ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (12,714)
  • Other Sources
  • Articles and Proceedings (GFZpublic)  (12,714)
  • English  (12,713)
  • Danish  (1)
Collection
  • Articles  (12,714)
  • Other Sources
Source
Keywords
Language
  • 1
    Publication Date: 2024-07-11
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-07-11
    Description: This data publication provides a European assessment of building exposure, organized country-by-country. The dataset provides information about the number of buildings; the number of occupants; structural information and structural costs of buildings per geographical area. The main purpose of this data collection is risk assessment for natural hazards, however it can be used by anyone in need of a building exposure dataset. The data holds information about single buildings, with global estimates of built-up area on 10m x 10m pixels and exposure information per district. All OpenStreetMap (OSM) buildings existing in an OSM excerpt from 1 July 2023, 00:00 UTC (OpenStreetMap contributors, 2023), all buildings from the Global ML Building Footprint (GMLBF, Microsoft, 2023) dataset have been processed and for each building the occupancy type and number of stories have been identified based on data in OSM, such as land use and points of interest. The Global Human Settlement Built-up Characteristics 2022A Layer has been used as initial distribution of built area (Pesaresi, 2022). Aggregated exposure information, including the structural information and the number of occupants, stems the ESRM20 (Crowley et al., 2020). The resulting dataset is distributed per country as an SQLite/SpatiaLite database. Each database contains three tables and one view. The database is organized around three key concepts, that each have their own table. An Entity is a geographical unit that contains exposure. In this dataset, the entities are tiles in a multi-resolution grid, according to the Quad tree structure (Finkel & Bentley, 1974), with the tiles projected using the Web Mercator projection (EPSG:3857). The zoom-level of the Quadkeys inside the grid varies from level-15 to level-18, depending on the number of buildings inside each tile to preserve privacy-sensitive information. Practically, the size of the tiles varies between around 100m x 100m and 1km x 1km. Each entity consists of one or more Assets, defining the number of buildings of a particular structural type and their population and structural value. The structural type is described using a taxonomy string, describing for example structural properties, occupancy type and the expected number of stories. The exact definition of a taxonomy that is used in this dataset is described in the GEM Building Taxonomy v2.0 (Brzev et al., 2013). On top of the tables, one key view has been defined too. A view is essentially a query on the table that give some insights into the data. The `key_values_per_tile` provides the total number of buildings, total number of occupants at night and total structural costs summed over all assets in one tile entity.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-07-11
    Description: The dataset presents the greenhouse gas production (CO2 and CH4) from sediment of a terrestrial permafrost outcrop (Byk14-A-1; 71.85175°N, 129.350883°E), the thermokarst lake Goltsovoye (PG2412 (TKL), 71.74515°N, 129.30217°E), the nearly-closed Polar Fox Lagoon (PG2411 (LAG1), 71.743056°N, 129.337778°E) and the semi-open Uomullyakh Lagoon (PG2410-1 (LAG1), 71.730833°N, 129.2725°E). We incubated the samples anaerobically at 4 °C under fresh (c=0 g/L), brackish (c=13g/L) and marine (36g/L) conditions for one year and measured carbon dioxide (CO2) and methane (CH4) concentrations regularly in a 250 µL subsample using gas chromatography with an Agilent GC 7890A equipped with an Agilent HP-PLOT Q column. Cumulative CO2 and CH4 concentrations and production rates per day are given over time for all samples with three replicates each per gram of dry weight and normalised to gram of soil organic carbon (SOC).
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-07-09
    Description: The formally named SP lava flow is a quartz-, olivine- and pyroxene-bearing basalt flow that is preserved in the desert climate of northern Arizona, USA. The flow has an 40Ar/39Ar age of 72 ± 4 ka (2σ) and has undergone negligible erosion and/or burial, making its surface an ideal site for direct calibration of cosmogenic nuclide production rates. Production rates for cosmogenic 3He (3Hec) and 21Ne (21Nec) have been determined from SP flow olivine and pyroxene in this study. The error-weighted mean, sea-level, high latitude (SLHL) total reference production rates of 3He in olivine and pyroxene have identical values of 135 ± 8 at/g/yr (2; standard error) using time-independent Lal (1991)/Stone (2000) (St) scaling factors. These production rates decrease to identical values of 130 ± 8 at/g/yr (2; standard error) when 3He measurements are standardized to the CRONUS-P pyroxene standard. The St-scaled, error-weighted mean, total reference production rates of 21Ne in olivine and pyroxene are 48.4 ± 2.9 at/g/yr and 26.5 ± 1.7 at/g/yr (2; standard error), respectively, increasing to 49.3 ± 3.0 at/g/yr and 27.0 ± 1.7 at/g/yr (2; standard error), respectively, when standardized to the CREU-1 quartz standard. 3He and 21Ne production rates (St) overlap within 2σ uncertainty with other St-scaled production rates in the literature. SLHL 3He and 21Ne production rates in SP flow olivine and pyroxene are nominally lower if time-dependent Lm and Sa scaling factors are used. Olivine and pyroxene both have identical, error-weighted mean SLHL production rates of 127 ± 8 at/g/yr (2; standard error) using Lm scaling factors and CRONUS-P standardized 3He measurements. These production rates decrease to identical values of 110 ± 7 at/g/yr (2; standard error) for olivine and pyroxene when using Sa scaling factors. The Lm-scaled, error-weighted mean, total reference production rates of 21Ne in olivine and pyroxene are 48.1 ± 2.8 at/g/yr and 26.4 ± 1.7 at/g/yr (2; standard error), respectively, when standardized to the CREU-1 quartz standard. The error weighted mean, local 21Ne/3He production rate ratio in olivine is 0.358 ± 0.009 (2; standard error), which increases to 0.378 ± 0.012 when using CREU-1 standardized 21Ne production rates and CRONUS-P standardized 3He production rates. The error weighted mean, local 21Ne/3He production rate ratio in pyroxene is 0.197 ± 0.006, or 0.208 ± 0.008 when 21Ne and 3He are standardized to CREU-1 and CRONUS-P, respectively. The updated, CREU-1 standardized 21Nec rate (St) in SPICE quartz is 16.5 ± 1.1 at/g/yr. Production of 21Ne in coexisting SPICE olivine (ol), pyroxene (px), and quartz (qz) (standardized to CREU-1; Fenton et al., 2019; this study) yields error-weighted mean, local production rate ratios of 3.00 ± 0.13 (2) and 1.64 ± 0.08 (2) for 21Neol/21Neqz and 21Nepx/21Neqz, respectively. This study suggests that production rates of 3He and 21Ne in SPICE olivine and pyroxene agree well with St- and Lm-scaled global mean production rates in the literature. It also indicates that CRONUS-P and CREU-1 standardizations yield production rates in even stronger agreement with these global mean rates.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-07-09
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-07-08
    Description: Understanding the stability of magnesite in the presence of a hydrous fluid in the Earth’s upper mantle is crucial for modelling the carbon budget and cycle in the deep Earth. This study elucidates the behavior of magnesite in the presence of hydrous fluids. We examined the brucite magnesite (Mg(OH)2-MgCO3) system between 1 and 12 GPa by using synchrotron in situ energy dispersive X-ray diffraction experiments combined with textural observations from quenched experiments employing the falling sphere method. By subjecting magnesite to varying pressure-temperature conditions with controlled fluid proportion, we determined the stability limits of magnesite in the presence of a fluid and periclase. The observed liquidus provides insights into the fate of magnesite-bearing rocks in subduction zones. Our findings show that magnesite remains stable under typical subduction zone gradients even when infiltrated by hydrous fluids released from dehydration reactions during subduction. We conclude that magnesite can be subducted down to and beyond sub-arc depths. Consequently, our results have important implications for the carbon budget of the Earth’s mantle and its role in regulating atmospheric CO2 levels over geological timescales.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-07-08
    Description: Polar regions harbor a diversity of cold-adapted (cryophilic) algae, which can be categorized into psychrophilic (obligate cryophilic) and cryotrophic (non-obligate cryophilic) snow algae. Both can accumulate significant biomasses on glacier and snow habitats and play major roles in global climate dynamics. Despite their significance, genomic studies on these organisms remain scarce, hindering our understanding of their evolutionary history and adaptive mechanisms in the face of climate change. Here, we present the draft genome assembly and annotation of the psychrophilic snow algal strain CCCryo 101-99 (cf. Sphaerocystis sp.). The draft haploid genome assembly is 122.5 Mb in length and is represented by 664 contigs with an N50 of 0.86 Mb, a Benchmarking Universal Single-Copy Orthologs (BUSCO) completeness of 92.9% (n = 1519), a maximum contig length of 5.3 Mb, and a GC content of 53.1%. In total, 28.98% of the genome (35.5 Mb) contains repetitive elements. We identified 417 non-coding RNAs (ncRNAs) and annotated the chloroplast genome. The predicted proteome comprises 14,805 genes with a BUSCO completeness of 97.8%. Our preliminary analyses reveal a genome with a higher repeat content compared to mesophilic chlorophyte relatives, alongside enrichment in gene families associated with photosynthesis and flagella functions. Our current data will facilitate future comparative studies, improving our understanding of the likely response of polar algae to a warming climate as well as their evolutionary trajectories in permanently cold environments.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-07-08
    Description: The present review of published data as well as the new results demonstrate the versatility of conodonts in documenting and explaining global environmental fluctuations related to the Kačák Episode (KE) in the latest Eifelian. Although the conodont zonation of the KE interval is ambiguous and requires revision, the compilation of conodont stratigraphic ranges shows their potential for a precise worldwide correlation of relevant marine strata. Conodont biofacies may serve to document environmental changes connected with KE, in particular the sealevel rise at its beginning, followed by a regressive trend. Nevertheless, the familiar Icriodus/Polygnathus ratio should be carefully applied as an indication of water depth and nearshore vs. offshore position, being controlled also by other factors, such as paleolatitude and/or climate. Oxygen isotopes in conodont apatite, studied using secondary ion mass spectrometry technique evidence a warming at the onset of KE, based on the new data from the open marine facies of the Prague Basin. At the same time, they indicated climate-controlled salinity fluctuations in the epeiric Belarusian Basin. The present investigations as well as previous results suggest caution when analyzing thermally altered conodonts which may result in biased oxygen isotope signatures. The present experience suggests the conodont colour alteration index CAI 3 as a boundary value above which the caution is necessary.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-07-08
    Description: Central Afar is shaped by the interaction between the Red Sea (RS) and Gulf of Aden (GoA) rifts. While there have been several studies conducted in the region, we know surprisingly little about the mechanism of connection between these two rift branches. Here we use high-resolution 3D lithospheric scale geodynamic modeling to capture the evolution of linkage between the RS and GoA rifts in central Afar. Our results demonstrate that the two rifts initially overlap and interact across a broad zone of faulting and vertical axis block rotation. However, through time, rift overlap is abandoned in favor of direct linkage which generates a series of localized en-echelon basins. The present-day direct linkage between the two rifts is supported by geodetic observations. Our study reconciles previously proposed models for the RS and GoA rift connection by considering spatial and temporal evolution of the rifts.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-07-08
    Description: Enhanced geothermal systems (EGSs) developed by hydraulic stimulation are promising for exploiting petrothermal heat by improving fluid pathways in low-permeable geothermal reservoir rocks. However, fluid injection into the subsurface can potentially cause large seismic events by reactivating pre-existing faults, which is a significant barrier to EGSs. The management of injection-induced seismicity is, therefore, essential for the success of EGSs. During the hydraulic stimulation of an EGS, fluid can be injected into a fault zone or into the rock matrix containing pre-existing faults adjacent to the injection well. The differences in hydromechanical responses between fluid injection into and adjacent to a fault have not been investigated in detail. Here, we performed triaxial fluid injection experiments involving injecting fluid directly and indirectly into a fault in granite rock samples to analyse the distinct hydromechanical responses and estimate the injection-induced seismicity in both cases. Our results suggest that in addition to directly injecting fluid into a critically stressed fault, injecting into nearly intact granite adjacent to the fault could also cause injection-induced seismic hazards owing to the high fluid pressure required to create new fractures in the granite matrix. It is, therefore, important to carefully identify pre-existing faults within tight reservoirs to avoid injecting fluid adjacent to them. Additionally, once prior unknown faults are delineated during hydraulic stimulation, appropriate shut-in strategies should be implemented immediately to mitigate seismic risks.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    In:  Rock Mechanics for Natural Resources and Infrastructure Development - Full Papers : Proceedings of the 14th International Congress on Rock Mechanics and Rock Engineering (ISRM 2019), September 13-18, 2019, Foz Do Iguassu, Brazil | Proceedings in Earth and geosciences ; 6
    Publication Date: 2024-07-02
    Language: English
    Type: info:eu-repo/semantics/bookPart
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2024-07-02
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    In:  XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
    Publication Date: 2024-07-02
    Description: Distributed acoustic sensing (DAS) sees increased utilization in the seismological community in recent years and various applications are investigated for the usage of DAS in different branches of seismology. Strong-motion seismology uses records of earthquakes of engineering concern (MW〉4.5) with hypocentral distances within few hundreds of kilometers. This demands dense networks over a wide area and installation of typical strong-motion instruments (accelerometers) can be achieved quickly and at a reasonable budget, compared to other network types. For DAS, installation and operation are more involved, and deployment is very still limited. Consequently, DAS recordings of nearby large events are still very unlikely and rare compared to accelerometers. On September 18, 2022, a shallow earthquake sequence with a M〈sub〉W〈/sub〉 6.9 mainshock struck near Chishang (Taiwan) and was recorded by DAS in Hualien city, appr. 100 km north. Shaking of the mainshock and several aftershocks were noticeable in Hualien, though not damaging with PGA recorded at 0.28 m/s^2 nearby the DAS site. The DAS campaign was originally conceptualized as a test suite with different fiber installations: including buried, within a gutter (as in commercial fiber installation) and loose within a basement. The test site is in an urban area affected by surface rupturing during the 2018 Hualien earthquake. The presented recordings provide not only an unprecedented insight how strong-motion appears on DAS but also how effective different installation techniques are for this kind of event. The waveforms are also compared to records of a collocated broadband seismometer and an accelerometer 1 km away.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2024-07-02
    Description: Distributed Acoustic Sensing (DAS) is used to record high-spatial resolution strain-rate data. For ground motion observation, the DAS data can be converted from strain rate to acceleration or velocity by array-based measurements with coherent plane waves. DAS provides an opportunity to map high-resolution shaking patterns near faults. We installed collocated geophones and optical fiber in Hualien City (a very seismically active area in Taiwan) from the end of January to the end of February in 2022. Earthquakes with magnitudes (Mw) between 3.2 and 5.4 have been recorded. These records illustrate the typical magnitude-distance dependence of ground-motion but also show saturation for higher magnitudes and/or at shorter distances (e.g for an earthquake of Mw 5.2 earthquake recorded at 100 km). For frequency-based analyses, clipped signals on DAS result in challenges not present in classical instruments (seismometers). The upper limit in dynamic range of seismometers results in easily identifiable trapezoidal signals. The dynamic range of DAS interrogators is limited by gauge length, sampling frequency, and wrapped phase in the interferometric phase demodulation. We observe that clipped DAS signals not only affect time series but also contaminate their spectra on all frequencies, due to the random nature of clipping in DAS—contrasting to the flat plateaus in clipped time series on seismometers. Therefore, the identification of the start and end points of clipped DAS records poses a major challenge, which we aim to resolve with a neural network. This approach enhances the efficiency for quality control of massive DAS datasets.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2024-07-02
    Description: Rapid assessment of an earthquake’s impact on the affected society is a crucial first step of disaster management, determining further emergency measures. We demonstrate that macroseismic observations, collected as felt reports via the LastQuake service of the European Mediterranean Seismological Center, can be utilized to estimate the probability of a felt earthquake to have a “high impact” rather than a “low impact” on the affected population on a global scale. In our fully data-driven, transparent, and reproducible approach we compare the distribution of felt reports to documented earthquake impact in terms of economic losses, number of fatalities, and number of damaged or destroyed buildings. Using the distribution of felt-reports as predictive parameters and an impact measure as the target parameter, we infer a probabilistic model utilizing Bayes’ theorem and Kernel Density Estimation, that provides the probability of an earthquake to be “high impact”. For 393 felt events in 2021, a sufficient number of felt reports to run the model is collected within 10 minutes after the earthquake. While a clean separation of “high-impact” and “low-impact” events remains a challenging task, unambiguous identification of many “low-impact” events in our dataset is identified as a key strength of our approach. We consider our method a complementary and inexpensive impact assessment tools, that can be utilized instantly in all populated areas on the planet, with the necessary technological infrastructure. Being fully independent of seismic data, our framework poses an affordable option to support disaster management in regions that currently lack expensive seismic instrumentation.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2024-07-02
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2024-07-02
    Description: The Taiwan Milun fault zone located at the boundary between the Eurasian and Philippine Sea plates. This fault slips frequently and produced large earthquakes, as for example the Mw6.4 Hualien earthquake (6 February 2018). We map and observe the fault zone and its behavior at depth by high spatial resolution dynamic strain sensing with optical fiber. In 2021-2022, we drilled and cored the fault, and deployed a 3D multi-cross-fault fiber array comprising a borehole loop with a depth of 700 m (Hole-A, Hanging wall site, crossing the fault at depth), a surface array crossing the fault rupture zone using commercial fiber, and a second borehole loop of 500m fiber (Hole-B, Footwall site). The high spatial resolution from distributed acoustic sensing (DAS) and the retrieved core combined with geophysical logs allow us to characterize the structure on meter-scale. Within the Milun fault zone, we identified a 20-m wide fault core comprised of gray and black gouge in the core sample. DAS strain-rate records associated with the same depth as the fault core show a distinct amplification. The amplification ratio of 2.5-3 is constant as for all types of events (local, teleseismic ), when compared to DAS channels at larger depth, related to a consolidated rock material. Although the fault gouge is narrow, the nature of the amplification in strain is due to its strong material contrast from fault gouge. This result may shed the light on the understanding of fault-zone dynamics in terms of remote earthquake triggering and near-fault ground motion.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2024-07-02
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2024-07-02
    Description: As a population parameter, reliable estimation of the b-value is intrinsically complicated, particularly when spatial variability is considered. We approach this issue by treating the spatial b-value distribution as a non-stationary Gaussian process for the underlying earthquake-realizing Poisson process. For Gaussian process inference the covariance—which describes here the spatial correlation of the b-value—must be specified a priori. We base the covariance on the local fault structure, i.e. the covariance is anisotropic: elongated along the dominant fault strike and shortened when normal to the fault trace. This adaptive feature captures the geological structure better than an isotropic covariance or similarly defined and commonly used running-window estimates of the b-value. We demonstrate the Bayesian inference of the Gaussian process b-value estimation for two regions: California based on SCEDC earthquake and Turkey based on the AFAD earthquake catalog. The covariances in the inferences are calibrated with the SCEC community fault model the GEM fault model for California and Turkey, respectively. Our model provides a continuous b-value estimate (including its uncertainties) which reflects the local fault structure to a very high degree. We are able to associate the b-value with the local seismicity distribution and link it to major faults. In light of the recent Turkish earthquake sequence, we also assess the temporal evolution of the b-value of recent seismicity before and after major events.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2024-07-02
    Description: Stress maps show the orientation of the current maximum horizontal stress (SHmax) in the earth's crust. Assuming that the vertical stress (SV) is a principal stress, SHmax defines the orientation of the 3D stress tensor; the minimum horizontal stress Shmin is than perpendicular to SHmax. In stress maps SHmax orientations are represented as lines of different lengths. The length of the line is a measure of the quality of data and the symbol shows the stress indicator and the color the stress regime. The stress data are freely available and part of the World Stress Map (WSM) project. For more information about the data and criteria of data analysis and quality mapping are plotted along the WSM website at http://www.world-stress-map.org. The stress map of Taiwan 2022 is based on the WSM database release 2016. However, all data records have been checked and we added a large number of new data from earthquake focal mechanisms from the national earthquake catalog and from publications. The total number of data records has increased from n=401 in the WSM 2016 to n=6,498 (4,234 with A-C quality) in the stress map of Taiwan 2022 The update with earthquake focal mechanims is even larger since another 1313 earthquake focal mechanism data records beyond the scale of this map have been added to the WSM database. The digital version of the stress map is a layered pdf file generated with GMT (Wessel et al., 2019). It also provide estimates of the mean SHmax orientation on a regular 0.1° grid using the tool stress2grid (Ziegler and Heidbach, 2019). Two mean SHmax orientations are estimated with search radii of r=25 and 50 km, respectively, and with weights according to distance and data quality. The stress map and data are available on the landing page at https://doi.org/10.5880/WSM.Taiwan2022 where further information is provided. The earthquake focal mechanism that are used for this stress map are provided by the Taiwan Earthquake Research Center (TEC) available at the TEC Data Center (https://tec.earth.sinica.edu.tw).
