ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (19)
  • Latest Papers from Table of Contents or Articles in Press  (19)
  • Fisheries
  • Inorganic Chemistry
  • Phosphorylation
  • 2020-2023
  • 2020-2022
  • 1995-1999
  • 1990-1994  (19)
  • 1950-1954
  • 1991  (19)
  • Physics  (19)
Collection
  • Articles  (19)
Source
Years
  • 2020-2023
  • 2020-2022
  • 1995-1999
  • 1990-1994  (19)
  • 1950-1954
Year
  • 1
    Publication Date: 1991-12-20
    Description: Rap1A is a low molecular weight guanosine triphosphate (GTP)-binding protein in human neutrophil membranes whose cellular function is unknown. Rap1A was found to form stoichiometric complexes with the cytochrome b558 component of the phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase system. The (guanosine-5'-O-(3-thiotriphosphate) (GTP-gamma-S)-bound form of Rap1A bound more tightly to cytochrome b558 than did the guanosine diphosphate-bound form. No complex formation was observed between cytochrome b558 and H-Ras-GTP-gamma-S or Rap1A-GTP-gamma-S that had been heat-inactivated, nor between Rap1A-GTP-gamma-S and hydrophobic proteins serving as controls. Complex formation between Rap1A-GTP-gamma-S and cytochrome b558 was inhibited by phosphorylation of Rap1A with cyclic adenosine monophosphate (cAMP)-dependent protein kinase. These observations suggest that Rap1A may participate in the structure or regulation of the NADPH oxidase system and that this function of the Rap1A protein may be altered by phosphorylation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bokoch, G M -- Quilliam, L A -- Bohl, B P -- Jesaitis, A J -- Quinn, M T -- 5RO126711/PHS HHS/ -- GM39434/GM/NIGMS NIH HHS/ -- GM44428/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1991 Dec 20;254(5039):1794-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Scripps Research Institute, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1763330" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Chromatography, Gel ; Cytochrome b Group/isolation & purification/*metabolism ; GTP-Binding Proteins/antagonists & inhibitors/isolation & ; purification/*metabolism ; Guanosine 5'-O-(3-Thiotriphosphate)/metabolism ; Humans ; Kinetics ; Macromolecular Substances ; NADH, NADPH Oxidoreductases/*metabolism ; NADPH Oxidase ; Neutrophils/enzymology ; Phosphorylation ; Protein Binding ; Protein Kinase C/metabolism ; Proto-Oncogene Proteins/metabolism ; Recombinant Proteins/antagonists & inhibitors/isolation & purification/metabolism ; rap GTP-Binding Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1991-11-08
    Description: Voltage-gated sodium channels are responsible for generation of action potentials in excitable cells. Activation of protein kinase C slows inactivation of sodium channels and reduces peak sodium currents. Phosphorylation of a single residue, serine 1506, that is located in the conserved intracellular loop between domains III and IV and is involved in inactivation of the sodium channel, is required for both modulatory effects. Mutant sodium channels lacking this phosphorylation site have normal functional properties in unstimulated cells but do not respond to activation of protein kinase C. Phosphorylation of this conserved site in sodium channel alpha subunits may regulate electrical activity in a wide range of excitable cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉West, J W -- Numann, R -- Murphy, B J -- Scheuer, T -- Catterall, W A -- GM07270/GM/NIGMS NIH HHS/ -- NS15751/NS/NINDS NIH HHS/ -- NS25704/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1991 Nov 8;254(5033):866-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Washington, Seattle 98195.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1658937" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Membrane/physiology ; Cells, Cultured ; Membrane Potentials ; Models, Structural ; Molecular Sequence Data ; Phosphorylation ; Protein Conformation ; Protein Kinase C/*metabolism ; Sodium Channels/metabolism/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-08-23
