ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (19)
  • Latest Papers from Table of Contents or Articles in Press  (19)
  • Models, Molecular
  • 2010-2014
  • 2005-2009
  • 2000-2004
  • 1985-1989  (19)
  • 1950-1954
  • 1988  (19)
  • Biology  (19)
  • Law
  • Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
Collection
  • Articles  (19)
Source
  • Latest Papers from Table of Contents or Articles in Press  (19)
Years
  • 2010-2014
  • 2005-2009
  • 2000-2004
  • 1985-1989  (19)
  • 1950-1954
Year
Topic
  • 1
    Publication Date: 1988-09-23
    Description: DNA-mediated long-range electron transfer from photoexcited 1,10-phenanthroline complexes of ruthenium, Ru(phen)2(3)+, to isostructural complexes of cobalt(III), rhodium(III), and chromium(III) bound along the helical strand. The efficiency of transfer depended upon binding mode and driving force. For a given donor-acceptor pair, surface-bound complexes showed greater rate enhancements than those that were intercalatively bound. Even in rigid glycerol at 253 K, the rates for donor-acceptor pairs bound to DNA remained enhanced. For the series of acceptors, the greatest enhancement in electron-transfer rate was found with chromium, the acceptor of intermediate driving force. The DNA polymer appears to provide an efficient intervening medium to couple donor and acceptor metal complexes for electron transfer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Purugganan, M D -- Kumar, C V -- Turro, N J -- Barton, J K -- New York, N.Y. -- Science. 1988 Sep 23;241(4873):1645-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Columbia University, New York, NY 10027.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3420416" target="_blank"〉PubMed〈/a〉
    Keywords: Binding, Competitive ; DNA/*metabolism ; Diffusion ; Electron Transport ; Glycerol/metabolism ; Metals/*metabolism ; Models, Molecular ; Phenanthrolines/metabolism ; Ruthenium/metabolism ; Temperature ; Viscosity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1988-04-15
    Description: The solution conformation of plastocyanin from the green alga Scenedesmus obliquus has been determined from distance and dihedral angle constraints derived by nuclear magnetic resonance (NMR) spectroscopy. Structures were generated with distance geometry and restrained molecular dynamics calculations. A novel molecular replacement method was also used with the same NMR constraints to generate solution structures of S. obliquus plastocyanin from the x-ray structure of the homologous poplar protein. Scenedesmus obliquus plastocyanin in solution adopts a beta-barrel structure. The backbone conformation is well defined and is similar overall to that of poplar plastocyanin in the crystalline state. The distinctive acidic region of the higher plant plastocyanins, which functions as a binding site for electron transfer proteins and inorganic complexes, differs in both shape and charge in S. obliquus plastocyanin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moore, J M -- Case, D A -- Chazin, W J -- Gippert, G P -- Havel, T F -- Powls, R -- Wright, P E -- GM36643/GM/NIGMS NIH HHS/ -- GM38221/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1988 Apr 15;240(4850):314-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Research Institute of Scripps Clinic, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3353725" target="_blank"〉PubMed〈/a〉
    Keywords: Calorimetry ; Chlorophyta/*metabolism ; Magnetic Resonance Spectroscopy/methods ; Models, Molecular ; *Plant Proteins ; *Plastocyanin ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1988-07-29
    Description: A series of four hairpin deoxyoligonucleotides was synthesized with a four-nucleotide central loop (either C or G) flanked by the complementary sequences d(T)10 and d(A)10. Two of the molecules contain either a 3'-p-3' or 5'-p-5' linkage in the loop, so that the strands in the stem have the same, that is, parallel (ps) polarity. The pair of reference oligonucleotides have normal phosphodiester linkages throughout and antiparallel (aps) stem regions. All the molecules adopt a duplex helical structure in that (i) the electrophoretic mobilities in polyacrylamide gels of the ps and aps oligomers are similar. (ii) The ps hairpins are substrates for T4 polynucleotide kinase, T4 DNA ligase, and Escherichia coli exonuclease III. (iii) Salt-dependent thermal transitions are observed for all hairpins, but the ps molecules denature 10 degrees C lower than the corresponding aps oligomers. (iv) The ultraviolet absorption and circular dichroism spectra are indicative of a base-paired duplex in the stems of the ps hairpins but differ systematically from those of the aps counterparts. (v) The bis-benzimidazole drug Hoechst-33258, which binds in the minor groove of B-DNA, exhibits very little fluorescence in the presence of the ps hairpins but a normal, enhanced emission with the aps oligonucleotides. In contrast, the intercalator ethidium bromide forms a strongly fluorescent complex with all hairpins, the intensity of which is even higher for the ps species. (vi) The pattern of chemical methylation is the same for both the ps and aps hairpins. The combined results are consistent with the prediction from force field analysis of a parallel stranded right-handed helical form of d(A)n.d(T)n with a secondary structure involving reverse Watson-Crick base pairs and a stability not significantly different from that of the B-DNA double helix. Models of the various hairpins optimized with force field calculations are described.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉van de Sande, J H -- Ramsing, N B -- Germann, M W -- Elhorst, W -- Kalisch, B W -- von Kitzing, E -- Pon, R T -- Clegg, R C -- Jovin, T M -- New York, N.Y. -- Science. 1988 Jul 29;241(4865):551-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Biochemistry, University of Calgary, Alberta, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3399890" target="_blank"〉PubMed〈/a〉