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2024-07-02
    Description: This data set contains measurements of an underground hydraulic fracture experiment at Äspö Hard Rock Laboratory in May and June 2015. The experiment tested various injection schemes for rock fracture stimulation and monitored the resulting seismicity. The primary purpose of the experiment is to identify injection schemes that provide rock fracturing while reducing seismicity or at least mitigate larger seismic events. In total, six tests with three different injection schemes were performed in various igneous rock types. Both the injection process and the accompanied seismicity were monitored. For injection monitoring, the water flow and pressure are provided and additional tests for rock permeability. The seismicity was monitored in both triggered and continuous mode during the tests by high-resolution acoustic emission sensors, accelerometers and broadband seismometers. Both waveform data and seismicity catalogs are provided.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2024-07-02
    Description: In this article, a high-resolution acoustic emission sensor, accelerometer, and broadband seismometer array data set is made available and described in detail from in situ experiments performed at Äspö Hard Rock Laboratory in May and June 2015. The main goal of the hydraulic stimulation tests in a horizontal borehole at 410m depth in naturally fractured granitic rock mass is to demonstrate the technical feasibility of generating multi-stage heat exchangers in a controlled way superiorly to former massive stimulations applied in enhanced geothermal projects. A set of six, sub-parallel hydraulic fractures is propagated from an injection borehole drilled parallel to minimum horizontal in situ stress and is monitored by an extensive complementary sensor array implemented in three inclined monitoring boreholes and the nearby tunnel system. Three different fluid injection protocols are tested: constant water injection, progressive cyclic injection, and cyclic injection with a hydraulic hammer operating at 5 Hz frequency to stimulate a crystalline rock volume of size 30m30m30m at depth. We collected geological data from core and borehole logs, fracture inspection data from an impression packer, and acoustic emission hypocenter tracking and tilt data, as well as quantified the permeability enhancement process. The data and interpretation provided through this publication are important steps in both upscaling laboratory tests and downscaling field tests in granitic rock in the framework of enhanced geothermal system research. Data described in this paper can be accessed at GFZ Data Services under https://doi.org/10.5880/GFZ.2.6.2023.004 (Zang et al., 2023).
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2024-07-02
    Description: We construct and examine the prototype of a deep learning-based ground-motion model (GMM) that is both fully data driven and nonergodic. We formulate ground-motion modeling as an image processing task, in which a specific type of neural network, the U-Net, relates continuous, horizontal maps of earthquake predictive parameters to sparse observations of a ground-motion intensity measure (IM). The processing of map-shaped data allows the natural incorporation of absolute earthquake source and observation site coordinates, and is, therefore, well suited to include site-, source-, and path-specific amplification effects in a nonergodic GMM. Data-driven interpolation of the IM between observation points is an inherent feature of the U-Net and requires no a priori assumptions. We evaluate our model using both a synthetic dataset and a subset of observations from the KiK-net strong motion network in the Kanto basin in Japan. We find that the U-Net model is capable of learning the magnitude–distance scaling, as well as site-, source-, and path-specific amplification effects from a strong motion dataset. The interpolation scheme is evaluated using a fivefold cross validation and is found to provide on average unbiased predictions. The magnitude–distance scaling as well as the site amplification of response spectral acceleration at a period of 1 s obtained for the Kanto basin are comparable to previous regional studies.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2024-07-02
    Description: Understanding fracturing processes and the hydromechanical relation to induced seismicity is a key question for enhanced geothermal systems (EGS). Commonly massive fluid injection, predominately causing hydroshearing, are used in large-scale EGS but also hydraulic fracturing approaches were discussed. To evaluate the applicability of hydraulic fracturing techniques in EGS, six in situ, multistage hydraulic fracturing experiments with three different injection schemes were performed under controlled conditions in crystalline rock at the A¨ spo¨ Hard Rock Laboratory (Sweden). During the experiments the near-field ground motion was continuously recorded by 11 piezoelectric borehole sensors with a sampling rate of 1 MHz. The sensor network covered a volume of 30×30×30 m around a horizontal, 28-m-long injection borehole at a depth of 410 m. To extract and characterize massive, induced, high-frequency acoustic emission (AE) activity from continuous recordings, a semi-automated workflow was developed relying on full waveform based detection, classification and location procedures. The approach extended the AE catalogue from 196 triggered events in previous studies to more than 19 600 located AEs. The enhanced catalogue, for the first time, allows a detailed analysis of induced seismicity during single hydraulic fracturing experiments, including the individual fracturing stages and the comparison between injection schemes. Beside the detailed study of the spatio-temporal patterns, event clusters and the growth of seismic clouds, we estimate relative magnitudes and b-values of AEs for conventional, cyclic progressive and dynamic pulse injection schemes, the latter two being fatigue hydraulic fracturing techniques. While the conventional fracturing leads to AE patterns clustered in planar regions, indicating the generation of a single main fracture plane, the cyclic progressive injection scheme results in a more diffuse, cloud-like AE distribution, indicating the activation of a more complex fracture network. For a given amount of hydraulic energy (pressure multiplied by injected volume) pumped into the system, the cyclic progressive scheme is characterized by a lower rate of seismicity, lower maximum magnitudes and significantly larger b-values, implying an increased number of small events relative to the large ones. To our knowledge, this is the first direct comparison of high resolution seismicity in a mine-scale experiment induced by different hydraulic fracturing schemes.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    Universität Potsdam
    Publication Date: 2024-07-02
    Description: The branch of seismology that deals with strong motion refers to seismic events that are hazardous to society in general.Two aspects drive the development in strong-motion seismology: First comes the societal need to understand the earth-quake hazard and to mitigate the associated risk. While the hazard changed little during human history, the risk in-creases steadily. A growing population—also in the most earthquake-prone regions of the world—and a more and morevulnerable infrastructure contribute to higher exposure to seismic events and higher vulnerability in case an earthquakestruck. The second driver in strong-motion seismology is shared with many other fields: the technological advancement.The available options for processing more and more data is unprecedented in human history and are still not exhausted.Both drivers also pose new challenges as in how to interpret and make use of the data.The scientific question, on the other hand, is clear: What can we learn from the rupture process (the source of earth-quakes), Earth’s structure (the medium through which seismic wave travels), and their interactions (how does an earth-quake affect its surrounding medium)? The question is broad and this thesis can focus only for specific aspects of thisquestion and provide answers for them. To reach the answers, I developed several new algorithms and models, all rootedin the concept of the likelihood function.Seismicity (and population alike) is concentrated along the tectonic plate boundaries. Different earthquake typesoccur at these boundaries and their characteristics in terms of ground shaking are considerably different. It is thereforeimportant to classify earthquakes according to their style of faulting. This classification is the objective of ACE (angularclusterization with expectation-maximization). Founded on the geomechanical principles, ACE provides earthquakeclassifications which can be applied not only for ground-motion related topics but also to study the Earth’s stress field.The development of reliable ground-motion models requires waveform data of high quality. Instrument related errorscan compromise the data quality, however, with large archives of waveform data, the correction for spurious s cannot behandled manually anymore. To alleviate the effect of instrument related data shifts, I developed the integrated combinedbaseline modification (ICBM). This routine is implemented during the data pre-processing and is particularly necessarywhen determining integrated quantities from acceleration records, such as coseismic displacement and radiated seismicenergy.Radiated seismic energy plays a major role in the development of a new type of ground-motion model that uses thesite-dependent energy estimates to model the seismic radiation pattern at lower frequencies of the earthquake amplitudespectrum. This kind of ground-motion model performs better when relating ground motion to earthquake triggeredlandslides, which is demonstrated with the landslides triggered by the 2016MW7.1 Kumamoto earthquake which struckcentral Kyushu (Japan). In this case study, it is also shown that the landslide movement direction is to some extent linkedto the seismic wave polarization.The preferred mathematical model in ground-motion model development is the mixed-effect model. However, themost widely used formalism does not allow data weighting beyond directly related measurement errors and weightsderived from ACE would inadvertently bias the model. To overcome this problem, I derived the model estimators onthe basis of the weighted likelihood. The derivation is exhaustive to allow for any of the currently used model types onthe basis of mixed effects to be augmented with data weighting. This formalism in connection with ACE allows for atransparent model development and also avoids model choices on subjective expert judgment
    Description: Der Teil der Seismologie, der sich mit starker Bodenbewegung beschäftigt, bezieht sich auf seismische Ereignisse, dieallgemein ein Gefahrenpotenzial für die Gesellschaft darstellen. Die Seismologie der starken Bodenbewegung wird vonzwei Aspekten angetrieben: An erster Stelle kommt die gesellschaftliche Notwendigkeit, die Erdbebengefährdung zuverstehen und das damit verbundene Risiko zu vermeiden. Während die Gefährdung durch Erdbeben kaum Änderun-gen in der Geschichte der Menschheit unterlag, so wächst das Risiko andererseits kontinuierlich an. Eine wachsendeBevölkerung, insbesondere in den am stärksten von Erdbeben geprägten Regionen der Welt, und eine mehr und mehrstörungsanfällige Infrastruktur, tragen dazu bei, seismische Ereignissen vermehrt ausgesetzt zu sein, bei gleichzeitighöherem Schadenspotenzial. Der zweite Antrieb in der Seismologie wird mit vielen anderen Forschungsfeldern geteilt:der technische Fortschritt. Die verfügbaren Möglichkeiten beim Verarbeiten immer größerer Datenmengen sindbeispiellos in der Geschichte und sind bisher noch nicht erschöpft. Beide Triebfedern stellen aber auch neue Heraus-forderungen dar, inwiefern die Daten zu interpretieren sind und wie man sie nutzbar macht.Andererseits ist die wissenschaftliche Frage klar: Was können wir aus Bruchprozessen (als Erdbebenursachen), demAuf bau der Erde (als Medium, durch welches sich die seismischen Wellen ausbreiten), sowie deren Interaktion (inwiefernbeeinflusst das Beben das umgebende Gesteinsmedium)? Diese Frage ist breit gestellt und diese Abhandlung kann sichletztlich nur auf einige Punkte beziehen und Antworten dazu liefern. Um Antworten zu finden, habe ich mehrere neueAlgorithmen und Modelle entwickelt, die allesamt auf dem Konzept der Likelihood-Funktion beruhen.Seismizität (sowie auch die Bevölkerung) ist stark an den Rändern der tektonischen Platten konzentriert. An denPlattenrändern treten verschiedene Erdbebentypen mit teils erheblich abweichenden Eigenschaften auf. Daher ist esvon Wichtigkeit, Erdbeben nach ihrem Verwerfungstyp zu klassifizieren. Das Ziel von ACE (angular clusterization withexpectation-maximization, zu dt. ungefähr Winkelgruppenbestimmung mit Erwartungswertmaximierung) ist genaudiese Klassifizierung. Auf geomechanischen Prinzipien basierend, können die Erdbebenklassifizierungen mittels ACEnicht nur auf Themen der Bodenbewegungen angewandt werden, sondern auch zur Untersuchung des Spannungsfeldesder Erde herangezogen werden.Der Entwicklung von verlässlichen Bodenbewegungsmodellen bedarf es Wellenformdaten hoher Güte. Instrumentenbezogene Fehler können die Qualität beeinträchtigen, jedoch ist eine manuelle Korrektur großer Datenmengen nichtmehr umsetzbar. Um Instrumentenfehler, die sich in Verschiebungen in den Daten zeigen, zu reduzieren, habe icheine Nulllinienkorrektur entwickelt (ICBM, integrated combined baseline modification, zu dt. integriert kombinierteNulllinienmodifikation). Dieser Algorithmus wird in der Datenvorbereitung eingesetzt und ist insbesondere dannnotwendig, wenn integrierte Größen auf Grundlage von Beschleunigungsdaten bestimmt werden, wie statischer Ver-satz eines Erdbebens als auch abgestrahlte seismische Energie.Abgestrahlte seismische Energie spielt eine herausragende Rolle in der Entwicklung einer neuen Art von Bodenbewe-gungsmodell, welches anstellen von Magnituden stationsabhängige Energieabschätzungen nutzt, um die Erdbebenab-strahlcharakteristik auf tieferen Frequenzen des Erdbebenspektrums zu beschreiben. Diese Art Bodenbewegungsmodellist besser geeignet, wenn Bodenbewegungen in Bezug zu Hangrutschungen, welche durch Erdbeben verursacht wur-den, gesetzt werden. Als Beispiel dienen hier die Hangrutschungen, die 2016 durch das Erdbeben in Zentralkyuschu(Japan) mit einer Momentenmagnitude von 7.1 verursacht wurden. In dieser Fallstudie wird auch aufgezeigt, wie dieBewegungsrichtung der Hangrutschungen zu einem gewissen Grad durch die Ausrichtung des seismischen Wellenfeldesbeeinflusst werden.Das bevorzugte mathematische Modell in der Seismologie zur Beschreibung starker Bodenbewegungen ist das gemis-chte Modell. Jedoch lässt der weitläufig angewendete Formalismus nur die Einbettung von Gewichten in Form vonMessunsicherheiten zu. Gewichte wie sie von ACE erzeugt werden, die in keinem direkten Bezug zur Messgröße stehen,liefern zwangsläufig verzerrte Ergebnisse. Um dieses Problem zu umgehen, habe ich Parameterschätzer auf Basis einergewichteten Likelihood hergeleitet. Die rigorose Herleitung erlaubt sämtliche Arten des gemischten Modells, wie siezur Beschreibung von Bodenbewegungen genutzt werde, mit Datengewichtungen zu kombinieren. Dieser Formalis-mus in Verbindung mit ACE erlaubt die Entwicklung nachvollziehbarer Modelle und vermeidet Entscheidungen aufsubjektiver Expertenmeinung.