    Description: RAP30/74 is a heteromeric general transcription initiation factor that binds to mammalian RNA polymerase II. The RAP30 subunit contains a region that is similar in amino acid sequence to the RNA polymerase-binding domain of the Escherichia coli transcription initiation factor sigma 70 (sigma 70). Mammalian RNA polymerase II specifically protected a serine residue in the sigma 70-related region of RAP30 from phosphorylation in vitro. In addition, human RAP30/74 bound to Escherichia coli RNA polymerase and was displaced by sigma 70. These results suggest that RAP30 and sigma 70 have functionally related RNA polymerase-binding regions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McCracken, S -- Greenblatt, J -- New York, N.Y. -- Science. 1991 Aug 23;253(5022):900-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1652156" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Centrifugation, Density Gradient ; Cyanogen Bromide ; Cyclic AMP/pharmacology ; Escherichia coli/*analysis/enzymology ; Humans ; Molecular Sequence Data ; Peptide Fragments/chemistry/metabolism ; Phosphorylation ; Protein Kinases/metabolism ; RNA Polymerase II/*metabolism ; Sigma Factor/chemistry/*metabolism ; Transcription Factors/chemistry/*metabolism ; *Transcription Factors, TFII ; Trypsin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-10-25
    Description: The protein tyrosine kinase activity of the cellular Src protein is negatively regulated by phosphorylation at tyrosine residue 527 (Tyr527). It has not been established whether this regulatory modification of Src is mediated by autophosphorylation or by another cellular protein kinase. The phosphorylation of a modified form of c-Src that lacks kinase activity was examined in mouse cells that do not express endogenous Src (because of the targeted disruption of both src alleles). Phosphorylation of the inactive form of Src on Tyr527 occurred to a similar extent in cells lacking endogenous Src as it did in cells expressing Src. Therefore, Tyr527 phosphorylation, and thus negative control of Src kinase activity, is mediated by another cellular protein tyrosine kinase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thomas, J E -- Soriano, P -- Brugge, J S -- New York, N.Y. -- Science. 1991 Oct 25;254(5031):568-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Microbiology, University of Pennsylvania, School of Medicine, Philadelphia 19104.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1719633" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cells, Cultured ; Cyanogen Bromide ; Embryo, Mammalian ; Mice ; Peptide Mapping ; Phosphopeptides/isolation & purification ; Phosphorylation ; Protein-Tyrosine Kinases ; Proto-Oncogene Proteins pp60(c-src)/*metabolism ; *Tyrosine
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-08-23
    Description: The N-methyl-D-aspartate (NMDA) receptor, a subtype of glutamate receptors, plays a key role in synaptic plasticity in the nervous system. After NMDA receptor activation, calcium entry into the postsynaptic neuron is a critical initial event. However, the subsequent mechanisms by which the NMDA receptor signal is processed are incompletely understood. Stimulation of cultured rat hippocampal cells with glutamate resulted in the rapid and transient tyrosine phosphorylation of a 39-kilodalton protein (p39). Tyrosine phosphorylation of p39 was triggered by the NMDA receptor and required an influx of Ca2+ from the extracellular medium. Because p39 was found to be highly related or identical to the microtubule-associated protein 2 kinase, the NMDA receptor signal may be processed by a sequential activation of protein kinases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bading, H -- Greenberg, M E -- CA 43855/CA/NCI NIH HHS/ -- NS 28829/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1991 Aug 23;253(5022):912-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1715095" target="_blank"〉PubMed〈/a〉
    Keywords: 2-Amino-5-phosphonovalerate/pharmacology ; Animals ; Calcium/metabolism ; Calcium-Calmodulin-Dependent Protein Kinases ; Cells, Cultured ; Glutamates/pharmacology ; Glutamic Acid ; Hippocampus/drug effects/metabolism ; Immunoblotting ; Kinetics ; Phosphoproteins/*metabolism ; Phosphorylation ; Phosphotyrosine ; Protein Kinases/metabolism ; Rats ; Receptors, N-Methyl-D-Aspartate/*metabolism ; Tyrosine/*analogs & derivatives/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1991-03-08
