated into groundwater? (16) Why are continental noble gas paleotemperature records offset from oceanic temperature records? Noble gas data tell us that the Earth and solar system represent very complex environments. When we make our simple first order conclusions and models we are only at the tip of the iceberg of discoveries that are needed to arrive at a thorough understanding of the behavior of volatiles in the solar system. Who wants to hear that things are complicated? Who wants to hire in a field that will involve decades of data acquisition and analysis in order to sort out the solar system? Sadly, too few these days. This is the stuff of deep scientific giants and bold, technically difficult long-term research programs. It is not for those who prefer superficiality and quick, glamorous, slick answers. Noble gas geochemists work in many areas where progress is slow and difficult even though the issues are huge. This probably plays a part in the limited marketability of noble gas geochemistry to the nonspecialist. Second, noble gases is a technically difficult subject. That is, noble gas geochemists need to be adept 11t technique development and this has to include skills acquired through innovation in the lab. Nobody can learn this stuff merely with a book or practical guide. Reading Zen and the Art of Motorcycle Maintenance (by Robert Pirsig) would give you a clearer picture. This magnificent MSA-GS volume is going to be enormously useful but on its own it won't make anybody into a noble gas geochemist. Although the mass spectrometry principles are not complex, the tricks involved in getting better data are often self taught or passed on by working with individuals who themselves are pushing the boundaries further. Furthermore, much of the exciting new science is linked with technical developments that allow us to move beyond the current measurement capabilities. Be they better crushing devices, laser resonance time of flight, multiple collection or compressor sources - the technical issues are central to progress. Lastly, noble gas geochemists need a broad range of other skills in order to make progress. They have to be good at mass spectrometry as already stated. However, nowadays they also need to be able to understand fields as different as mantle geochemistry, stellar evolution, cosmochemistry, crustal fluids, oceanography and glaciology. They are kind of "Renaissance" individuals. Therefore, if you are thinking broadly about hiring scientists who love science and stand a good chance of making a major difference to our understanding of the solar system, earth and its environment - I would recommend you hire a really good noble gas geochemist. However, the results may take a while. If you want somebody who will crank out papers at high speed and quickly increase the publication numbers of your department then you may need to think about somebody else. The two are not mutually exclusive but think hard about what is really important. There was no short course associated with this volume, although an attempt was undertaken to get the volume printed in time for the V. M. Goldschmidt conference in Davos, Switzerland (mid-August 2002) at which there was a major symposium on noble gases.
    Pages: Online-Ressource (XVIII, 844 Seiten)
    ISBN: 0939950596
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Keywords: data analysis ; earthquake ; modelling ; numerical simulation
    Description / Table of Contents: In the last decade of the 20th century, there has been great progress in the physics of earthquake generation; that is, the introduction of laboratory-based fault constitutive laws as a basic equation governing earthquake rupture, quantitative description of tectonic loading driven by plate motion, and a microscopic approach to study fault zone processes. The fault constitutive law plays the role of an interface between microscopic processes in fault zones and macroscopic processes of a fault system, and the plate motion connects diverse crustal activities with mantle dynamics. An ambitious challenge for us is to develop realistic computer simulation models for the complete earthquake process on the basis of microphysics in fault zones and macro-dynamics in the crust-mantle system. Recent advances in high performance computer technology and numerical simulation methodology are bringing this vision within reach. The book consists of two parts and presents a cross-section of cutting-edge research in the field of computational earthquake physics. Part I includes works on microphysics of rupture and fault constitutive laws, and dynamic rupture, wave propagation and strong ground motion. Part II covers earthquake cycles, crustal deformation, plate dynamics, and seismicity change and its physical interpretation. Topics covered in Part I range from the microscopic simulation and laboratory studies of rock fracture and the underlying mechanism for nucleation and catastrophic failure to the development of theoretical models of frictional behaviors of faults; as well as the simulation studies of dynamic rupture processes and seismic wave propagation in a 3-D heterogeneous medium, to the case studies of strong ground motions from the 1999 Chi-Chi earthquake and seismic hazard estimation for Cascadian subduction zone earthquakes.
    Pages: Online-Ressource (268 Seiten)
    ISBN: 9783764369156
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Keywords: Comprehensive Nuclear-Test-Ban Treaty ; CTBT ; geophysics
    Description / Table of Contents: In September 1996, the United Nations General Assembly adopted the Comprehensive Nuclear-Test-Ban Treaty (CTBT), prohibiting nuclear explosions worldwide, in all environments. The treaty calls for a global verification system, including a network of 321 monitoring stations distributed around the globe, a data communications network, an international data center, and onsite inspections, to verify compliance. The problem of identifying small-magnitude banned nuclear tests and discriminating between such tests and the background of earthquakes and mining-related seismic events, is a challenging research problem. Because they emphasize CTBT verification research, the 12 papers in this special volume primarily addresses regional data recorded by a variety of arrays, broadband stations, and temporarily deployed stations. Nuclear explosions, earthquakes, mining-related explosions, mine collapses, single-charge and ripple-fired chemical explosions from Europe, Asia, North Africa, and North America are all studied. While the primary emphasis is on short-period, body-wave discriminants and associated source and path corrections, research that focuses on long-period data recorded at regional and teleseismic distances is also presented Hence, these papers demonstrate how event identification research in support of CTBT monitoring has expanded in recent years to include a wide variety of event types, data types, geographic regions and statistical techniques.
    Pages: Online-Ressource (VI, 284 Seiten)
    ISBN: 9783764366759
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Unknown
    Basel, Boston, Berlin : Birkhäuser
    Keywords: seismic waves ; geophysics ; seismology
    Description / Table of Contents: This special issue contains contributions presented at the international workshop Seismic Waves in Laterally Inhomogeneous Media V, which was held at the Castle of Zahrádky, Czech Republic, June 5 - 9, 2000. The workshop, which was attended by about 60 seismologists from 16 countries, was devoted mainly to the current state of theoretical and computational means of study of seismic wave propagation in complex structures. The special issue begins with papers dealing with the study and the application of the ray methods. Problems such as coupling of quasi-shear waves or smoothing of models for effective ray computations are dealt with. Applications of the ray methods in seismic exploration are presented. Further, directional wavefield decomposition, phase space, path integral and parabolic equation methods are discussed. Attention is also devoted to attenuation and scattering problems, and to seismic inversion problems.
    Pages: Online-Ressource (VI, 503 Seiten)
    ISBN: 9783764366773
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...