    Language: English
    Type: info:eu-repo/semantics/doctoralThesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2024-07-02
    Description: We investigate the relation between frictional heating on a fault and the resulting conductive surface heat flow anomaly using the fault's long-term energy budget. Analysis of the surface heat flow surrounding the fault trace leads to a constraint on the frictional power generated on the fault—the mechanism behind the San Andreas fault (SAF) heat flow paradox. We revisit this paradox from a new perspective using an estimate of the long-term accumulating elastic power in the region surrounding the fault, and analyze the paradox using two parameters: the seismic efficiency and the elastic power. The results show that the constraint on frictional power from the classic interpretation is incompatible with the accumulating elastic power and the radiated power from earthquake catalogs. We then explore four mechanisms that can resolve this extended paradox. First, stochastic fluctuations of surface heat flow could mask the fault-generated anomaly (we estimate 21% probability). Second, the elastic power accumulating in the region could be overestimated (≥550 MW required). Third, the seismic efficiency—ratio of radiated energy to elastic work—of the SAF could be higher than that of the remaining faults in the region (≥5.8% required). Fourth, the scaled energy—ratio of radiated energy to seismic moment—on the SAF could be lower than on the remaining faults in the region (a factor 5 difference required). In the last three hypotheses, we analyze the interplay of the energy budget on a single fault with the total energy budget of the region.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2024-07-02
    Description: The selection of earthquake focal mechanisms (FMs) for stress tensor inversion (STI) is commonly done on a spatial basis, that is, hypocentres. However, this selection approach may include data that are undesired, for example, by mixing events that are caused by different stress tensors when for the STI a single stress tensor is assumed. Due to the significant increase of FM data in the past decades, objective data-driven data selection is feasible, allowing more refined FM catalogues that avoid these issues and provide data weights for the STI routines. We present the application of angular classification with expectation-maximization (ACE) as a tool for data selection. ACE identifies clusters of FM without a priori information. The identified clusters can be used for the classification of the style-of-faulting and as weights of the FM data. We demonstrate that ACE effectively selects data that can be associated with a single stress tensor. Two application examples are given for weighted STI from South America. We use the resulting clusters and weights as a priori information for an STI for these regions and show that uncertainties of the stress tensor estimates are reduced significantly.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2024-07-01
    Description: Ground motion with strong‐velocity pulses can cause significant damage to buildings and structures at certain periods; hence, knowing the period and velocity amplitude of such pulses is critical for earthquake structural engineering. However, the physical factors relating the scaling of pulse periods with magnitude are poorly understood. In this study, we investigate moderate but damaging earthquakes (⁠Mw 6–7) and characterize ground‐motion pulses using the method of Shahi and Baker (2014) while considering the potential static‐offset effects. We confirm that the within‐event variability of the pulses is large. The identified pulses in this study are mostly from strike‐slip‐like earthquakes. We further perform simulations using the frequency–wavenumber algorithm to investigate the causes of the variability of the pulse periods within and between events for moderate strike‐slip earthquakes. We test the effect of fault dips, and the impact of the asperity locations and sizes. The simulations reveal that the asperity properties have a high impact on the pulse periods and amplitudes at nearby stations. Our results emphasize the importance of asperity characteristics, in addition to earthquake magnitudes for the occurrence and properties of pulses produced by the forward directivity effect. We finally quantify and discuss within‐ and between‐event variabilities of pulse properties at short distances.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2024-07-01
    Description: The steady increase of ground-motion data not only allows new possibilities but also comes with new challenges in the development of ground-motion models (GMMs). Data classification techniques (e.g., cluster analysis) do not only produce deterministic classifications but also probabilistic classifications (e.g., probabilities for each datum to belong to a given class or cluster). One challenge is the integration of such continuous classification in regressions for GMM development such as the widely used mixed-effects model. We address this issue by introducing an extension of the mixed-effects model to incorporate data weighting. The parameter estimation of the mixed-effects model, that is, fixed-effects coefficients of the GMMs and the random-effects variances, are based on the weighted likelihood function, which also provides analytic uncertainty estimates. The data weighting permits for earthquake classification beyond the classical, expert-driven, binary classification based, for example, on event depth, distance to trench, style of faulting, and fault dip angle. We apply Angular Classification with Expectation–maximization, an algorithm to identify clusters of nodal planes from focal mechanisms to differentiate between, for example, interface- and intraslab-type events. Classification is continuous, that is, no event belongs completely to one class, which is taken into account in the ground-motionmodeling. The theoretical framework described in this article allows for a fully automatic calibration of ground-motionmodels using large databases with automated classification and processing of earthquake and ground-motion data. As an example, we developed a GMM on the basis of the GMM by Montalva et al. (2017) with data from the strong-motion flat file of Bastías and Montalva (2016) with ∼2400 records from 319 events in the Chilean subduction zone. Our GMMwith the data-driven classification is comparable to the expert-classification-based model. Furthermore, the model shows temporal variations of the between-event residuals before and after large earthquakes in the region.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2024-07-01
    Description: Surface heat flow is a geophysical variable that is affected by a complex combination of various heat generation and transport processes. The processes act on different lengths scales, from tens of meters to hundreds of kilometers. In general, it is not possible to resolve all processes due to a lack of data or modeling resources, and hence the heat flow data within a region is subject to residual fluctuations. We introduce the REgional HEAT-Flow Uncertainty and aNomaly Quantification (REHEATFUNQ) model, version 2.0.1. At its core, REHEATFUNQ uses a stochastic model for heat flow within a region, considering the aggregate heat flow to be generated by a gamma-distributed random variable. Based on this assumption, REHEATFUNQ uses Bayesian inference to (i) quantify the regional aggregate heat flow distribution (RAHFD) and (ii) estimate the strength of a given heat flow anomaly, for instance as generated by a tectonically active fault. The inference uses a prior distribution conjugate to the gamma distribution for the RAHFDs, and we compute parameters for a uninformed prior distribution from the global heat flow database by Lucazeau (2019). Through the Bayesian inference, our model is the first of its kind to consistently account for the variability in regional heat flow in the inference of spatial signals in heat flow data. Interpretation of these spatial signals and in particular their interpretation in terms of fault characteristics (particularly fault strength) form a long-standing debate within the geophysical community. We describe the components of REHEATFUNQ and perform a series of goodness-of-fit tests and synthetic resilience analyses of the model. While our analysis reveals to some degree a misfit of our idealized empirical model with real-world heat flow, it simultaneously confirms the robustness of REHEATFUNQ to these model simplifications. We conclude with an application of REHEATFUNQ to the San Andreas fault in California. Our analysis finds heat flow data in the Mojave section to be sufficient for an analysis and concludes that stochastic variability can allow for a surprisingly large fault-generated heat flow anomaly to be compatible with the data. This indicates that heat flow alone may not be a suitable quantity to address fault strength of the San Andreas fault.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    Deutsche Geophysikalische Gesellschaft
    In:  Protokoll über das Symposium "Erdmagnetische Tiefensondierung" in Gosler am 30.Sept und 2. Okt. 1965
    Publication Date: 2024-06-27
    Language: German , English
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2024-06-26
    Description: All datasets provided in the operational dataset (Heubeck et al., 2024) of the ICDP project BASE (ICDP 5069) consist of metadata, data and/or images. Here, a summary of explanations of the tables, data and images exported from the database of the project (mDIS BASE) are given and are complimented by additional information on data from measurements done in the laboratory prior to the sampling party. Finally, the sampling data from the first two sam-pling parties are added. Some basic definitions of identifiers used in ICDP, depths corrections and measurements are also introduced.
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2024-06-21
    Description: Large igneous provinces (LIP) are vast (0.2 to 〉1 Mkm3) outpourings of basaltic lava and voluminous intrusions of magmas that have had important environmental consequences, in many cases leading to immense greenhouse gas release and mass extinctions. Magmatic oxygen fugacity (fO2) influences the chemistry of volcanic gases and is an important parameter for examining the links between LIP eruptions and environmental change. To constrain the fO2 of LIP magmas, we report olivine elemental chemistry of 399 crystals from a set of fifteen olivine-rich LIP samples, spanning in age from the Proterozoic (∼1270 Ma) to the Miocene (∼17 Ma). Concentrations of V in olivine are used to show that mafic LIP lavas erupted at +1.20 ± 0.95 ΔFMQ, on average more oxidized than mid ocean ridge basalts (MORB) at −0.28 ± 0.28 ΔFMQ. Mafic LIP magmas show a much larger range than MORB, however. Additionally, fO2 shows a negative correlation with parental magma MgO content, with high MgO lavas approaching the MORB range. This correlation is likely due to sampling of a heterogeneous mixture of oxidized and reduced lithologies, as also sampled by ocean island basalts (OIB). Correlation between fO2 and isotopic ratios such as 143Nd/144Nd demonstrates that the oxidized endmember is geochemically enriched, and may result from subduction recycling of oxidized surficial materials. The high fO2 of primitive LIP magmas demonstrate that they largely emitted oxidized gases during eruption, and furthermore, that LIP magmas associated with mass extinctions have similar magmatic fO2 to those that are not. Global plate tectonic position, magnitude and duration of LIP volcanic eruptions and magmatic degassing, as well as interaction with sedimentary basins in the crust - but not mantle source fO2 - are likely to be the critical factors for whether a LIP was associated with a mass extinction.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    In:  IOP Conference Series: Materials Science and Engineering
    Publication Date: 2024-06-21
    Description: Analysis and identifying the displacement characteristics play a key role in timely monitoring and detecting the physical responses of the bridge to ensure the safety of the human and structure. Many previous kinds of research used GNSS data to identify displacement and oscillation modelling of the bridge with different algorithms. This study uses GNSS time-series data to determine linear displacement and model oscillation of the bridge using a procedure including filtering outliers, linear regression, and sin function to identify amplitude in three directions, the plane displacement velocity, spatial displacement velocity, and vibration model of the bridge. The data in the research in the GNSS time-series data from three P5 GNSS receivers of the CHC brand on the Dachongyong bridge in Nanning, China with 1646 observations, at one-hour sample intervals in 68 consecutive days. The plane and spatial velocity of the three points DCQ01, DCQ02, and DCQ03 is 0.0181 mm/h, 0.0185 mm/h; 0.0114 mm/h, 0.0173 mm/h; and 0.0071 mm/h, 0.0082 mm/h respectively. The study results are significant in analyzing and identifying the bridge's displacement characteristics.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2024-06-21
    Description: Double seismic zones (DSZs) are a feature of some subducting slabs, where intermediate-depth earthquakes (~70–300 km) align along two separate planes. The upper seismic plane is generally attributed to dehydration embrittlement, whereas mechanisms forming the lower seismic plane are still debated. Thermal conductivity of slab minerals is expected to control the temperature evolution of subducting slabs, and therefore their seismicity. However, effects of the potential anisotropic thermal conductivity of layered serpentine minerals with crystal preferred orientation on slab’s thermal evolution remain poorly understood. Here we measure the lattice thermal conductivity of antigorite, a hydrous serpentine mineral, along its crystallographic b- and c-axis at relevant high pressure-temperature conditions of subduction. We find that antigorite’s thermal conductivity along the c-axis is ~3–4 folds smaller than the b-axis.Our numericalmodels further reveal thatwhen the lowthermal-conductivity c-axis is aligned normal to the slab dip, antigorite’s strongly anisotropic thermal conductivity enables heating at the top portion of the slab, facilitating dehydration embrittlement that causes the seismicity in the upper plane of DSZs. Potentially, the antigorite’s thermal insulating effect also hinders the dissipation of frictional heat inside shear zones, promoting thermal runaway along serpentinized faults that could trigger intermediatedepth earthquakes.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2024-06-21
    Description: Tourmaline is common in rare element pegmatites of the Nb-Y-F (NYF) type in the south-central part of the Proterozoic Sveconorwegian orogen in southern Norway. In the global context, however, tourmaline appears rare in this type of pegmatite. This study aims to explain the unusual tourmaline abundance in these pegmatites and the origin of boron (B) in the respective melts, and to raise awareness of tourmaline in NYF pegmatites generally. Tourmalines from six pegmatites in three Sveconorwegian lithotectonic units: Bamble, Kongsberg and Idefjorden, were investigated in terms of their mineral chemistry and δ11B values, in addition to bulk rock analyses of pegmatites and host rocks. Tourmalines in pegmatites from Bamble and Kongsberg record B isotopic compositions (δ11B = -1.0 to + 9.9 ‰) that are heavy relative to continental crust and mantle sources. In contrast, tourmaline in pegmatites and host rocks from Idefjorden have light B isotopic ratios (δ11B = -14.8 to −12.5 ‰) that are typical crustal values. We suggest that the latter melts were sourced from orthogneisses at depth. We relate the heavy B isotopic composition of Bamble and Kongsberg pegmatites to regional Na-metasomatism by fluids sourced from Mesoproterozoic shallow marine sediments. This is supported by previously published δ11B ratios from metasomatized Bamble host rocks. The spatial association of pegmatites with Na-metasomatism in the basement rocks suggests that metasomatism enhanced the fertility and B-concentration in the affected lithologies, favouring partial melting and the formation of tourmaline-bearing pegmatites. These findings contribute to understanding the petrogenesis of Sveconorwegian pegmatites but they also imply that B can play a greater role in the formation of NYF pegmatites than previously thought and that tourmaline has value as a petrogenetic tool in this type of pegmatites as well as in the Li-Cs-Ta (LCT) type to which is it is more commonly applied.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2024-06-20
    Description: Watershed management requires an understanding of key hydrochemical processes. The Pra Basin is one of the five major river basins in Ghana with a population of over 4.2 million people. Currently, water resources management faces challenges due to surface water pollution caused by the unregulated release of untreated household and industrial waste into aquatic ecosystems and illegal mining activities. This has increased the need for groundwater as the most reliable water supply. Our understanding of groundwater recharge mechanisms and chemical evolution in the basin has been inadequate, making effective management difficult. Therefore, the main objective of this work is to gain insight into the processes that determine the hydrogeochemical evolution of groundwater quality in the Pra Basin. The combined use of stable isotope, hydrochemistry, and water level data provides the basis for conceptualizing the chemical evolution of groundwater in the Pra Basin. For this purpose, the origin and evaporation rates of water infiltrating into the unsaturated zone were evaluated. In addition, Chloride Mass Balance (CMB) and Water Table Fluctuations (WTF) were considered to quantify groundwater recharge for the basin. Indices such as water quality index (WQI), sodium adsorption ratio (SAR), Wilcox diagram, and salinity (USSL) were used in this study to determine the quality of the resource for use as drinking water and for irrigation purposes. Due to the heterogeneity of the hydrochemical data, the statistical techniques of hierarchical cluster and factor analysis were applied to subdivide the data according to their spatial correlation. A conceptual hydrogeochemical model was developed and subsequently validated by applying combinatorial inverse and reaction pathway-based geochemical models to determine plausible mineral assemblages that control the chemical composition of the groundwater. The interactions between water and rock determine the groundwater quality in the Pra Basin. The results underline that the groundwater is of good quality and can be used for drinking water and irrigation purposes. It was demonstrated that there is a large groundwater potential to meet the entire Pra Basin’s current and future water demands. The main recharge area was identified as the northern zone, while the southern zone is the discharge area. The predominant influence of weathering of silicate minerals plays a key role in the chemical evolution of the groundwater. The work presented here provides fundamental insights into the hydrochemistry of the Pra Basin and provides data important to water managers for informed decision-making in planning and allocating water resources for various purposes. A novel inverse modelling approach was used in this study to identify different mineral compositions that determine the chemical evolution of groundwater in the Pra Basin. This modelling technique has the potential to simulate the composition of groundwater at the basin scale with large hydrochemical heterogeneity, using average water composition to represent established spatial groupings of water chemistry.