    Description: Epidermal growth factor and platelet-derived growth factor can stimulate the production of the second messenger inositol trisphosphate in responsive cells, but the biochemical pathway for these signaling events has been uncertain because the reactions have not been reconstituted with purified molecules in vitro. A reconstitution is described that requires not only the growth factor, its receptor with tyrosine kinase activity, and the soluble phospholipase C-gamma 1, but also the small soluble actin-binding protein profilin. Profilin binds to the substrate phosphatidylinositol 4,5-bisphosphate and inhibits its hydrolysis by unphosphorylated phospholipase C-gamma 1. Phosphorylation of phospholipase C-gamma 1 by the epidermal growth factor receptor tyrosine kinase overcomes the inhibitory effect of profilin and results in an effective activation of phospholipase C-gamma 1.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goldschmidt-Clermont, P J -- Kim, J W -- Machesky, L M -- Rhee, S G -- Pollard, T D -- GM-26338/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1991 Mar 8;251(4998):1231-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology and Anatomy, Johns Hopkins University School of Medicine, Baltimore, MD 21205.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1848725" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Contractile Proteins/metabolism ; Epidermal Growth Factor/*metabolism ; Inositol Phosphates/metabolism ; Isoenzymes/*metabolism ; Kinetics ; Microfilament Proteins/*metabolism ; Phosphatidylinositol 4,5-Diphosphate ; Phosphatidylinositols/metabolism ; Phosphorylation ; Profilins ; Protein-Tyrosine Kinases/*metabolism ; Receptor, Epidermal Growth Factor/*metabolism ; Signal Transduction ; Type C Phospholipases/*metabolism ; Tyrosine
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1991-08-16
    Description: Pit-1, a tissue-specific POU domain transcription factor, is required for the activation of the prolactin, growth hormone, and Pit-1 promoters that confer regulation by epidermal growth factor, adenosine 3',5'-monophosphate (cAMP), and phorbol esters. Pit-1 is phosphorylated in pituitary cells at two distinct sites in response to phorbol esters and cAMP. Phosphorylation of Pit-1 modifies its conformation on DNA recognition elements and results in increased binding at certain sites and decreased binding at other sites, dependent on DNA sequences adjacent to the core Pit-1 binding motif. One residue (Thr220), located in the POU homeodomain within a sequence conserved throughout the POU-domain family, confers these responses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kapiloff, M S -- Farkash, Y -- Wegner, M -- Rosenfeld, M G -- DK 18477/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1991 Aug 16;253(5021):786-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Eukaryotic Regulatory Biology Program, School of Medicine, University of California, San Diego, La Jolla 92093-0648.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1652153" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Binding Sites ; Cell Line ; Cyclic AMP/pharmacology ; DNA/metabolism ; DNA-Binding Proteins/chemistry/*physiology ; In Vitro Techniques ; Molecular Sequence Data ; Peptide Mapping ; Phosphorylation ; Phosphothreonine/metabolism ; Pituitary Gland/*physiology ; Protein Kinases/metabolism ; Regulatory Sequences, Nucleic Acid ; Structure-Activity Relationship ; Tetradecanoylphorbol Acetate/pharmacology ; Transcription Factor Pit-1 ; Transcription Factors/chemistry/*physiology ; Trypsin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1991-02-15
    Description: Hepatocyte growth factor (HGF) is a plasminogen-like protein thought to be a humoral mediator of liver regeneration. A 145-kilodalton tyrosyl phosphoprotein observed in rapid response to HGF treatment of intact target cells was identified by immunoblot analysis as the beta subunit of the c-met proto-oncogene product, a membrane-spanning tyrosine kinase. Covalent cross-linking of 125I-labeled ligand to cellular proteins of appropriate size that were recognized by antibodies to c-met directly established the c-met product as the cell-surface receptor for HGF.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bottaro, D P -- Rubin, J S -- Faletto, D L -- Chan, A M -- Kmiecik, T E -- Vande Woude, G F -- Aaronson, S A -- New York, N.Y. -- Science. 1991 Feb 15;251(4995):802-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1846706" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Cross-Linking Reagents ; Growth Substances/*metabolism/physiology ; Hepatocyte Growth Factor ; Humans ; Molecular Weight ; Phosphorylation ; Precipitin Tests ; Protein-Tyrosine Kinases/*metabolism ; Proto-Oncogene Proteins/*metabolism ; Proto-Oncogene Proteins c-met ; Receptors, Cell Surface/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1991-11-15