    Keywords: *Dna ; Electrophoresis, Polyacrylamide Gel ; Hydrogen Bonding ; Models, Molecular ; *Nucleic Acid Conformation ; Spectrum Analysis ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1988-12-02
    Description: D-galactose-binding (or chemoreceptor) protein of Escherichia coli serves as an initial component for both chemotaxis towards galactose and glucose and high-affinity active transport of the two sugars. Well-refined x-ray structures of the liganded forms of the wild-type and a mutant protein isolated from a strain defective in chemotaxis but fully competent in transport have provided a molecular view of the sugar-binding site and of a site for interacting with the Trg transmembrane signal transducer. The geometry of the sugar-binding site, located in the cleft between the two lobes of the bilobate protein, is novel in that it is designed for tight binding and sequestering of either the alpha or beta anomer of the D-stereoisomer of the 4-epimers galactose and glucose. Binding specificity and affinity are conferred primarily by polar planar side-chain residues that form intricate networks of cooperative and bidentate hydrogen bonds with the sugar substrates, and secondarily by aromatic residues that sandwich the pyranose ring. Each of the pairs of anomeric hydroxyls and epimeric hydroxyls is recognized by a distinct Asp residue. The site for interaction with the transducer is about 18 A from the sugar-binding site. Mutation of Gly74 to Asp at this site, concomitant with considerable changes in the local ordered water structures, contributes to the lack of productive interaction with the transmembrane signal transducer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vyas, N K -- Vyas, M N -- Quiocho, F A -- New York, N.Y. -- Science. 1988 Dec 2;242(4883):1290-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3057628" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*ultrastructure ; Binding Sites ; *Calcium-Binding Proteins ; Carrier Proteins/*ultrastructure ; *Chemotaxis ; Computer Simulation ; DNA Mutational Analysis ; Escherichia coli ; Galactose/metabolism ; Glucose/metabolism ; Hydrogen Bonding ; Models, Molecular ; *Monosaccharide Transport Proteins ; *Periplasmic Binding Proteins ; Protein Conformation ; Structure-Activity Relationship ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-07-08
    Description: Gramicidin, a linear polypeptide composed of hydrophobic amino acids with alternating L- and D- configurations, forms transmembrane ion channels. The crystal structure of a gramicidin-cesium complex has been determined at 2.0 angstrom resolution. In this structure, gramicidin forms a 26 angstrom long tube comprised of two polypeptide chains arranged as antiparallel beta strands that are wrapped into a left-handed helical coil with 6.4 residues per turn. The polypeptide backbone forms the interior of the hydrophilic, solvent-filled pore and the side chains form a hydrophobic and relatively regular surface on the outside of the pore. This example of a crystal structure of a solvent-filled ion pore provides a basis for understanding the physical nature of ion translocation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wallace, B A -- Ravikumar, K -- New York, N.Y. -- Science. 1988 Jul 8;241(4862):182-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Center for Biophysics, Rensselaer Polytechnic Institute, Troy, NY 12180.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2455344" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cesium ; Computer Simulation ; Crystallography ; *Gramicidin ; *Ion Channels ; Ligands ; Macromolecular Substances ; *Membrane Proteins ; Models, Molecular ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-06-24
    Description: A specific, reversible binding site for a free amino acid is detectable on the intron of the Tetrahymena self-splicing ribosomal precursor RNA. The site selects arginine among the natural amino acids, and prefers the L- to the D-amino acid. The dissociation constant is in the millimolar range, and amino acid binding is at or in the catalytic rG splicing substrate site. Occupation of the G site by L-arginine therefore inhibits splicing by inhibiting the binding of rG, without inhibition of later reactions in the splicing reaction sequence. Arginine binding specificity seems to be directed at the side chain and the guanidino radical, and the alpha-amino and carboxyl groups are dispensable for binding. The arginine site can be placed within the G site by structural homology, with consequent implications for RNA-amino acid interaction, for the origin of the genetic code, for control of RNA activities, and for further catalytic capabilities for RNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yarus, M -- R37 GM30881/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1988 Jun 24;240(4860):1751-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder 80309.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3381099" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arginine/*metabolism ; Binding Sites ; Catalysis ; Genetic Code ; Guanosine Triphosphate/metabolism ; Kinetics ; Magnesium/metabolism ; Models, Molecular ; *RNA Splicing ; RNA, Ribosomal/*physiology ; Structure-Activity Relationship ; Tetrahymena