    Description: Die Bewirtschaftung von Wassereinzugsgebieten erfordert ein Verständnis der wichtigsten hydrochemischen Prozesse. Das Pra-Becken ist eines der fünf großen Flusseinzugsgebiete Ghanas mit einer Bevölkerung von über 4,2 Millionen Menschen. Die Bewirtschaftung der Wasserressourcen wird derzeit durch die Verschmutzung der Oberflächengewässer erschwert, die durch die unkontrollierte Einleitung von unbehandelten Haushalts- und Industrieabfällen in die aquatischen Ökosysteme und durch illegale Bergbauaktivitäten entsteht. Dies hat den Bedarf an Grundwasser als zuverlässigste Wasserversorgung erhöht. Unser Verständnis der Mechanismen der Grundwasserneubildung und der chemischen Entwicklung im Einzugsgebiet ist bislang unzureichend, was eine wirksame Bewirtschaftung erschwert. Daher ist das Hauptziel dieser Arbeit Einblicke in die Prozesse zu bekommen, welche die hydrogeochemische Entwicklung der Grundwasserqualität im Pra-Becken bestimmen. Die kombinierte Verwendung von Daten stabiler Isotope, der Hydrochemie und von Wasserständen bildet die Grundlage für die Konzeption der chemischen Entwicklung des Grundwassers im Pra-Becken. Dafür wurden die Herkunft und die Verdunstungsraten des in die ungesättigte Zone infiltrierenden Wassers bewertet. Darüber hinaus wurden die Chlorid-Massenbilanz und die Wasserspiegelschwankungen betrachtet, um die Grundwasserneubildung für das Einzugsgebiet zu quantifizieren. Indizes wie der Wasserqualitätsindex (WQI), das Natriumadsorptionsverhältnis (SAR), das Wilcox-Diagramm und der Salzgehalt (USSL) wurden in dieser Studie verwendet, um die Qualität der Ressource für die Verwendung als Trinkwasser und zu Bewässerungszwecken zu bestimmen. Aufgrund der Heterogenität der hydrochemischen Daten wurden die statistischen Verfahren der hierarchischen Cluster- und Faktorenanalyse angewandt, um die Daten entsprechend ihrer räumlichen Korrelation zu unterteilen. Ein konzeptionelles hydrogeochemisches Modell wurde entwickelt und anschließend durch Anwendung kombinatorischer inverser und reaktionspfadbasierter geochemischer Modelle validiert, um plausible mineralische Assemblagen zu bestimmen, welche die chemische Zusammensetzung des Grundwassers kontrollieren. Die Wechselwirkungen zwischen Wasser und Gestein bestimmen die Grundwasserqualität im Pra-Becken. Die Ergebnisse unterstreichen, dass das Grundwasser eine gute Qualität aufweist und als Trinkwasser und für Bewässerungszwecke genutzt werden kann. Es wurde nachgewiesen, dass ein großes Grundwasserpotenzial vorhanden ist, um den derzeitigen und künftigen Wasserbedarf des gesamten Pra-Beckens zu decken. Als Hauptneubildungsgebiet wurde die nördliche Zone im Gebiet identifiziert, während die südliche Zone das Abflussgebiet ist. Der vorherrschende Einfluss der Verwitterung von Silikatmineralen spielt bei der chemischen Entwicklung des Grundwassers eine zentrale Rolle. Die hier vorgestellte Arbeit gibt grundlegende Einblicke in die Hydrochemie des Pra-Beckens und liefert für das Wassermanagement wichtige Daten für eine fundierte Entscheidungsfindung bei der Planung und Zuweisung von Wasserressourcen für verschiedene Zwecke. Ein neuartiger Ansatz zur inversen Modellierungwurde in dieser Studie eingesetzt, um unterschiedliche Mineralzusammensetzungen zu ermitteln, welche die chemische Entwicklung des Grundwassers im Pra-Becken bestimmen. Diese Modellierungstechnik hat das Potenzial, die Zusammensetzung eines Grundwassers auf der Skala eines Beckens mit großer hydrochemischer Heterogenität zu simulieren, wobei die durchschnittliche Wasserzusammensetzung zur Darstellung der etablierten räumlichen Gruppierungen der Wasserchemie verwendet wird.
    Description: Watershed management requires an understanding of key hydrochemical processes. The Pra Basin is one of the five major river basins in Ghana with a population of over 4.2 million people. Currently, water resources management faces challenges due to surface water pollution caused by the unregulated release of untreated household and industrial waste into aquatic ecosystems and illegal mining activities. This has increased the need for groundwater as the most reliable water supply. Our understanding of groundwater recharge mechanisms and chemical evolution in the basin has been inadequate, making effective management difficult. Therefore, the main objective of this work is to gain insight into the processes that determine the hydrogeochemical evolution of groundwater quality in the Pra Basin. The combined use of stable isotope, hydrochemistry, and water level data provides the basis for conceptualizing the chemical evolution of groundwater in the Pra Basin. For this purpose, the origin and evaporation rates of water infiltrating into the unsaturated zone were evaluated. In addition, Chloride Mass Balance (CMB) and Water Table Fluctuations (WTF) were considered to quantify groundwater recharge for the basin. Indices such as water quality index (WQI), sodium adsorption ratio (SAR), Wilcox diagram, and salinity (USSL) were used in this study to determine the quality of the resource for use as drinking water and for irrigation purposes. Due to the heterogeneity of the hydrochemical data, the statistical techniques of hierarchical cluster and factor analysis were applied to subdivide the data according to their spatial correlation. A conceptual hydrogeochemical model was developed and subsequently validated by applying combinatorial inverse and reaction pathway-based geochemical models to determine plausible mineral assemblages that control the chemical composition of the groundwater. The interactions between water and rock determine the groundwater quality in the Pra Basin. The results underline that the groundwater is of good quality and can be used for drinking water and irrigation purposes. It was demonstrated that there is a large groundwater potential to meet the entire Pra Basin’s current and future water demands. The main recharge area was identified as the northern zone, while the southern zone is the discharge area. The predominant influence of weathering of silicate minerals plays a key role in the chemical evolution of the groundwater. The work presented here provides fundamental insights into the hydrochemistry of the Pra Basin and provides data important to water managers for informed decision-making in planning and allocating water resources for various purposes. A novel inverse modelling approach was used in this study to identify different mineral compositions that determine the chemical evolution of groundwater in the Pra Basin. This modelling technique has the potential to simulate the composition of groundwater at the basin scale with large hydrochemical heterogeneity, using average water composition to represent established spatial groupings of water chemistry.
    Language: English
    Type: info:eu-repo/semantics/doctoralThesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2024-06-20
    Description: Rapidly growing seismic and macroseismic databases and simplified access to advanced machine learning methods have in recent years opened up vast opportunities to address challenges in engineering and strong motion seismology from novel, datacentric perspectives. In this thesis, I explore the opportunities of such perspectives for the tasks of ground motion modeling and rapid earthquake impact assessment, tasks with major implications for long-term earthquake disaster mitigation. In my first study, I utilize the rich strong motion database from the Kanto basin, Japan, and apply the U-Net artificial neural network architecture to develop a deep learning based ground motion model. The operational prototype provides statistical estimates of expected ground shaking, given descriptions of a specific earthquake source, wave propagation paths, and geophysical site conditions. The U-Net interprets ground motion data in its spatial context, potentially taking into account, for example, the geological properties in the vicinity of observation sites. Predictions of ground motion intensity are thereby calibrated to individual observation sites and earthquake locations. The second study addresses the explicit incorporation of rupture forward directivity into ground motion modeling. Incorporation of this phenomenon, causing strong, pulse like ground shaking in the vicinity of earthquake sources, is usually associated with an intolerable increase in computational demand during probabilistic seismic hazard analysis (PSHA) calculations. I suggest an approach in which I utilize an artificial neural network to efficiently approximate the average, directivity-related adjustment to ground motion predictions for earthquake ruptures from the 2022 New Zealand National Seismic Hazard Model. The practical implementation in an actual PSHA calculation demonstrates the efficiency and operational readiness of my model. In a follow-up study, I present a proof of concept for an alternative strategy in which I target the generalizing applicability to ruptures other than those from the New Zealand National Seismic Hazard Model. In the third study, I address the usability of pseudo-intensity reports obtained from macroseismic observations by non-expert citizens for rapid impact assessment. I demonstrate that the statistical properties of pseudo-intensity collections describing the intensity of shaking are correlated with the societal impact of earthquakes. In a second step, I develop a probabilistic model that, within minutes of an event, quantifies the probability of an earthquake to cause considerable societal impact. Under certain conditions, such a quick and preliminary method might be useful to support decision makers in their efforts to organize auxiliary measures for earthquake disaster response while results from more elaborate impact assessment frameworks are not yet available. The application of machine learning methods to datasets that only partially reveal characteristics of Big Data, qualify the majority of results obtained in this thesis as explorative insights rather than ready-to-use solutions to real world problems. The practical usefulness of this work will be better assessed in the future by applying the approaches developed to growing and increasingly complex data sets.
    Description: Das rapide Wachstum seismischer und makroseismischer Datenbanken und der vereinfachte Zugang zu fortschrittlichen Methoden aus dem Bereich des maschinellen Lernens haben in den letzen Jahren die datenfokussierte Betrachtung von Fragestellungen in der Seismologie ermöglicht. In dieser Arbeit erforsche ich das Potenzial solcher Betrachtungsweisen im Hinblick auf die Modellierung erdbebenbedingter Bodenerschütterungen und der raschen Einschätzung von gesellschaftlichen Erdbebenauswirkungen, Disziplinen von erheblicher Bedeutung für den langfristigen Erdbebenkatastrophenschutz in seismisch aktiven Regionen. In meiner ersten Studie nutze ich die Vielzahl an Bodenbewegungsdaten aus der Kanto Region in Japan, sowie eine spezielle neuronale Netzwerkarchitektur (U-Net) um ein Bodenbewegungsmodell zu entwickeln. Der einsatzbereite Prototyp liefert auf Basis der Charakterisierung von Erdbebenherden, Wellenausbreitungspfaden und Bodenbeschaffenheiten statistische Schätzungen der zu erwartenden Bodenerschütterungen. Das U-Net interpretiert Bodenbewegungsdaten im räumlichen Kontext, sodass etwa die geologischen Beschaffenheiten in der Umgebung von Messstationen mit einbezogen werden können. Auch die absoluten Koordinaten von Erdbebenherden und Messstationen werden berücksichtigt. Die zweite Studie behandelt die explizite Berücksichtigung richtungsabhängiger Verstärkungseffekte in der Bodenbewegungsmodellierung. Obwohl solche Effekte starke, impulsartige Erschütterungen in der Nähe von Erdbebenherden erzeugen, die eine erhebliche seismische Beanspruchung von Gebäuden darstellen, wird deren explizite Modellierung in der seismischen Gefährdungsabschätzung aufgrund des nicht vertretbaren Rechenaufwandes ausgelassen. Mit meinem, auf einem neuronalen Netzwerk basierenden, Ansatz schlage ich eine Methode vor, umdieses Vorhaben effizient für Erdbebenszenarien aus dem neuseeländischen seismischen Gefährdungsmodell für 2022 (NSHM) umzusetzen. Die Implementierung in einer seismischen Gefährdungsrechnung unterstreicht die Praktikabilität meines Modells. In einer anschließenden Machbarkeitsstudie untersuche ich einen alternativen Ansatz der auf die Anwendbarkeit auf beliebige Erdbebeszenarien abzielt. Die abschließende dritte Studie befasst sich mit dem potenziellen Nutzen der von makroseismischen Beobachtungen abgeleiteten pseudo-Erschütterungsintensitäten für die rasche Abschätzung von gesellschaftlichen Erdbebenauswirkungen. Ich zeige, dass sich aus den Merkmalen solcher Daten Schlussfolgerungen über die gesellschaftlichen Folgen eines Erdbebens ableiten lassen. Basierend darauf formuliere ich ein statistisches Modell, welches innerhalb weniger Minuten nach einem Erdbeben die Wahrscheinlichkeit für das Auftreten beachtlicher gesellschaftlicher Auswirkungen liefert. Ich komme zu dem Schluss, dass ein solches Modell, unter bestimmten Bedingungen, hilfreich sein könnte, um EntscheidungsträgerInnen in ihren Bestrebungen Hilfsmaßnahmen zu organisieren zu unterstützen. Die Anwendung von Methoden des maschinellen Lernens auf Datensätze die sich nur begrenzt als Big Data charakterisieren lassen, qualifizieren die Mehrheit der Ergebnisse dieser Arbeit als explorative Einblicke und weniger als einsatzbereite Lösungen für praktische Fragestellungen. Der praktische Nutzen dieser Arbeit wird sich in erst in Zukunft an der Anwendung der erarbeiteten Ansätze auf wachsende und zunehmend komplexe Datensätze final abschätzen lassen.
    Language: English
    Type: info:eu-repo/semantics/doctoralThesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    Universität Potsdam
    Publication Date: 2024-06-20
    Description: Large parts of the Earth’s interior are inaccessible to direct observation, yet global geodynamic processes are governed by the physical material properties under extreme pressure and temperature conditions. It is therefore essential to investigate the deep Earth’s physical properties through in-situ laboratory experiments. With this goal in mind, the optical properties of mantle minerals at high pressure offer a unique way to determine a variety of physical properties, in a straight-forward, reproducible, and time-effective manner, thus providing valuable insights into the physical processes of the deep Earth. This thesis focusses on the system Mg-Fe-O, specifically on the optical properties of periclase (MgO) and its iron-bearing variant ferropericlase ((Mg,Fe)O), forming a major planetary building block. The primary objective is to establish links between physical material properties and optical properties. In particular the spin transition in ferropericlase, the second-most abundant phase of the lower mantle, is known to change the physical material properties. Although the spin transition region likely extends down to the core-mantle boundary, the ef-fects of the mixed-spin state, where both high- and low-spin state are present, remains poorly constrained. In the studies presented herein, we show how optical properties are linked to physical properties such as electrical conductivity, radiative thermal conductivity and viscosity. We also show how the optical properties reveal changes in the chemical bonding. Furthermore, we unveil how the chemical bonding, the optical and other physical properties are affected by the iron spin transition. We find opposing trends in the pres-sure dependence of the refractive index of MgO and (Mg,Fe)O. From 1 atm to ~140 GPa, the refractive index of MgO decreases by ~2.4% from 1.737 to 1.696 (±0.017). In contrast, the refractive index of (Mg0.87Fe0.13)O (Fp13) and (Mg0.76Fe0.24)O (Fp24) ferropericlase increases with pressure, likely because Fe Fe interactions between adjacent iron sites hinder a strong decrease of polarizability, as it is observed with increasing density in the case of pure MgO. An analysis of the index dispersion in MgO (decreasing by ~23% from 1 atm to ~103 GPa) reflects a widening of the band gap from ~7.4 eV at 1 atm to ~8.5 (±0.6) eV at ~103 GPa. The index dispersion (between 550 and 870 nm) of Fp13 reveals a decrease by a factor of ~3 over the spin transition range (~44–100 GPa). We show that the electrical band gap of ferropericlase significantly widens up to ~4.7 eV in the mixed spin region, equivalent to an increase by a factor of ~1.7. We propose that this is due to a lower electron mobility between adjacent Fe2+ sites of opposite spin, explaining the previously observed low electrical conductivity in the mixed spin region. From the study of absorbance spectra in Fp13, we show an increasing covalency of the Fe-O bond with pressure for high-spin ferropericlase, whereas in the low-spin state a trend to a more ionic nature of the Fe-O bond is observed, indicating a bond weakening effect of the spin transition. We found that the spin transition is ultimately caused by both an increase of the ligand field-splitting energy and a decreasing spin-pairing energy of high-spin Fe2+.