    Description: Binding of ligand or antibody to certain cell-surface proteins that are anchored to the membrane by glycophosphatidylinositol (GPI) can cause activation of leukocytes. However, it is not known how these molecules, which lack intracellular domains, can transduce signals. The GPI-linked human molecules CD59, CD55, CD48, CD24, and CD14 as well as the mouse molecules Thy-1 and Ly-6 were found to associate with protein tyrosine kinases, key regulators of cell activation and signal transduction. A protein tyrosine kinase associated with the GPI-linked proteins CD59, CD55, and CD48 in human T cells, and with Thy-1 in mouse T cells was identified as p56lck, a protein tyrosine kinase related to Src. This interaction of GPI-linked molecules with protein tyrosine kinases suggests a potential mechanism of signal transduction in cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stefanova, I -- Horejsi, V -- Ansotegui, I J -- Knapp, W -- Stockinger, H -- New York, N.Y. -- Science. 1991 Nov 15;254(5034):1016-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Immunology-Vienna International Research Cooperation Center, University of Vienna, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1719635" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD/*physiology ; Antigens, Differentiation/physiology ; Cell Adhesion Molecules/physiology ; Glycolipids/physiology ; Glycosylphosphatidylinositols ; Humans ; Membrane Glycoproteins/physiology ; Membrane Proteins/*physiology ; Mice ; Phosphatidylinositols/physiology ; Phosphorylation ; Phosphotyrosine ; Protein-Tyrosine Kinases/*physiology ; Receptor Aggregation ; Receptors, Cell Surface/*physiology ; Signal Transduction ; Tyrosine/analogs & derivatives/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-11-08
    Description: Genes that encode nucleoside diphosphate kinases (NDKs) have been implicated as regulators of mammalian tumor metastasis and development in Drosophila melanogaster. However, the cellular pathways through which NDKs function are not known. One potential mechanism of regulation is phosphorylation of guanosine diphosphate (GDP) bound to regulatory guanosine triphosphate (GTP) binding proteins. NDK-catalyzed phosphorylation of bound GDP was investigated for the adenosine diphosphate ribosylation factor (ARF), a 21-kilodalton GTP-binding protein that functions in the protein secretion pathway. Bovine liver NDK, recombinant human NDK, and the protein product of the mouse gene nm23-1, which suppresses the metastatic potential of certain tumor cells, used ARF-GDP as a substrate, thereby allowing rapid and efficient production of activated ARF (ARF-GTP) in the absence of nucleotide exchange. These data are consistent with the proposed function of NDK as an activator of a small GTP-binding protein and provide a mechanism of activation for a regulatory GTP-binding protein that is independent of nucleotide exchange.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Randazzo, P A -- Northup, J K -- Kahn, R A -- New York, N.Y. -- Science. 1991 Nov 8;254(5033):850-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Biological Chemistry, National Cancer Institute, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1658935" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cattle ; Cholera Toxin/pharmacology ; Drosophila melanogaster/metabolism ; GTP-Binding Proteins/*metabolism ; Guanosine Diphosphate/metabolism ; Guanosine Triphosphate/metabolism ; Humans ; Kinetics ; Liver/enzymology ; Nucleoside-Diphosphate Kinase/*metabolism ; Phosphorylation ; Recombinant Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 1991-05-10
    Description: A mutated form of the platelet-derived growth factor (PDGF) beta receptor lacking most of its cytoplasmic domain was tested for its ability to block wild-type PDGF receptor function. PDGF induced the formation of complexes consisting of wild-type and truncated receptors. Such complexes were defective in autophosphorylation. When truncated receptors were expressed in excess compared to wild-type receptors, stimulation by PDGF of receptor autophosphorylation, association of phosphatidylinositol-3 kinase with the receptor, and calcium mobilization were blocked. Thus, a truncated receptor can inactivate wild-type receptor function by forming ligand-dependent receptor complexes (probably heterodimers) that are incapable of mediating the early steps of signal transduction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ueno, H -- Colbert, H -- Escobedo, J A -- Williams, L T -- P01 HL-43821/HL/NHLBI NIH HHS/ -- R01 HL-32898/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1991 May 10;252(5007):844-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of California, San Francisco 94143.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1851331" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Centrifugation, Density Gradient ; Cricetinae ; In Vitro Techniques ; Ligands ; Mice ; Mice, Inbred BALB C ; Phosphorylation ; Platelet-Derived Growth Factor ; Receptors, Cell Surface/*antagonists & inhibitors/physiology ; Receptors, Platelet-Derived Growth Factor ; Signal Transduction/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-08-30