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-04-15
    Description: A number of ways are known by which an event at one location on a DNA molecule can affect an event at a distant location on the same molecule. Three classes of mechanisms are described for such distal actions: tracking or translocation of a protein along a DNA, the association of two proteins bound at separate sites to form a DNA loop in between, and distal interactions that are affected by the topology of the DNA. The basic characteristics of each type of mechanism are discussed in terms of the known physicochemical properties of DNA. The various modes of action at a distance are often interrelated. Examples include the formation of positively and negatively supercoiled DNA loops by tracking and the strong effects of DNA topology on looping.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, J C -- Giaever, G N -- New York, N.Y. -- Science. 1988 Apr 15;240(4850):300-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Harvard University, Cambridge, MA 02138.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3281259" target="_blank"〉PubMed〈/a〉
    Keywords: *DNA/genetics/metabolism ; DNA, Superhelical ; Deoxyribonucleoproteins/metabolism ; Models, Molecular ; *Nucleic Acid Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1988-12-16
    Description: Three variations to the structure of the nicotinamide adenine dinucleotide (NAD)-dependent L-lactate dehydrogenase from Bacillus stearothermophilus were made to try to change the substrate specificity from lactate to malate: Asp197----Asn, Thr246----Gly, and Gln102----Arg). Each modification shifts the specificity from lactate to malate, although only the last (Gln102----Arg) provides an effective and highly specific catalyst for the new substrate. This synthetic enzyme has a ratio of catalytic rate (kcat) to Michaelis constant (Km) for oxaloacetate of 4.2 x 10(6)M-1 s-1, equal to that of native lactate dehydrogenase for its natural substrate, pyruvate, and a maximum velocity (250 s-1), which is double that reported for a natural malate dehydrogenase from B. stearothermophilus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilks, H M -- Hart, K W -- Feeney, R -- Dunn, C R -- Muirhead, H -- Chia, W N -- Barstow, D A -- Atkinson, T -- Clarke, A R -- Holbrook, J J -- New York, N.Y. -- Science. 1988 Dec 16;242(4885):1541-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Bristol, United Kingdom.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3201242" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Geobacillus stearothermophilus/*enzymology/genetics ; Kinetics ; L-Lactate Dehydrogenase/*genetics/metabolism ; Malate Dehydrogenase/*metabolism ; Models, Molecular ; Protein Conformation ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1988-03-11
    Description: Two-dimensional crystals of cholera toxin bound to receptors in a lipid membrane give diffraction extending to 15 A resolution. Three-dimensional structure determination reveals a ring of five B subunits on the membrane surface, with one-third of the A subunit occupying the center of the ring. The remaining mass of the A subunit appears to penetrate the hydrophobic interior of the membrane. Cleavage of a disulfide bond in the A subunit, which activates the toxin, causes a major conformational change, with the A subunit mostly exiting from the B ring.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ribi, H O -- Ludwig, D S -- Mercer, K L -- Schoolnik, G K -- Kornberg, R D -- AI21144/AI/NIAID NIH HHS/ -- GM07276-12/GM/NIGMS NIH HHS/ -- GM07365/GM/NIGMS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1988 Mar 11;239(4845):1272-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3344432" target="_blank"〉PubMed〈/a〉
    Keywords: *Cholera Toxin ; G(M1) Ganglioside ; *Liposomes ; Macromolecular Substances ; Microscopy, Electron ; Models, Molecular ; Phosphatidylethanolamines ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1988-02-05
    Description: To investigate the relation between protein stability and the predicted stabilities of individual secondary structural elements, residue Pro86 in an alpha-helix in phage T4 lysozyme was replaced by ten different amino acids. The x-ray crystal structures of seven of the mutant lysozymes were determined at high resolution. In each case, replacement of the proline resulted in the formation of an extended alpha-helix. This involves a large conformational change in residues 81 to 83 and smaller shifts that extend 20 angstroms across the protein surface. Unexpectedly, all ten amino acid substitutions marginally reduce protein thermostability. This insensitivity of stability to the amino acid at position 86 is not simply explained by statistical and thermodynamic criteria for helical propensity. The observed conformational changes illustrate a general mechanism by which proteins can tolerate mutations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alber, T -- Bell, J A -- Sun, D P -- Nicholson, H -- Wozniak, J A -- Cook, S -- Matthews, B W -- GM 20066/GM/NIGMS NIH HHS/ -- GM 21967/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1988 Feb 5;239(4840):631-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics, University of Oregon, Eugene 97403.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3277275" target="_blank"〉PubMed〈/a〉
    Keywords: Enzyme Stability ; Escherichia coli/enzymology ; Models, Molecular ; Muramidase/*genetics/metabolism ; Mutation ; *Proline ; Protein Conformation ; T-Phages/*enzymology/genetics ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...