    Description: Geodynamische Prozesse werden von den physikalischen Materialeigenschaften unter den extremen Druck- und Temperaturbedingungen des Erdinneren gesteuert, gerade diese Areale sind aber faktisch nicht für direkte Beobachtungen zugänglich. Umso wichtiger ist es, die physikalischen Eigenschaften unter Bedingungen des Erdinneren zu untersuchen. Mit diesem Ziel vor Augen erlaubt das Studium der optischen Eigenschaften von Mineralen des Erdmantels, eine große Bandbreite an physikalischen Materialeigenschaften, in einer einfachen, reproduzierbaren und effizienten Art und Weise zu bestimmen. Dadurch bieten sich wichtige Einblicke in die physikalischen Prozessen des Erdinneren. Die vorliegende Arbeit konzentriert sich auf das System Mg-Fe-O, im Speziellen auf Periklas (MgO) und seine Eisen-haltige Variante Ferroperiklas ((Mg,Fe)O), ein wichtiger Baustein planetarer Körper. Das Hauptziel der Arbeit besteht darin Verbindungen zwischen optischen Eigenschaften und physikalischen Materialeigenschaften zu finden. Gerade der Spin-Übergang in Ferroperiklas, der zweithäufigsten Phase des unteren Erdmantels, ist dabei von Bedeutung, da damit Veränderungen in den physikalischen Materialeigenschaften einhergehen. Obwohl sich der Spinübergangsbereich vermutlich bis zur Kern-Mantel-Grenze erstreckt, sind die Auswirkungen des gemischten Spin-Zustandes, bei dem sowohl Hoch- als auch Tief-Spin präsent sind, nur unzureichend untersucht. Die hier vorgestellten Studien zeigen, wie optische Eigenschaften mit anderen wichtigen physikalischen Eigenschaften wie elektrischer und thermischer Leitfähigkeit, Viskosität oder auch mit der chemischen Bindung verbunden sind. Daraus lässt sich auch ableiten wie der Spin-Übergang in Ferroperiklas diese Eigenschaften beeinflusst. Von Raumbedingungen bis zu ~140 GPa sinkt der Brechungsindex von MgO um ~2.4 % von 1.737 auf 1.696 (±0.017). Im Gegensatz dazu steigt der Brechungsindex von (Mg0.87Fe0.13)O (Fp13) und (Mg0.76Fe0.24)O (Fp24) Ferroperiklas mit dem Druck an. Dies ist auf Fe-Fe Wechselwirkungen zwischen benachbarten Eisenpositionen zurückzuführen, die eine starke Verringerung der Polarisierbarkeit, wie im Falle von reinem MgO mit zunehmender Dichte, behindern. Eine Analyse der Dispersion des Brechungsindexes von MgO (Abnahme um ~23 % von 1 Atm zu ~103 GPa) offenbart eine Verbreiterung der Bandlücke von ~7.4 eV bei 1 Atm zu ~8.5 (±0.6) eV bei ~103 GPa. Die Messung der Dispersion (zwischen 550 und 870 nm) in Fp13 zeigt eine starke Abnahme über den Bereich des Spin-Überganges (~44–100 GPa) bis zu einem Faktor von ~3. Die Bandlücke nimmt in der Region des gemischten Spin-Zustandes signifikant auf bis zu ~4.7 eV zu (entspricht einer Zunahme um den Faktor ~1.7). Dies deutet auf eine Verringerung der Elektronen-Mobilität zwischen benachbarten Fe2+-Positionen mit unterschiedlichem Spin-Zustand hin, was die bereits in früheren Arbeiten beobachtete Abnahme der elektrischen Leitfähigkeit im Bereich des gemischten Spin-Zustandes erklärt. Absorptionsspektren an Fp13 zeigen eine Druck-bedingte Zunahme der Kovalenz der Fe-O Bindung für Ferroperiklas im Hoch-Spin Zustand, wohingegen Tief-Spin Ferroperiklas einen Trend zu einer mehr ionischen Fe-O Bindung auf-weist, was auf einen Bindungs-schwächenden Effekt des Spin-Wechsels hinweist. Der Übergang von Hoch- zu Tiefspin ist letztlich auf eine Zunahme der Ligandenfeldaufspaltungsenergie sowie eine abnehmende Spinpaarungsenergie von Hoch-Spin Fe2+ zurückzuführen.
    Language: English
    Type: info:eu-repo/semantics/doctoralThesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    In:  Selected Studies in Geophysics, Tectonics and Petroleum Geosciences : Proceedings of the 3rd Conference of the Arabian Journal of Geosciences (CAJG-3) | Advances in Science, Technology and Innovation
    Publication Date: 2024-06-19
    Description: Ionospheric disturbances are associated with the propagation of seismic waves generated by earthquakes. We analyze total electron content (TEC) fluctuations from Global Navigation Satellite Systems (GNSS) data. This study investigates the global earthquakes from December 2004 to March 2020 with magnitude (Mw) 4.0 to 9.1. Data of 65 permanent GNSS stations are used to analyze the impacts of these earthquakes on the ionosphere. The experimental data based on the cluster sampling method ensure strict conditions such as accuracy, the distance from the monitoring stations to the epicenter, and the depth of the hypocenter. At least three GNSS stations near the epicenter participate in the analysis of each earthquake. Probability and statistics are applied to remove outliers and rough errors in the input data, to select datasets with similar quality, and to analyze TEC anomalies. The results show that when a strong earthquake occurs, the TEC values calculated at different GNSS stations surrounding the earthquake region tend to exhibit similar variations. Depending on the magnitude, epicenter, and hypocenter depth, these fluctuations can range from ± 3.2 TECU to ± 14.5 TECU for large earthquakes. These TEC fluctuations occur from 30 min to almost two hours before the mainshock of the earthquakes and last to the aftershock period. For earthquakes with a magnitude greater than 6.0 Mw, the TEC fluctuations are significant. The findings of this study contribute to GNSS applications in studying earthquakes in the future.
    Language: English
    Type: info:eu-repo/semantics/bookPart
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    In:  Recent Research on Geotechnical Engineering, Remote Sensing, Geophysics and Earthquake Seismology : Proceedings of the 1st MedGU, Istanbul 2021 (Volume 3) | Advances in Science, Technology and Innovation
    Publication Date: 2024-06-19
    Description: In deformation analysis, irregularly spaced data, extreme values, and anomalies in time series can lead to misleading simulations for forecast models, such as overfitting and underfitting. Therefore, K-fold cross-validation is one of the hyperparameter tuning techniques used in machine learning (ML) to deal with these problems. In this study, we use data from 22 permanent GNSS stations to predict the motion trajectory of the Earth’s crust. Lag functions and sampling techniques are applied to generate 924-time series samples. Time series standardization techniques are also performed to improve the quality of data. To test the efficiency of the K-fold cross-validation method, we investigate 26 mathematical models based on six ML algorithms. The optimal K values are selected through trial methods. Root mean squared error (RMSE) of validation and test is the basis for determining the overfitting and underfitting models. The investigations show that the optimal intervals of K-fold range from five to ten folds for the GNSS time series with many anomalies, jumps, and significant variations, from three to ten for stable time series. The sensitivity of cross-validation is more effective on the time series of the Up component than those of the North and East components. In addition, cross-validation can also detect effectively overfitting and underfitting for forecast models in motion of permanent GNSS stations.
    Language: English
    Type: info:eu-repo/semantics/bookPart
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2024-06-19
    Description: Understanding the phase behavior and structural properties of salt water at high pressures is essential for understanding the dynamics and physical characteristics of icy planets. In this study, we employed high-pressure experimental and ab initio simulation techniques to investigate the impact of CaCl2 on the structure of ice VII. Our findings reveal that 1.8 mol% CaCl2 can be incorporated into the ice VII structure above 10 GPa. This CaCl2-bearing ice VII (Cb VII) exhibits a lower O-H stretching frequency in the Raman spectra as well as a reduced volume of the unit cell compared to pure ice VII. In contrast to doping ice VII with other salts such as LiCl and NaCl that leads to an increase of the ice VII to ice X transition pressure occurring at 100–150 GPa, CaCl2 doping stands out by reducing the transition pressure. It shifts the transition to a pressure of 52 GPa, which is significantly lower than the transition pressure of 80 GPa in the pure H2O ice system. This notable distinction highlights the unique influence of CaCl2 on the phase behavior of water under high pressure, and we attribute these effects to the phenomenon of chemical pressure induced by CaCl2 within the ice VII structure. Our study suggests that the presence of a modified ice VII phase, contaminated with salt and referred to as Cb VII, may influence the composition, structure, and evolution of planets.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2024-06-18
    Description: High-resolution thermospheric mass density low Earth orbit (LEO)-based measurements are valuable for accurately estimating short-term atmospheric abrupt disturbances triggered by solar flux forcing. To investigate the enhancing status of solar cycle 25 between August 29 and December 31, 2020, we processed Gravity Recovery and Climate Experiment Follow-on (GRACE-FO) 10-s accelerometer-derived thermospheric mass density (TMD) measurements normalized at 500 km altitude by the NRLMSIS-2.0 empirical model. These 4-month enhancing disturbance observations suggest a shift from relative quiescence to a much more active solar phase, revealing unexpected dependencies on temporal and spatial characteristics. The results indicated that the dominant driver is solar extreme ultraviolet radiation (EUV) during this ascending phase. Density enhancement was symmetric in both hemispheres around the autumn equinox. After the equinox, the neutral density enhancement intensity in the Southern Hemisphere surpasses that in the Northern Hemisphere. Density maxima occurred from high to low latitudes, accompanied by a 2–3 h time lag. The Wygant function was applied to model the response to solar wind geomagnetic field changes and quantify the impact of geomagnetic activities on upper atmosphere density, verifying the time lag of density disturbances. All these findings could potentially improve our understanding of the solar cycle and LEO orbital drag.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2024-06-18
    Description: Uraninite [UO2] is an increasingly recognized accessory mineral for geochronological studies of the mid to upper crust. Similar to what is seen for zircon and monazite, the U-Pb system of uraninite can become reset under relatively low temperatures in certain domains via the action of fluids through the process of coupled dissolution-reprecipitation. Whether or not the uraninite geochronometer is reset will be dependent on the chemistry of the fluid it interacts with as opposed to being purely dependent on P-T. This makes uraninite a mineral of interest for the dating of low- to mid-temperature, fluid-controlled geological processes. In order to better understand which factors cause the recrystallization and/or metasomatic alteration of uraninite, a set of 5 metasomatism experiments have been performed in cold seal autoclaves on a hydrothermal line involving a natural uraninite from Příbram, Czech Republic and a series of Na-, Ca-, OH-, and F-bearing fluids at 600°C and 200 MPa for 21 days. A second set of the same 5 experiments, to which elemental sulfur was added, were subsequently run at 450°C and 200 MPa for 66 days. Generally, little textural alteration of the starting material was observed in any of the experiments, which was independent of the fluid chemistry and temperature, except for an increase in the apparent porosity of the reacted grains. In the second set of experiments galena formed as small grains in four of the runs, indicating that Pb had migrated out from the uraninite into the solution and reacted with the sulfur to form galena. The excessive depletion of Pb in the metasomatized uraninite to negligible amounts in some of these fluids is especially evident if the solutions were NaF + H2O and 2M NaOH. This suggests that interaction of uraninite with F- or high pH Na-bearing fluids can metasomatically reset the uraninite geochronometer at 450 °C and mid to upper crustal pressures and by analogy to even lower temperatures given sufficient time.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2024-06-18
    Description: Rare earth elements (REE) include the lanthanides (La–Lu), Y, and Sc which are critical elements for the green energy transition. The REE show a decrease in ionic radii with increased atomic numbers, which results in a so-called lanthanide contraction systematically affecting crystal structures and mineral properties. Here we present a compilation of reference Raman spectra of ten REE sesquioxides (A-, B- and C-type), five REE hydroxides, eight xenotime-structured REE phosphate endmembers and two solid solutions, seven monazite-structured REE phosphate endmembers and two solid solutions and seven rhabdophane endmembers with up to five Ce1−xLREEx rhabdophane solid solutions (LREE = La–Gd). Raman mode assignment is based on a detailed literature review summarizing existing analytical work and theoretical calculations and systematic trends observed in this study by analyzing different REE-bearing solids. The wavenumbers of the main REE-O Raman band systematically increase with decreasing ionic radii forming discrete linear trends within isostructural mineral groups, that can be used to estimate the REE-O mode in other solids with known REE-O coordination numbers. Photoluminescence using 266 nm, 532 nm and 633 nm excitation laser wavelengths for REE-bearing oxides, hydroxides, anhydrous and hydrous phosphates is also presented providing a new framework for identifying REE-phases in phosphate-bearing natural mineral deposits.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2024-06-18
    Description: Iron oxide-apatite (IOA) deposits generally undergo extensive late-stage metasomatic overprinting that modifies the texture and geochemistry of the magnetite, apatite, and other ore-forming minerals. However, the onset of metasomatism in IOA deposits worldwide generally remains poorly constrained. The Heiyingshan IOA deposit is located in the Beishan area of the Central Asian Orogenic Belt, NW China. Fluorapatite from this IOA deposit has undergone extensive fluid-aided alteration resulting in the formation of numerous monazite inclusions via a coupled dissolution-reprecipitation process (CDRP) in altered domains of the fluorapatite. Petrographic studies show that these monazite grains are mainly subhedral to anhedral in shape, have a topotaxial relationship with the parent fluorapatite, and co-exist with magnetite, xenotime, and other mineral inclusions. The crystallization age of this monazite constrains the metasomatic activity following the original IOA mineralization. This study presents EMPA and trace element LA-ICP-MS analytical data for fluorapatite and monazite from the Heiyingshan IOA deposit. It also includes in-situ U–Pb isotopic data for unaltered, altered domains of fluorapatite, and monazite. U–Pb data obtained for unaltered fluorapatite, altered fluorapatite and monazite inclusions within altered fluorapatite grains have similar U–Pb ages (∼325 Ma), consistent with the regional Carboniferous volcanic rocks. Furthermore, this study also presents Sr–Nd isotopic data for fluorapatite, the unaltered and altered fluorapatite domains in the Heiyingshan IOA deposit have similar initial Sr isotope ratios, 143Nd/144Nd ratios, and εNd(t) values, with the Sr isotope ratios consistent with the regional Carboniferous volcanic rocks. This implies that magmatism, mineralization, and metasomatism in the Heiyingshan IOA deposit were essentially contemporaneous, the metasomatizing fluids were derived from the evolution of mineralizing fluids. A comparison of the results from Heiyingshan with the available geochronological data from other IOA ore deposits reveals a general consistency in the timing between the mineralization and the metasomatism of IOA deposits due to evolved later-stage fluids. In contrast, dating of monazite metasomatically derived from fluorapatite in some older (e.g., Kiirunavaara) IOA deposits indicates that these IOA deposits appear to have undergone additional episodes of metasomatic alteration during various later geological events after the original IOA mineralization. We suggest that the formation age of monazite inclusions within apatite in IOA deposits should be consistent with the timing of the IOA mineralization, as the original formation and subsequent fluid-aided modification of IOA deposit occur in the same magmatic-hydrothermal event/system. However, some IOA deposits may have undergone additional late episodes of metasomatic events.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2024-06-18
    Description: In high-precision space geodetic techniques data processing, the mapping function (MF) is a key factor in mapping the radio waves from the zenith direction down to the signal incoming direction. Existing MF products, either site-wise Vienna Mapping Function (VMF1 and VMF3) or grid-wise VMF1 and VMF3, are only available at the Earth surface. For overhead areas, height correction is always required, which is becoming increasingly important with growing airborne aircraft activity. In this contribution, we introduce a novel method aimed at providing a large number of MFs to the user in a simple and efficient manner, while minimizing the loss of precision. The approach effectively represents the vertical profile of the MFs from the Earth's surface up to altitudes of 14 km. In addition, the new model corrects for height in the assessment using the fifth generation of the European Centre for Medium-Range Weather Forecasts ReAnalysis (ERA5) ray tracing calculations for a global 5° × 5° grid with 54 layers in the vertical direction, a total of 8 azimuths in the plane, and 7 elevation angles, for each day in 2021. Specifically, for both polynomial and exponential model of order 2 and 3, the relative residuals are 〈 0.3% for the hydrostatic delay MF coefficient , and 〈 1% for the wet delay MF coefficient . The precision of the new model on the Earth’s surface is evaluated using site-wise VMF1 and VMF3 GNSS (Global Navigation Satellite System) products from Technische Universität Wien. The root mean square error of slant hydrostatic delay and slant wet delay at a 3° elevation angle is approximately 4–5 cm and 2–5 cm, respectively.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2024-06-18
    Description: Radio signals transmitted by Global Navigation Satellite System (GNSS) satellites experience tropospheric delays. While the hydrostatic part, referred to as zenith hydrostatic delay (ZHD) when mapped to the zenith direction, can be analytically modelled with sufficient accuracy, the wet part, referred to as zenith wet delay (ZWD), is much more difficult to determine and needs to be estimated. Thus, there exist several ZWD models which are used for various applications such as positioning and climate research. In this study, we present a data-driven, global model of the spatial ZWD field, based on the Extreme Gradient Boosting (XGBoost). The model takes the geographical location, the time, and a number of meteorological variables (in particular, specific humidity at several pressure levels) as input, and can predict ZWD anywhere on Earth as long as the input features are available. It was trained on ZWDs at 10718 GNSS stations and tested on ZWDs at 2684 GNSS stations for the year 2019. Across all test stations and all observations, the trained model achieved a mean absolute error of 6.1 mm, respectively, a root mean squared error of 8.1 mm. Comparisons of the XGBoost-based ZWD predictions with independently computed ZWDs and baseline models underline the good performance of the proposed model. Moreover, we analysed regional and monthly models, as well as the seasonal behaviour of the ZWD predictions in different climate zones, and found that the global model exhibits a high predictive skill in all regions and across all months of the year.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2024-06-17