    Description: Orderly progression through the somatic cell division cycle is accompanied by phase-specific transcription of a variety of different genes. During S phase, transcription of mammalian histone H2B genes requires a specific promoter element and its cognate transcription factor Oct1 (OTF1). A possible mechanism for regulating histone H2B transcription during the cell cycle is direct modulation of Oct1 activity by phase-specific posttranslational modifications. Analysis of Oct1 during progression through the cell cycle revealed a complex temporal program of phosphorylation. A p34cdc2-related protein kinase that is active during mitosis may be responsible for one mitotic phosphorylation of Oct1. However, the temporally controlled appearance of Oct1 phosphopeptides suggests the involvement of multiple kinases and phosphatases. These results support the idea that cell cycle-regulated transcription factors may be direct substrates for phase-specific regulatory enzymes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roberts, S B -- Segil, N -- Heintz, N -- GM 13752/GM/NIGMS NIH HHS/ -- GM 32544/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1991 Aug 30;253(5023):1022-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Laboratory of Molecular Biology, Rockefeller University, New York, NY 10021.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1887216" target="_blank"〉PubMed〈/a〉
    Keywords: CDC2 Protein Kinase/metabolism ; *Cell Cycle ; DNA-Binding Proteins/isolation & purification/*metabolism ; HeLa Cells/cytology/physiology ; Histones/genetics ; Host Cell Factor C1 ; Humans ; Mitosis ; Octamer Transcription Factor-1 ; Peptide Mapping ; Phosphopeptides/isolation & purification ; Phosphorylation ; S Phase ; Transcription Factors/isolation & purification/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-10-04
    Description: Voltage-gated sodium channels, which are responsible for the generation of action potentials in the brain, are phosphorylated by protein kinase C (PKC) in purified form. Activation of PKC decreases peak sodium current up to 80 percent and slows its inactivation for sodium channels in rat brain neurons and for rat brain type IIA sodium channel alpha subunits heterologously expressed in Chinese hamster ovary cells. These effects are specific for PKC because they can be blocked by specific peptide inhibitors of PKC and can be reproduced by direct application of PKC to the cytoplasmic surface of sodium channels in excised inside-out membrane patches. Modulation of brain sodium channels by PKC is likely to have important effects on signal transduction and synaptic transmission in the central nervous system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Numann, R -- Catterall, W A -- Scheuer, T -- NS15751/NS/NINDS NIH HHS/ -- NS25704/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1991 Oct 4;254(5028):115-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Washington, Seattle 98195.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1656525" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/physiology ; CHO Cells ; Cloning, Molecular ; Cricetinae ; Diglycerides/pharmacology ; In Vitro Techniques ; Neurons/physiology ; Phosphoproteins/physiology ; Phosphorylation ; Protein Kinase C/*physiology ; Protein Kinases/physiology ; Rats ; Sodium/*physiology ; Sodium Channels/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 1991-12-20
    Description: Oct-1 is a transcription factor involved in the cell cycle regulation of histone H2B gene transcription and in the transcription of other cellular housekeeping genes. Oct-1 is hyperphosphorylated as cells enter mitosis, and mitosis-specific phosphorylation is reversed as cells exit mitosis. A mitosis-specific phosphorylation site in the homeodomain of Oct-1 was phosphorylated in vitro by protein kinase A. Phosphorylation of this site correlated with inhibition of Oct-1 DNA binding activity in vivo and in vitro. The inhibition of Oct-1 DNA binding during mitosis suggests a mechanism by which the general inhibition of transcription during mitosis might occur.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Segil, N -- Roberts, S B -- Heintz, N -- GM 13752/GM/NIGMS NIH HHS/ -- GM 32544/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1991 Dec 20;254(5039):1814-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Biology, Howard Hughes Medical Institute, Rockefeller University, New York, NY 10021.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1684878" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cattle ; Cell Cycle ; Cloning, Molecular ; DNA, Neoplasm/metabolism ; DNA-Binding Proteins/genetics/*metabolism ; Genes, Homeobox ; HeLa Cells ; Histones/genetics ; Host Cell Factor C1 ; Humans ; Mitosis ; Molecular Sequence Data ; Myocardium/enzymology ; Octamer Transcription Factor-1 ; Oligodeoxyribonucleotides ; Peptide Mapping ; Phosphopeptides/isolation & purification ; Phosphorylation ; Protein Kinases/metabolism ; Transcription Factors/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 1991-06-28
    Description: CD45 is a member of a family of membrane proteins that possess phosphotyrosine phosphatase activity, and is the source of much of the tyrosine phosphatase activity in lymphocytes. In view of its enzymatic activity and high copy number, it seems likely that CD45 functions in transmembrane signal transduction by lymphocyte receptors that are coupled to activation of tyrosine kinases. The B cell antigen receptor was found to transduce a Ca(2+)-mobilizing signal only if cells expressed CD45. Also, both membrane immunoglobulin M (mIgM) and CD45 were lost from the surface of cells treated with antibody to CD45, suggesting a physical interaction between these proteins. Finally, CD45 dephosphorylated a complex of mIg-associated proteins that appears to function in signal transduction by the antigen receptor. These data indicate that CD45 occurs as a component of a complex of proteins associated with the antigen receptor, and that CD45 may regulate signal transduction by modulating the phosphorylation state of the antigen receptor subunits.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Justement, L B -- Campbell, K S -- Chien, N C -- Cambier, J C -- AI20519/AI/NIAID NIH HHS/ -- AI21768/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1991 Jun 28;252(5014):1839-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pediatrics, National Jewish Center for Immunology and Respiratory Medicine, Denver, CO.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1648262" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD45 ; Antigens, Differentiation/genetics/*physiology ; B-Lymphocytes/*immunology ; Calcium/physiology ; Cell Line ; Cell Membrane/physiology ; Cells, Cultured ; Clone Cells ; Histocompatibility Antigens/genetics/*physiology ; Immunoglobulin M/physiology ; Membrane Glycoproteins/*physiology ; Mice ; Phosphoprotein Phosphatases/metabolism ; Phosphorylation ; Plasmacytoma ; Protein Tyrosine Phosphatases ; RNA, Messenger/genetics ; Receptors, Antigen, B-Cell/*physiology ; *Signal Transduction ; Spleen/immunology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 1991-06-07
    Description: The mechanism by which Ca2+ mediates gene induction in response to membrane depolarization was investigated. The adenosine 3',5'-monophosphate (cAMP) response element-binding protein (CREB) was shown to function as a Ca(2+)-regulated transcription factor and as a substrate for depolarization-activated Ca(2+)-calmodulin-dependent protein kinases (CaM kinases) I and II. CREB residue Ser133 was the major site of phosphorylation by the CaM kinases in vitro and of phosphorylation after membrane depolarization in vivo. Mutation of Ser133 impaired the ability of CREB to respond to Ca2+. These results suggest that CaM kinases may transduce electrical signals to the nucleus and that CREB functions to integrate Ca2+ and cAMP signals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sheng, M -- Thompson, M A -- Greenberg, M E -- R01 CA 43855/CA/NCI NIH HHS/ -- R01 NS 28829/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1991 Jun 7;252(5011):1427-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1646483" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/*pharmacology ; Calcium-Calmodulin-Dependent Protein Kinases ; Chromosome Mapping ; Cloning, Molecular ; Cyclic AMP/physiology ; Cyclic AMP Response Element-Binding Protein ; DNA-Binding Proteins/*physiology ; Electrophoresis, Polyacrylamide Gel ; Fungal Proteins/pharmacology ; Gene Expression Regulation/*drug effects ; Genes, Regulator/physiology ; Humans ; In Vitro Techniques ; Phosphorylation ; Protein Kinases/pharmacology ; Rats ; Recombinant Fusion Proteins/pharmacology ; *Saccharomyces cerevisiae Proteins ; Serine/chemistry ; Signal Transduction ; TATA Box ; Transcription Factors/*physiology ; Transcription, Genetic/drug effects ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 1991-01-11