    Description: Tin (Sn) and tungsten (W) behave incompatibly in reduced magmatic systems and may become enriched in late highly-evolved melts. Nonetheless, Sn and W rarely concentrate in the same deposit. In deposits formed by Sn- and W-bearing granites, this separation may be due to the contrasting behavior of Sn and W during exsolution of a magmatic fluid or the scavenging of Sn by silicate minerals. We illustrate the separation of Sn and W for the world-class Zhuxi W skarn deposit (South China). Although tin orebodies have not yet been identified within the Zhuxi deposit, tiny (commonly 〈 20 μm) cassiterite grains are widespread within the endoskarn and the retrogressed exoskarn. We analyzed the W and Sn contents of the magmatic minerals biotite and ilmenite in ore-forming granites and the prograde anhydrous skarn minerals garnet, pyroxene and vesuvianite. Our data show that (i) magmatic ilmenite (65.5–79.1 ppm Sn; 8.7–14.3 ppm W) and biotite (109–120 ppm Sn; 1.3–6.3 ppm W) from biotite monzogranite strongly enrich Sn relative to W, implying that W partitioned more strongly into the magmatic fluids than Sn, (ii) there is 100 Kt non-recoverable Sn within the Zhuxi deposit in addition to the certified 3.44 Mt WO3 reserves, and (iii) W is mainly hosted in scheelite, whereas Sn is dominantly sequestered in prograde skarn minerals, most importantly garnet (76–4086 ppm Sn, 〈 42 ppm W), pyroxene (3–103 ppm Sn, 〈 1 ppm W), and vesuvianite (43–361 ppm Sn, 〈 2 ppm W). The formation of secondary cassiterite requires the release of silicate-bound Sn by alteration of primary skarn minerals, which depends on the availability of magmatic or metamorphic fluids. Deep-seated granites such as those associated with the Zhuxi skarn deposit, which crystallized at 5 km to 12.6 km depth, do not release or mobilize copious amounts of fluid. Therefore, the Zhuxi deposit, like other deep-seated reduced skarn systems shows little alteration and most Sn remains in silicate minerals and is economically non-recoverable. Thus, reduced, deep-seated W skarn systems are unlikely to have associated Sn orebodies even if significant amounts of Sn are present.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2024-06-17
    Description: Carbonatites and their comagmatic silicate rocks related deposit provide significant resources of rare earth elements (REEs), niobium (Nb) and other elements such as U, Th, Mo, V, Ba, Sr, etc. However, the genesis of mineralization, especially for REEs and Nb, in carbonatite remains enigmatic. Previous liquid immiscibility experiments have demonstrated that both REEs and Nb are preferentially enriched in the silicate conjugate instead of carbonate melts under anhydrous conditions. Nevertheless, ligands other than carbonate ion appear to be abundant due to ubiquity of apatite, baryte, celestine, fluorite and sodalite in carbonate–silicate magmatic systems. Here, we experimentally investigate the trace element partitioning between natrocarbonate and silicate (nephelinite) melts in systems doped with varying amounts of additional F−, PO43−, Cl−, and SO42− ligands (0, 2, 4 and 6 wt%) to understand and constrain the role of ligands. The experiments were conducted at 850 °C and 0.1 GPa using rapid quench cold-seal pressure vessels (CSPVs). A comparison of experimental partition coefficients in this study reveals that the significant amounts F− and PO43− incorporated in the silicate melts can increase the D values for REE by influencing melt structure (DLaCM/SM = 0.85–7.42). In contrast, irrespective of the amount of added Cl− and SO42−, DCM/SM is not affected significantly by these species and the DREECM/SM values remain always lower than 1 (DLaCM/SM = 0.12–0.40). Notably, the DNbCM/SM values are all 〈1, with only one exception containing 6 wt% F. Besides, in all the investigated systems, Ba, Sr, Mo, V, Cs, Rb and Li preferentially partition into the conjugate carbonate melt. All the high field strength elements (Pb, Th, U, Zr, Hf, Nb, Ta), transition metals (Mn, Co, Cu, Zn) and common network formers (Ga, Ge) essentially partition into the silicate melt.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2024-06-17
    Description: This work studies variations of ionospheric total electron content (TEC) during four distinct solar eclipse events over the Ethiopia region. Dual‐frequency global positioning system (GPS) data obtained from UNAVCO over Addis Ababa (9.036°N, 38.76°E) and Bahir Dar (11.6°N, 37.34°E) stations are used to examine the ionospheric variability during two annular solar eclipses on 15 January 2010 and 1 September 2016, a partial solar eclipse on 4 January 2011, and a hybrid solar eclipse (the eclipse path starts out as annular but later changes to total) on 3 November 2013. The results show a significant decrease in TEC values during the occurrence of the solar eclipses. Specifically, the TEC values are reduced to
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2024-06-17
    Description: An ideal target for geodetic very long baseline interferometry (VLBI) is a strong and point-like radio source. In reality, most celestial sources used in geodetic VLBI have spatial structure. This is as a major source of error in VLBI Global Observing System (VGOS) and also affects legacy S/X observations. Source structure causes a systematic delay, which can affect the geodetic estimates if not modelled or otherwise accounted for. In this work, we aim to mitigate its impact by extending the stochastic model used in the least-squares fitting of the VLBI group delays. We have developed a weighting scheme to re-weight the observations by parameterizing the source structure component in terms of closure delays and jet orientation relative to the observing baseline. It was implemented in the Vienna VLBI Software. To assess the performance of the extended stochastic model, we analysed the CONT17 legacy sessions and generated suitable reference solutions for comparison. The effects of re-weighting were evaluated with respect to the session fit statistics, source-wise residuals, and geodetic parameters. We find that this relatively simple noise model consistently improves the session fit by about 5% with moderate variation from session to session. The geodetic estimates are not affected to a significant level by this new weighting method. Source-wise we see improved post-fit residuals for 63 out of a total of 91 sources observed.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2024-06-17
    Description: Radio telescopes with dual linearly polarized feeds regularly participate in Very Long Baseline Interferometry. One example is the VLBI Global Observing System (VGOS), which is employed for high-precision geodesy and astrometry. In order to achieve the maximum signal-to-noise ratio, the visibilities of all four polarization products are combined to Stokes I before fringe-fitting. Our aim is to improve cross-polarization bandpass calibration, which is an essential processing step in this context. Here we investigate the shapes of these station-specific quantities as a function of frequency and time. We observed the extra-galactic source 4C 39.25 for 6 hours with a VGOS network. We correlated the data with the DiFX software and analyzed the visibilities with PolConvert to determine the complex cross-bandpasses with high accuracy. Their frequency-dependent shape is to first order characterized by a group delay between the two orthogonal polarizations, in the order of several hundred picoseconds. We find that this group delay shows systematic variability in the range of a few picoseconds, but can remain stable within this range for several years, as evident from earlier sessions. On top of the linear phase-frequency relationship there are systematic deviations of several tens of degrees, which in addition are subject to smooth temporal evolution. The antenna cross-bandpasses are variable on time scales of ∼1 hr, which defines the frequency of necessary calibrator scans. The source 4C 39.25 is confirmed as an excellent cross-bandpass calibrator. Dedicated surveys are highly encouraged to search for more calibrators of similar quality.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2024-06-17
    Description: Integer Ambiguity Resolution (IAR) can significantly improve the accuracy of GNSS Precise Orbit Determination (POD). Traditionally, the IAR in POD is achieved at the Double Differenced (DD) level. In this contribution, we develop an Un-Differenced (UD) IAR method for Global Positioning System (GPS)+ BeiDou Navigation Satellite System (BDS) + Galileo navigation satellite system (Galileo)+ Global'naya Navigatsionnaya Sputnikovaya Sistema (GLONASS) quad-system POD by calibrating UD ambiguities in the raw carrier phase and generating the so-called carrier range. Based on this method, we generate the UD ambiguity-fixed orbit and clock products for the Wuhan Innovation Application Center (IAC) of the International GNSS Monitoring and Assessment System (iGMAS). One-year observations in 2020 from 150 stations are employed to investigate performance of orbit and clock products. Notably, the UD Ambiguity Resolution (AR) yields more resolved integer ambiguities than the traditional DD AR, scaling up to 9%, attributable to its avoidance of station baseline formation. Benefiting from the removal of ambiguity parameters, the computational efficiency of parameter estimation undergoes a substantial 70% improvement. Compared with the float solution, the orbit consistencies of UD AR solution achieve the accuracy of 1.9, 5.2, 2.8, 2.1, and 2.7 cm for GPS, BeiDou-2 Navigation Satellite System (BDS-2), BeiDou-3 Navigation Satellite System (BDS-3), Galileo, and GLONASS satellites respectively, reflecting enhancements of 40%, 24%, 54%, 34%, and 42%. Moreover, the standard deviations of Satellite Laser Ranging (SLR) residuals are spanning 2.5–3.5 cm, underscoring a comparable accuracy to the DD AR solution, with discrepancies below 5%. A notable advantage of UD AR lies in its capability to produce the Integer Recovered Clock (IRC), facilitating Precise Point Positioning (PPP) AR without requiring additional Uncalibrated Phase Delay (UPD) products. To assess the performance of quad-system kinematic PPP based on IRC, a network comprising 120 stations is utilized. In comparison to the float solution, the IRC-based PPP AR accelerates convergence time by 31% and enhance positioning accuracy in the east component by 54%.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    In:  Measurement Science and Technology
    Publication Date: 2024-06-13
    Description: The global navigation satellite system (GNSS)-interferometric reflectometry technique has been applied to retrieve snow depth, which has a high potential for application. The GNSS reflectometry classical algorithm retrieves the snow depth by extracting the frequency of the multipath signal and substituting it into an empirical formula. However, the retrieval errors of high and low snow depths are large due to the influence of factors such as surface vegetation and terrain environment. In this paper, we propose a snow depth retrieval algorithm based on a particle swarm optimized long short-term memory (PSO-LSTM) neural network. The algorithm extracted three characteristic parameters (frequency, amplitude, and phase) from the signal-to-noise ratio (SNR) data as inputs, and optimized the LSTM hyperparameters by the PSO algorithm to improve the retrieval accuracy for low snow depths and snow depths close to the antenna. The snow depth retrieval results of global positioning system L1 band SNR data collected from the P351 station in 2022 and AB33 station in 2017 were evaluated in this paper. The snow depth retrieval results of the PSO-LSTM algorithm for P351 station were in high agreement with the snow depth data provided by the snowpack telemetry network; the coefficient of determination () reached 0.986, and the root mean square error (RMSE) and mean absolute error (MAE) were 7.30 cm and 4.94 cm, respectively. Compared with the classical algorithm, the PSO-LSTM algorithm decreased the RMSE and MAE by 53.0% and 30.4% for the retrieval results of snow depths below 15 cm at the P351 station, and by 76.8% and 84.4% for the retrieval results of snow depths above 117 cm from the 1st day to the 137th day, respectively. Similarly, the RMSE, MAE, and for the 2017 retrieval results at AB33 station were 5.90 cm, 4.25 cm, and 0.965, respectively. Compared with the classical algorithm, the PSO-LSTM algorithm decreased the RMSE and MAE by 47.9% and 33.0% for the retrieval results of snow depths below 15 cm at the AB33 station, and by 75.4% and 82.3% for the retrieval results of snow depths above 56 cm from the day 46 to day 120. In addition, the snow depth retrieval algorithm was proposed in this paper does not require antenna height and empirical formulas to realize snow depth retrieval, and at the same time, the algorithm effectively improved the retrieval accuracy for both high and low snow depths with strong robustness.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2024-06-13
    Description: The Gram-positive, rod-shaped endophytic bacterium Cellulomonas sp. strain ATA003 was isolated from the endemic cactus Maihueniopsis domeykoensis seeds collected in the Coastal Atacama Desert, Chile. Here, we present a circular genome with a size of 4,084,881 bp and a GC content of 73.8% obtained by Nanopore sequencing.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2024-06-13
    Description: Geomechanics play an important role in any underground activity, such as carbon dioxide (CO2) and hydrogen (H2) geo-storage, owing to the considerable hazards linked to the injection and withdrawal of fluids into and from the subsurface. In order to quantify these risks, knowledge of full stress tensor is required. Yet, most of our stress information in the Australian target basins for geo-storage is limited to the stress orientations, while stress magnitude data is sparse. 3D geomechanical modelling has proved to be an invaluable tool for prediction of full stress tensor. Nevertheless, a model requires some stress magnitude data in order to tune the model to be representative of real stress state. In situations where stress magnitude data is lacking, this means that the model is susceptible to significant uncertainties. Herein, we present a novel strategy for stress modelling, which involves the utilisation of indirect data such as borehole breakouts, drilling-induced fractures, seismic activity records, and formation integrity tests to calibrate a 3D geomechanical model. We employ the northern Bowen Basin, an onshore basin in Queensland, Australia, as a case study for a comprehensive 3D geomechanical modelling approach. We assess all the indirect information in the model’s volume to narrow down the model predictions and find the most reliable stress state. This innovative approach is an important step forward in stress modelling of Australian basins, where lack of stress magnitudes is a great challenge for geomechanical assessment of geo-storage.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2024-06-13
    Description: Chromium (Cr) leached from iron (Fe) (oxyhydr)oxide-rich tropical laterites can substantially impact downstream groundwater, ecosystems, and human health. However, its partitioning into mineral hosts, its binding, oxidation state, and potential release are poorly defined. This is in part due to the current lack of well-designed and validated Cr-specific sequential extraction procedures (SEPs) for laterites. To fill this gap, we have (i) first optimized a Cr SEP for Fe (oxyhydr)oxide-rich laterites using synthetic and natural Cr-bearing minerals and laterite references, (ii) used a complementary suite of techniques and critically evaluated existing non-laterite and non-Cr-optimized SEPs, compared to our optimized SEP, and (iii) confirmed the efficiency of our new SEP through analyses of laterites from the Philippines. Our results show that other SEPs inadequately leach Cr host phases and underestimate the Cr fractions. Our SEP recovered up to seven times higher Cr contents because it (a) more efficiently dissolves metal-substituted Fe phases, (b) quantitatively extracts adsorbed Cr, and (c) prevents overestimation of organic Cr in laterites. With this new SEP, we can estimate the mineral-specific Cr fractionation in Fe-rich tropical soils more quantitatively and thus improve our knowledge of the potential environmental impacts of Cr from lateritic areas.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2024-06-13
    Description: A large dataset of detrital zircon U–Pb ages (N = 5940) of Aptian-Albian strata of the Colombian-Ecuadorian retroarc region suggests that these rocks were sourced from Proterozoic cratonic and Permian–Triassic to Cretaceous rocks of the Andean proto-Cordilleras. The nonconformity between Aptian-Albian strata and Proterozoic rocks of the Garzón Massif indicates the existence of positive relief in this region. Topographic highs could have caused local basin compartmentalization and the prevalence of a localized provenance of coeval strata. Areas of positive relief were seemingly exposed to intense chemical weathering as suggested by the high Chemical Index of Alteration values, and low Rb/Sr and SiO2/Al2O3 ratios of analysed strata. Our results highlight the value of provenance analysis to study the ancient topography of retroarc systems and open the avenue for further research on the role of extensional tectonics in the topographic and basin evolution in the Andes.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2024-06-13
    Description: Using the electron density (Ne) observations from the Defense Meteorological Satellite Program, and Constellation Observing Systems for Meteorology, Ionosphere, and Climate mission and simulations from the Thermosphere Ionosphere Electrodynamic General Circulation Model. we investigate the dynamic evolution of the polar tongue of ionization (TOI) from double to single structures at different altitudes during a geomagnetic storm. The modeled Ne depicted that double and single TOIs occurred at altitudes above 300 km, respectively. During the northward turning of interplanetary magnetic field (IMF) Bz, the afternoon TOI disappeared and the morning TOI was reduced. The plasma transport due to neutral winds and ambipolar diffusion facilitated (prevented) the depletion of plasma density of the morning TOI at 300 (500) km, with a relative contribution of 42.8% and 28.6% (−15.4% and −76.9%), respectively. Downward E × B drifts led to an enhancement/reduction of plasma density in the storm enhanced density region in the lower/upper ionosphere. During the duskward turning of IMF By, the morning TOI could be mostly attributed to the anti-sunward plasma drifts (75.8% at 300 km, 100% at 500 km), with a relatively stronger role of the zonal component than that of meridional E × B drifts. The upward E × B drifts were important/ignorable in the upper/lower ionosphere. Both the neutral winds and ambipolar diffusion resulted in an accumulation of plasma density of the morning TOI at 300 km indirectly (24.2%), however, their roles were minor at 500 km
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2024-06-13
    Description: Natural alteration of zircon takes place in melts or fluids either via dissolution coupled with overgrowth or via a coupled dissolution-reprecipitation process. The latter results in the zircon being partially or totally replaced by new, compositionally re-equilibrated zircon or a new mineral phase or both. In this study, fragments (50–300 μm) from a large, inclusion-free, clear, 520–530 Ma euhedral zircon with light radiation damage from a nepheline syenite pegmatite, Seiland Igneous Province, northern Norway, were experimentally reacted in 20 mg batches with 5 mg of ThO2 + ThSiO2 + SiO2 and a series of alkali-bearing fluids in sealed Pt capsules at 900 °C and 1000 MPa for 6–11 days in the piston cylinder press using a CaF2 setup with a cylindrical graphite oven. ThO2 + ThSiO2 + SiO2 was present at the end of the experiment. In experiments involving H2O, H2O + NaCl, H2O + KCl, and 2 N KOH, no reaction textures formed other than a slight dissolution of the zircon grain fragments. Experiments involving 2 N NaOH, Na2Si2O5 + H2O, and NaF + H2O resulted in zircon reaction textures with varying degrees of intensity, which took the form of partial replacement by compositionally modified zircon via a coupled dissolution-reprecipitation process. In the NaF + H2O experiment some overgrowth also occurred. Altered zircon is separated by sharp compositional boundaries from unaltered zircon. Secondary ion mass spectrometry (SIMS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis indicates that, relative to the unaltered zircon, the altered zircon is strongly enriched in Th, and heavily to moderately depleted in U and (Y + REE). In all the experiments, 206Pb (3–5 ppm in unaltered zircon) is depleted in the altered zircon to below the SIMS detection limit and to at or below the LA-ICP-MS detection limit. Hafnium and Ti concentrations in the altered zircon retained the same approximate value (within error) as the original zircon. The results from these experiments demonstrate that zircon can be compositionally modified by alkali-bearing and alkali-F-bearing fluids via a coupled dissolution-reprecipitation process. Near to total loss of radiogenic Pb via such processes under high-grade conditions resets the internal zircon geochronometer. Although the end result is the same as with zircon overgrowth, i.e. the production of new generation zircon at the time of a metamorphic/metasomatic event, such replacement processes can explain incomplete isotopic ‘resetting’; inclusion production through unmixing of solid solutions in metastable zircon compositions; and ‘ghost’ textures that preserve initial growth features but with isotopic disturbance. Diagnostic replacement features produced in experiments, such as interface geometries between altered and unaltered zircon, provide markers of the mechanism and aid in zircon interpretation. A major implication from this study is that if zircon with low radiation damage can be metasomatically altered under high-grade conditions, this would have important consequences with respect to zircons presumed role as an impregnable container for mineral inclusions. Namely the mineral inclusions contained within zircon could also be altered, reset as a geochronometer, or even replaced by another mineral.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2024-06-12
    Description: To investigate the long-term stability of deep rocks, a three-dimensional (3D) time-dependent model that accounts for excavation-induced damage and complex stress state is developed. This model com- prises three main components: a 3D viscoplastic isotropic constitutive relation that considers excavation damage and complex stress state, a quantitative relationship between critical irreversible deformation and complex stress state, and evolution characteristics of strength parameters. The proposed model is implemented in a self-developed numerical code, i.e. CASRock. The reliability of the model is validated through experiments. It is indicated that the time-dependent fracturing potential index (xTFPI) at a given time during the attenuation creep stage shows a negative correlation with the extent of excavation- induced damage. The time-dependent fracturing process of rock demonstrates a distinct interval effect of the intermediate principal stress, thereby highlighting the 3D stress-dependent characteristic of the model. Finally, the influence of excavation-induced damage and intermediate principal stress on the time-dependent fracturing characteristics of the surrounding rocks around the tunnel is discussed. Ó 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2024-06-12
    Description: The Lindero deposit is located in the Puna plateau, northwest Argentina, at the southern end of the Central Volcanic Zone of the Central Andes. The high-K calc-alkaline dioritic composition of the subvolcanic intrusions, the shallow emplacement depth (〈 1.5 km), and the gold-rich and copper-depleted mineralization style suggest that the Lindero deposit is a porphyry gold deposit. Porphyry gold deposits are scarce worldwide and the factors controlling their formation are still poorly known. Here we present a detailed study of fluid inclusions in order to characterize the mineralizing fluids that precipitated the Au mineralization at Lindero. Different types of fluid inclusions in quartz veins (A-type and banded quartz), which are associated with the K-silicate alteration, were analyzed using Raman spectroscopy, microthermometry, and LA-ICP-MS (laser ablation inductively coupled plasma mass spectrometry). Four inclusion types can be recognized in quartz veins: (i) Salt melt inclusions, which are characterized by a dense packing of daughter minerals (mainly Fe-chloride, sylvite, halite, anhydrite, and hematite), by a distorted vapor bubble, and by the lack of liquid phase; (ii) Halite-bearing inclusions which contain liquid, vapor, and halite; (iii) Two-phase aqueous inclusions that contain liquid and vapor; (iv) Vapor-rich inclusions containing only vapor. The inclusion types are related to different stages of hydrothermal evolution. Stage 1 is the main mineralization stage, characterized by vapor-rich inclusions coexisting with salt melt inclusions. Salt melt inclusions commonly show total homogenization temperature (ThL) 〉 1000 °C. This Na-K-Fe-Cl-rich highly saline brine (~ 90 wt% NaCl eq.) was of magmatic origin and responsible for the Au mineralization. Two later stages involving cooler fluids (ThL 〈 300 °C) and gradually lower salinities (from 36.1 to 0.2 wt% NaCl eq.) trapped by halite-bearing and two-phase aqueous inclusions during stages 2 and 3, respectively, correspond to a late magmatic-hydrothermal system, that is probably related to a deep supercritical fluid exsolution. Salt melt inclusions represent the most likely parental fluid of K-silicate alteration and associated Au mineralization at Lindero. This uncommon type of fluid must have played an important role in Au transport and precipitation in shallow porphyry gold deposits.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2024-06-12
    Description: Osmium isotope and highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, Re) abundance data are reported for picrites and basalts from the ∼132 Ma Etendeka large igneous province (LIP) and the ∼60 Ma North Atlantic Igneous Province (NAIP). Picrite dykes of the Etendeka LIP have HSE abundances and 187Os/188Os (0.1276 to 0.1323; γOsi = -0.5 to +3.1) consistent with derivation from high-degree partial melting (〉20 %) of a peridotite source with chondritic to modestly supra-chondritic long-term Re/Os. High-3He/4He NAIP picrites from West Greenland represent large-degree partial melts with similarly elevated HSE abundances and 187Os/188Os (0.1273 to 0.1332; γOsi = -0.2 to +3.9). Broadly chondritic Os isotope ratios have also been reported for the ∼132 Ma Paraná LIP and the ∼201 Ma Central Atlantic Magmatic Province (CAMP). Consequently, LIP associated with Atlantic Ocean opening derive, at least in part, from partial melting of peridotite mantle distinct from the depleted mantle associated with mid-ocean ridge basalt volcanism. Modern locations with high-3He/4He (〉25RA) include ocean island basalts (OIB) from Ofu (Samoa), Loihi (Hawaii) and Fernandina (Galapagos) in the Pacific Ocean, and from Iceland, which is considered the modern manifestation of NAIP magmatism. Unlike Etendeka and NAIP picrites, these modern OIB have Sr-Nd-Pb-Os isotopes consistent with contributions of recycled oceanic or continental crust. The lower degree of partial melting responsible for modern high-3He/4He OIB gives higher proportions of fusible recycled crustal components to the magmas, with radiogenic 187Os/188Os and low-3He/4He. The high-3He/4He, incompatible trace element-depleted mantle component in both LIP and OIB therefore also has long-term chondritic Re/Os, which is consistent with an early-formed reservoir that experienced late accretion. Atlantic LIP (CAMP; Paraná-Etendeka; NAIP) provide geochemical evidence for a prominent role for mantle plume contributions during continental break-up and formation of the Atlantic Ocean, a feature hitherto unrecognized in other ocean basin-forming events.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2024-06-12
    Description: Paleomagnetic records of middle Neoproterozoic (820 to 780 Ma) rocks display high amplitude directional variations that lead to large discrepancies in paleogeographic reconstructions. Hypotheses to explain these data include rapid true polar wander (TPW), a geomagnetic field geometry that deviates from a predominantly axial dipole field, a hyper-reversing field (〉10 reversals/Ma), and/or undiagnosed remagnetization. To test these hypotheses, we collected 1,057 oriented cores over a 85 m stratigraphic succession in the Laoshanya Formation (Yangjiaping, Hunan, China). High precision U-Pb dating of two intercalated tuff layers constrain the age of the sediments between 809 and 804 Ma. Thermal demagnetization isolates three magnetization components residing in hematite which are not time-progressive but conflated throughout the section. All samples possess a north and downward directed component in geographic coordinates at temperatures up to 660°C that is ascribed to a Cretaceous overprint. Two components isolated above 660°C reveal distinct directional clusters: one is interpreted as a depositional remanence, while the other appears to be the result of a mid-Paleozoic (460 to 420 Ma) remagnetization, which is likely widespread throughout South China. The high-temperature directions are subtly dependent on lithology; microscopic and rock magnetic analyses identify multiple generations of hematite that vary in concentration and distinguish the magnetization components. A comparison with other middle Neoproterozoic paleomagnetic studies in the region indicates that the sudden changes in paleomagnetic directions, used elsewhere to support the rapid TPW hypothesis (ca. 805 Ma), are better explained by mixtures of primary and remagnetized components, and/or vertical axis rotations.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2024-06-12
    Description: Volcanoes produce a variety of seismic signals and, therefore, continuous seismograms provide crucial information for monitoring the state of a volcano. According to their source mechanism and signal properties, seismo‐volcanic signals can be categorized into distinct classes, which works particularly well for short transients. Applying classification approaches to long‐duration continuous signals containing volcanic tremors, characterized by varying signal characteristics, proves challenging due to the complex nature of these signals. That makes it difficult to attribute them to a single volcanic process and questions the feasibility of classification. In the present study, we consider the whole seismic time series as valuable information about the plumbing system (the combination of plumbing structure and activity distribution). The considered data are year‐long seismograms recorded at individual stations near the Klyuchevskoy Volcanic Group (Kamchatka, Russia). With a scattering network and a Uniform Manifold Approximation and Projection (UMAP), we transform the continuous data into a two‐dimensional representation (a seismogram atlas), which helps us to identify sudden and continuous changes in the signal properties. We observe an ever‐changing seismic wavefield that we relate to a continuously evolving plumbing system. Through additional data, we can relate signal variations to various state changes of the volcano including transitions from deep to shallow activity, deep reactivation, weak signals during quiet times, and eruptive activity. The atlases serve as a visual tool for analyzing extensive seismic time series, allowing us to associate specific atlas areas, indicative of similar signal characteristics, with distinct volcanic activities and variations in the volcanic plumbing system.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2024-06-12
    Description: Saline water is a common fluid on the Earth‘s surface and in ice planets. Potassium chloride (KCl) is a common salt and is expected to be a ubiquitous solute in salt water in the Universe; however, few studies investigated the behavior of KCl-H2O system at high pressures and temperatures. In this study, powder and single-crystal X-ray diffraction (SC-XRD), Raman and Brillouin scattering combined with diamond anvil cells were used to investigate the phase relation in the KCl-H2O system for different KCl concentrations at 0–4 GPa and 298–405 K. The results of powder X-ray diffraction and Raman scattering demonstrate that a novel KCl hydrate is formed when KCl aqueous solutions transform to solid ice-VI and ice-VII at high pressure. Simultaneously, the single-crystal of KCl hydrate is synthesized from a supersaturated KCl solution at 298 K and 1.8 GPa. The structure is solved by SC-XRD, indicating a KCl monohydrate with the P21/n space group is formed. We have verified the phase stability of KCl monohydrate by using Raman spectroscopy and density functional theory. Our results indicate that KCl monohydrate is a stable phase under pressure and temperature conditions between 1.6 and 2.4 GPa and 298–359 K. By considering the thermal profile and composition of icy moons, we hypothesize that the formation and decomposition of KCl monohydrate might induce mantle convection in these moons.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2024-06-12
    Description: An experimental platform for dynamic diamond anvil cell (dDAC) research has been developed at the High Energy Density (HED) Instrument at the European X-ray Free Electron Laser (European XFEL). Advantage was taken of the high repetition rate of the European XFEL (up to 4.5 MHz) to collect pulse-resolved MHz X-ray diffraction data from samples as they are dynamically compressed at intermediate strain rates (≤103 s−1), where up to 352 diffraction images can be collected from a single pulse train. The set-up employs piezo-driven dDACs capable of compressing samples in ≥340 µs, compatible with the maximum length of the pulse train (550 µs). Results from rapid compression experiments on a wide range of sample systems with different X-ray scattering powers are presented. A maximum compression rate of 87 TPa s−1 was observed during the fast compression of Au, while a strain rate of ∼1100 s−1 was achieved during the rapid compression of N2 at 23 TPa s−1.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2024-06-12
    Description: Experiments accessing extreme conditions at x-ray free electron lasers (XFELs) involve rapidly evolving conditions of temperature. Here, we report time-resolved, direct measurements of temperature using spectral streaked optical pyrometry of x-ray and optical laser-heated states at the High Energy Density instrument of the European XFEL. This collection of typical experiments, coupled with numerical models, outlines the reliability, precision, and meaning of time dependent temperature measurements using optical emission at XFEL sources. Dynamic temperatures above 1500 K are measured continuously from spectrally- and temporally-resolved thermal emission at 450–850 nm, with time resolution down to 10–100 ns for 1–200 μs streak camera windows, using single shot and integrated modes. Targets include zero-pressure foils free-standing in air and in vacuo, and high-pressure samples compressed in diamond anvil cell multi-layer targets. Radiation sources used are 20-fs hard x-ray laser pulses at 17.8 keV, in single pulses or 2.26 MHz pulse trains of up to 30 pulses, and 250-ns infrared laser single pulses. A range of further possibilities for optical measurements of visible light in x-ray laser experiments using streak optical spectroscopy are also explored, including for the study of x-ray induced optical fluorescence, which often appears as background in thermal radiation measurements. We establish several scenarios where combined emissions from multiple sources are observed and discuss their interpretation. Challenges posed by using x-ray lasers as non-invasive probes of the sample state are addressed.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2024-06-10
    Description: The ambient-temperature compressibility and room-pressure thermal expansion of two Mg3(PO4)2 polymorphs (farringtonite=Mg3(PO4)2-I, with 5- and 6-fold coordinated Mg, and chopinite=“Mgsarcopside”=[6]Mg3(PO4)2-II), three Mg2PO4OH polymorphs (althausite, hydroxylwagnerite and ɛ- Mg2PO4OH, all with [5]Mg and [6]Mg) and phosphoellenbergerite ([6]Mg) were measured on synthetic powders using a synchrotron-based multi-anvil apparatus to 5.5 GPa and a laboratory high-temperature diffractometer, with whole-pattern fitting procedures. Bulk moduli range from 64.5 GPa for althausite to 88.4 GPa for hydroxylwagnerite, the high-pressure Mg2PO4OH polymorph. Chopinite, based on an olivine structure with ordered octahedral vacancies (K0=81.6 GPa), and phosphoellenbergerite, composed of chains of face-sharing octahedra (K0=86.4 GPa), are distinctly more compressible than their homeotypical silicate (127 and 133 GPa, respectively). The compressibility anisotropy is the highest for chopinite and the lowest for phosphoellenbergerite. First-order parameters of quadratic thermal expansions range from v1=2.19x10-5K-1 for ɛ-Mg2PO4OH to v1=3.58x10-5K-1 for althausite. Phosphates have higher thermal-expansion coefficients than the homeotypical silicates. Thermal anisotropy is the highest for farringtonite and the lowest for hydroxylwagnerite and chopinite. These results set the stage for a thermodynamic handling of phase-equilibrium data obtained up to 3 GPa and 1000°C in the MgO–P2O5–H2O and MgO–Al2O3–P2O5–H2O systems.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2024-06-10
    Description: Unicellular eukaryotic plankton communities (protists) are the major basis of the marine food web. The spring bloom is especially important, because of its high biomass. However, it is poorly described how the protist community composition in Arctic surface waters develops from winter to spring. We show that mixotrophic and parasitic organisms are prominent in the dark winter period. The transition period toward the spring bloom event was characterized by a high relative abundance of mixotrophic dinoflagellates, while centric diatoms and the haptophyte Phaeocystis pouchetii dominated the successive phototrophic spring bloom event during the study. The data shows a continuous community shift from winter to spring, and not just a dormant spring community waiting for the right environmental conditions. The spring bloom initiation commenced while sea ice was still scattering and absorbing the sunlight, inhibiting its penetration into the water column. The initial increase in fluorescence was detected relatively deep in the water column at ~55 m depth at the halocline, at which the photosynthetic cells accumulated, while a thick layer of snow and sea ice was still obstructing sunlight penetration of the surface water. This suggests that water column stratification and a complex interplay of abiotic factors eventually promote the spring bloom initiation.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    In:  X Hotine-Marussi Symposium on Mathematical Geodesy: Proceedings of the Symposium in Milan, Italy, June 13-17, 2022 | International Association of Geodesy Symposia
    Publication Date: 2024-06-10
    Description: The advancement of the Global Geodetic Observing System (GGOS) has enabled monitoring of mass transport and solid-Earth deformation processes with unprecedented accuracy. Coseismic deformation is modelled as an elastic response of the solid Earth to an internal dislocation. Self-gravitating spherical Earth models can be employed in modelling regional to global scale deformations. Recent seismic tomography and high-pressure/high-temperature experiments have revealed finer-scale lateral heterogeneities in the elasticity and density structures within the Earth, which motivates us to quantify the effects of such finer structures on coseismic deformation. To achieve this, fully numerical approaches including the Finite Element Method (FEM) have often been used. In our previous study, we presented a spectral FEM, combined with an iterative perturbation method, to consider lateral heterogeneities in the bulk and shear moduli for surface loading. The distinct feature of this approach is that the deformation of the entire sphere is modelled in the spectral domain with finite elements dependent only on the radial coordinate. By this, self-gravitation can be treated without special treatments employed when using an ordinary FEM. In this study, we extend the formulation so that it can deal with lateral heterogeneities in density in the case of coseismic deformation. We apply this approach to a longer-wavelength vertical deformation due to a large earthquake. The result shows that the deformation for a laterally heterogeneous density distribution is suppressed mainly where the density is larger, which is consistent with the fact that self-gravitation reduces longer-wavelength deformations for 1-D models. The effect on the vertical displacement is relatively small, but the effect on the gravity change could amount to the same order of magnitude of a given heterogeneity if the horizontal scale of the heterogeneity is large enough.