    Description: Antigen is thought to cross-link membrane-bound immunoglobulins (Igs) of B cells, causing proliferation and differentiation or the inhibition of growth. Protein tyrosine kinases are probably involved in signal transduction for cell proliferation and differentiation. The Src-like protein tyrosine kinase Lyn is expressed preferentially in B cells. The Lyn protein and its kinase activity could be coimmunoprecipitated with IgM from detergent lysates. Cross-linking of membrane-bound IgM induced a rapid increase in tyrosine phosphorylation of at least ten distinct proteins of B cells. Thus, Lyn is physically associated with membrane-bound IgM, and is suggested to participate in antigen-mediated signal transduction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yamanashi, Y -- Kakiuchi, T -- Mizuguchi, J -- Yamamoto, T -- Toyoshima, K -- New York, N.Y. -- Science. 1991 Jan 11;251(4990):192-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Oncology, University of Tokyo, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1702903" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/immunology ; Cell Line ; Detergents ; Electrophoresis, Polyacrylamide Gel ; Immunoblotting ; Immunoglobulin M/metabolism ; Immunosorbent Techniques ; Mice ; Molecular Weight ; Phosphoproteins/metabolism ; Phosphorylation ; Phosphotyrosine ; Protein-Tyrosine Kinases/genetics/*metabolism ; Receptors, Antigen, B-Cell/*metabolism ; Signal Transduction ; Tyrosine/analogs & derivatives/metabolism ; *src-Family Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 1991-05-03
    Description: Src homology (SH) regions 2 and 3 are noncatalytic domains that are conserved among a series of cytoplasmic signaling proteins regulated by receptor protein-tyrosine kinases, including phospholipase C-gamma, Ras GTPase (guanosine triphosphatase)-activating protein, and Src-like tyrosine kinases. The SH2 domains of these signaling proteins bind tyrosine phosphorylated polypeptides, implicated in normal signaling and cellular transformation. Tyrosine phosphorylation acts as a switch to induce the binding of SH2 domains, thereby mediating the formation of heteromeric protein complexes at or near the plasma membrane. The formation of these complexes is likely to control the activation of signal transduction pathways by tyrosine kinases. The SH3 domain is a distinct motif that, together with SH2, may modulate interactions with the cytoskeleton and membrane. Some signaling and transforming proteins contain SH2 and SH3 domains unattached to any known catalytic element. These noncatalytic proteins may serve as adaptors to link tyrosine kinases to specific target proteins. These observations suggest that SH2 and SH3 domains participate in the control of intracellular responses to growth factor stimulation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koch, C A -- Anderson, D -- Moran, M F -- Ellis, C -- Pawson, T -- New York, N.Y. -- Science. 1991 May 3;252(5006):668-74.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular and Developmental Biology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1708916" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Cytoplasm/*metabolism ; Epidermal Growth Factor/pharmacology ; GTPase-Activating Proteins ; Molecular Sequence Data ; Phosphoproteins/metabolism ; Phosphorylation ; Phosphotyrosine ; Platelet-Derived Growth Factor/pharmacology ; Protein Sorting Signals/chemistry/*metabolism ; Protein-Tyrosine Kinases/chemistry/metabolism ; Proteins/chemistry/metabolism ; Receptor, Epidermal Growth Factor/metabolism ; Receptors, Cell Surface/metabolism ; Receptors, Platelet-Derived Growth Factor ; Sequence Homology, Nucleic Acid ; *Signal Transduction ; Type C Phospholipases/chemistry/metabolism ; Tyrosine/analogs & derivatives/metabolism ; ras GTPase-Activating Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-05-31
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Balter, M -- New York, N.Y. -- Science. 1991 May 31;252(5010):1253-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1925536" target="_blank"〉PubMed〈/a〉
    Keywords: CDC2 Protein Kinase/genetics/*metabolism ; *Cell Cycle ; DNA Damage ; DNA Replication ; Mitosis ; *Models, Biological ; Phosphorylation ; S Phase
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...