    Language: English
    Type: info:eu-repo/semantics/bookPart
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2024-06-10
    Description: Strain energy from tectonic loading can be partly released through aseismic creep. Earthquake repeaters, repeatedly activated brittle fault patches surrounded by creep, indicate steady-state creep that affects the amount of seismic energy available for the next large earthquake along a plate contact. The offshore Main Marmara Fault (MMF) of the North Anatolian Fault Zone represents a seismic gap capable of generating a M 〉 7 earthquake in direct vicinity to the mega-city Istanbul. Based on a newly compiled seismicity catalog, we identify repeating earthquakes to resolve the spatial creep variability along the MMF during a 15-year period. We observe a maximum of seismic repeaters indicating creep along the central and western MMF segments tapering off toward the locked onshore Ganos fault in the west, and the locked offshore Princes Islands segment immediately south of Istanbul in the east. This indicates a high degree of spatial creep variability along the Istanbul-Marmara seismic gap.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2024-06-10
    Description: The Bakreswar geothermal province represents a medium enthalpy geothermal system with its Bakreswar and Tantloie hot springs. It lies within the Chotanagpur Granite Gneissic Complex in the eastern part of the Indian Peninsula. The province has a high heat flow and a high geothermal gradient of 90°C/km. Magnetotelluric data from 95 sites in a frequency range of 10 kHz–10 Hz were acquired over the Bakreswar geothermal province to obtain an electrical conductivity model and map the geothermal reservoir with its fluid pathways and related geological structures. Subsurface conductivity models obtained from three-dimensional inversions of the Magnetotelluric data exhibit several prominent anomalies, which are supplemented by gravity results. The conductivity model maps three features which act as a conduit (a) a northwest–southeast trending feature, (b) an east–west trending feature to the south of the northwest–southeast trending feature (which lies 1 km north of the Oil and Natural Gas Corporation fault marked by previous studies) and (c) shallow conducting features close to Bakreswar hot spring. The northwest–southeast trending feature coincides with the boundary of the high-density intrusive block. This northwest–southeast trending feature provides the pathway for the meteoric water to reach a maximum depth of 2.7 km, where it gets heated by interacting with deep-seated structures and then it rises towards the surface. The radiogenic process occurring within the granites of Chotanagpur Granite Gneissic Complex provides the heat responsible for heating the meteoric water. The northwest–southeast and east–west trending features are responsible for the transport of meteoric water to deeper depths and then towards the shallow regions of the Earth. The near surface features close to the Bakreswar hot spring are responsible for carrying the water further towards the hot spring. The resistivity of these structures plotted as a function of salinity and temperatures for saline crustal fluids suggests the involvement of meteoric water. Further, applying Archie's law to this resistivity suggests that the conduit path has a porosity greater than 10%. This study successfully maps the anomalous structures which might foster the migration of geothermal fluid in Bakreswar geothermal province.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    In:  KTB Report 88-8: Arbeitsgruppe 3 ; Spannungsmessungen und Bohrlochstabilität
    Publication Date: 2024-06-07
    Language: English
    Type: info:eu-repo/semantics/bookPart
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    In:  KTB Report 88-8: Arbeitsgruppe 3 ; Spannungsmessungen und Bohrlochstabilität
    Publication Date: 2024-06-07
    Language: English
    Type: info:eu-repo/semantics/bookPart
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    In:  Protokoll über das 30. Schmucker-Weidelt-Kolloquium für Elektromagnetische Tiefenforschung: St. Marienthal, 25. September - 29. September 2023
    Publication Date: 2024-06-05
    Description: Carrying out laboratory experiments is usually a time-consuming process. In addition, the options for varying parameter studies are limited and adjustments to the design of the measuring equipment are often not possible at all. In order to circumvent these limitations, we supplement our laboratory experiments with virtual experiments as best as possible. For this purpose, we have expanded our finite element library FEMALY [1] to include the so-called complete electrode model [2], which allows us to simulate electrodes of any shape for DC and IP applications and also provides us with explicit mathematical expressions for calculating sensitivities [3]. As a first case study, we consider an IP measurement on a measuring cylinder with embedded ring electrodes to virtually reproduce the time-varying change of the apparent resistivity for laboratory tracer experiments (Figure 1). We present the real and imaginary part of the sensitivity distribution of the underlying measurement configuration that confirms our initial assumption that the actual electrode surface shape has a relatively small influence on the observed measurement quantities.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    In:  Protokoll über das 30. Schmucker-Weidelt-Kolloquium für Elektromagnetische Tiefenforschung: St. Marienthal, 25. September - 29. September 2023
    Publication Date: 2024-06-05
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    In:  Protokoll über das 30. Schmucker-Weidelt-Kolloquium für Elektromagnetische Tiefenforschung: St. Marienthal, 25. September - 29. September 2023
    Publication Date: 2024-06-05
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    In:  Protokoll über das 30. Schmucker-Weidelt-Kolloquium für Elektromagnetische Tiefenforschung: St. Marienthal, 25. September - 29. September 2023
    Publication Date: 2024-06-05
    Description: The Atacama Desert along the Chilean Coastal Cordillera is a unique landscape to understand the Earth's evolution in hyper-arid and arid environments. The Paranal clay pan has studied by the CRC 1211 project to recover a continuous climate record for paleoclimate research. The goal is to provide the sedimentary architecture and bedrock topography of the Paranal site by interpreting multidimensional inversion of loop source transient electromagnetic (TEM) data. A total of 133 TEM soundings were carried out using a central loop configuration, with a transmitter loop size of 40×40 m2 and a receiver of about 10×10 m2. The TEM data was processed and analyzed, exhibiting high-quality data, with an average of noise level of about ηnoi = 3·10−10V/Am2. The 1D Occam inversion results exhibits a clear three-layered resistivitydepth structure with a second conductive layer of roughly 20 Ωm. The clay pan's resistivity distribution is well-resolved with a global misfit of around 1.1. However, the study site showed 2D effects that were stronlgy visible at the edges of the clay pan, leading to misinterpretations of the TEM data. This was confirmed based on 2D forward modelling. In this manner, to better deal with the observed 2D distortions in the TEM data and to derive a more accurate geometry of the clay pan, the recently developed Julia Package (3DTEMinv) for time-domain 3D inversion and modeling data was performed. The resulting 3D inversion presents a high convergence rate, and acceptable solutions are obtained after ten iterations with a good misfit of about 1.6. The 3D model exhibits a well-resolved geometry of the clay pan, with a high resolution of the derived conductive body. The drill core results confirm the 1D and 3D TEM models at the center of the clay pan, which is in good agreement with the resulting lithology with a maximum thickness of about 171 m depth and a weathered granodioritic bedrock below. These results agree with the local and regional geological context, improving the understanding of sediment deposition and transportation in this hilly and arid environment.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    In:  Protokoll über das 30. Schmucker-Weidelt-Kolloquium für Elektromagnetische Tiefenforschung: St. Marienthal, 25. September - 29. September 2023
    Publication Date: 2024-06-05
    Description: The transition towards renewable energies demands secure supply with critical raw material and requires efficient non-invasive methods for deep earth resources exploration. The novel DESMEX (Deep electromagnetic sounding for mineral exploration) semi-airborne electromagnetic (semi-AEM) exploration concept aims at efficient exploration of resources down to 1 km depth. Here we present a large-scale semi-AEM exploration study in a graphite mining district in eastern Bavaria, Germany. At the ground, several horizontal electrical dipole transmitters were deployed and helicopter-towed magnetic field sensors measure the EM fields along flight lines within several overlapping flight areas, providing a fast data acquisition and a high spatial coverage. Imaged shallow high conductivity structures can be correlated with graphite-rich zones and match well with existing helicopter-borne EM results. The presence of graphite leads to significant induced polarization (IP) effects with considerably high chargeabilities superposing electromagnetic induction. We include these effects in a realistic 3D inversion using a synthetic data study to analyse, if the IP effect alters the overall conductivity structure and demonstrate that the obtained 3D model is reliable.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    In:  Protokoll über das 30. Schmucker-Weidelt-Kolloquium für Elektromagnetische Tiefenforschung: St. Marienthal, 25. September - 29. September 2023
    Publication Date: 2024-06-05
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    In:  Protokoll über das 30. Schmucker-Weidelt-Kolloquium für Elektromagnetische Tiefenforschung: St. Marienthal, 25. September - 29. September 2023
    Publication Date: 2024-06-05
    Description: Transient electromagnetic (TEM) data can be significantly distorted by induced polarization (IP) effect, leading to a sign reversal feature and, if overlooked, false geological interpretation. The aim of this paper is to incorporate IP effects in the forward modelling and recover the distorted TEM data using an efficient inversion algorithm. To achieve this aim, we developed a 1D forward solver to incorporate the IP effects using various IP parameterizations including Cole-Cole, maximum phase angle (MPA), maximum imaginary conductivity (MIC) (Fiandaca et al., 2018) and the Jeffrey transform of Cole-Cole parameters (Ghorbani et al., 2007). For 1D inversion of distorted TEM data we used Levenberg-Marquardt and very fast simulated annealing algorithms. The result of 1D forward calculation and inversion of synthetic IPdistorted TEM data revealed that, for incorporation the IP effects into the TEM data, the Cole- Cole parametrization is more robust and reliable than MPA, MIC, and Jeffrey transform. Moreover, the result of inversion using Levenberg-Marquardt algorithm is strongly depends on the starting model. We successfully implemented these algorithms for 1D inversion of synthetic IP-affected TEM data (Fig. 1 ). For synthetic data generation, a 3-layered half space model with the thickness of the first and second layers of 5 m was considered. The resistivities of the layers from top to bottom are 10, 5 and 300 Ωm, respectively. To include the IP effect, second layer considered to be chargeable with Cole-Cole parameters of m = 0.5, τ = 0.01 s and c = 0.5. TEM central-loop configuration with a loop size of 50*50 m2 and step-off current of 1 A with a zero ramp time was used for data simulation. We evaluated the performance of our algorithm using field data, successfully.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    In:  Protokoll über das 30. Schmucker-Weidelt-Kolloquium für Elektromagnetische Tiefenforschung: St. Marienthal, 25. September - 29. September 2023
    Publication Date: 2024-06-05
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    In:  Protokoll über das 30. Schmucker-Weidelt-Kolloquium für Elektromagnetische Tiefenforschung: St. Marienthal, 25. September - 29. September 2023
    Publication Date: 2024-06-05
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    In:  Protokoll über das 30. Schmucker-Weidelt-Kolloquium für Elektromagnetische Tiefenforschung: St. Marienthal, 25. September - 29. September 2023
    Publication Date: 2024-06-05
    Description: Multi-dimensional inversion of Transient electromagnetic data is a computationally expensive task. Only few developments and practical interpretation tools exist. Here, we present a multidimensional inversion framework for loop source time-domain electromagnetic data. The developed algorithm is a robust, efficient, and user-oriented tool for the multi-dimensional inversion of typical loop source time-domain electromagnetic configurations. A time-domain finite volume discretization and the direct solver MUMPS are utilized to solve the 3D TEM forward problem. An iterative Gauss-Newton optimization method is implemented for the inversion kernel. The code is parallelized for calculating multiple sources simultaneously to accelerate the inversion. Based on exploration tasks, different configurations exist for commonly used loop source TEM configurations and typical field scales. Synthetic examples are used to verify the effectiveness and benchmark the developed 3D algorithm. Considering that TEM data is often gathered along profiles, adjusting the model roughness along the different modeling domain directions, sufficiently constrains to allow for 2D imaging. In addition to the vertical signal components, we also included horizontal components for large scale fixed loop applications. Subsequent to synthetic validation, the inversion algorithm is further verified using ~120 dense TEM soundings collected over a clay pan site in the Atacama Desert, Chile, to provide bedrock geometry information and suitable coring sites. The 3D inversion result provided an excellent depth estimate of sedimentary infill as well as the bedrock topography and was later confirmed by deep coring. Another interesting site is the Roter Kamm impact crater in Namibia. Our preliminary results obtained from largescale multicomponent fixed loop TEM data reveal a sedimentary infill down to ~300 m depth. In conclusion, our presented 3D inversion code is capable to handle data from various exploration scenarios and provides a robust tool for advanced EM interpretation.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    In:  Protokoll über das 30. Schmucker-Weidelt-Kolloquium für Elektromagnetische Tiefenforschung: St. Marienthal, 25. September - 29. September 2023
    Publication Date: 2024-06-05
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    In:  Protokoll über das 30. Schmucker-Weidelt-Kolloquium für Elektromagnetische Tiefenforschung: St. Marienthal, 25. September - 29. September 2023
    Publication Date: 2024-06-05
    Description: In petrophysics, physical rock properties are typically established through laboratory measurements of individual samples. These measurements predominantly relate to the specific sample and can be challenging to associate with the rock as a whole since the physical attributes are heavily reliant on the microstructure, which can vary significantly in different areas. Thus, the obtained values have limited applicability to the entirety of the original rock mass. To examine the dependence of petrophysical measurements based on the variable microstructure, we generate sets of random microstructure representations for a sample, taking into account macroscopic parameters such as porosity and mean grain size. We show that the methodology can adequately mimic the physical behavior of real rocks, showing consistent emulation of the dependence of electrical conductivity on connected porosity according to Archie's law across different types of pore space (micro-fracture, inter-granular, and vuggy, oomoldic pore space). Furthermore, properties such as the internal surface area and its fractal dimension as well as the electrical tortuosity are accessible for the random microstructures and show reasonable behavior. Finally, the possibilities, challenges and meshing strategies for extending the methodology to 3D microstructures are discussed.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    In:  Protokoll über das 30. Schmucker-Weidelt-Kolloquium für Elektromagnetische Tiefenforschung: St. Marienthal, 25. September - 29. September 2023
    Publication Date: 2024-06-05
    Description: This study investigates the optimization of Semi-Airborne Electromagnetic (SAEM) surveys for enhanced subsurface imaging in mineral exploration. It highlights the utility of multi-transmitter systems and explores real data utilization and the challenges of large-scale surveys. With emphasis on Data obtained from DESMEX project surveys. The use of multiple transmitters is crucial. Single transmitters can distort results and mask subsequent bodies. Employing two transmitters on both sides of the target enhances resolution and depth accuracy. results are based on finite element forward operator custEM and pyGIMLi’s inverse solver [1]. substantial advantages of combining single and multi-patch inversion data. This integration results in improved resolution, reduced artifacts, enhanced continuity of geological structures, superior anomaly detection, minimized edge effects, and improved depth penetration [2]. These findings open promising avenues for further exploration and research in geosciences, offering valuable insights into the Earth's subsurface and its intricate geological features. The next logical step involves expanding our methodology to large-scale inversion using more than three transmitters.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    In:  Protokoll über das 30. Schmucker-Weidelt-Kolloquium für Elektromagnetische Tiefenforschung: St. Marienthal, 25. September - 29. September 2023
    Publication Date: 2024-06-05
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    In:  Protokoll über das 30. Schmucker-Weidelt-Kolloquium für Elektromagnetische Tiefenforschung: St. Marienthal, 25. September - 29. September 2023
    Publication Date: 2024-06-05
    Description: We present a finite element software library written in Matlab for the numerical simulation and inversion of electromagnetic fields in two and three dimensions. It is designed in a modular way to easily plug together fundamental building blocks for various electromagnetic applications from DC to the inductive range in the frequency and even time domain. External modules comprise the mesh generator and the equation solver library. Through its homogeneous software concept the adoption to any field application is relatively simple and makes the code suitable to open source distribution. We introduce the key features of this library including higher-order Lagrange and Nédélec finite elements formulated on unstructured tetrahedral grids, a Gauss- Newton inversion approach using linear Raviart-Thomas elements for H1 regularization, and the ability to incorporate any geometric feature such as topography, bathymetry and internal voids like caves, tunnels and mine buildings. The library is currently being tested with large real data sets to confirm its usefulness as a tool for practical data interpretation. Therefore, case studies for the magnetotelluric, direct current resistivity, controlled source electromagnetic and induced polarization methods in the field and laboratory are briefly outlined as examples with challenging geometric features.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    In:  Protokoll über das 30. Schmucker-Weidelt-Kolloquium für Elektromagnetische Tiefenforschung: St. Marienthal, 25. September - 29. September 2023
    Publication Date: 2024-06-05
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    facet.materialart.
    Unknown
    In:  Protokoll über das 30. Schmucker-Weidelt-Kolloquium für Elektromagnetische Tiefenforschung: St. Marienthal, 25. September - 29. September 2023
    Publication Date: 2024-06-05
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    In:  Protokoll über das 30. Schmucker-Weidelt-Kolloquium für Elektromagnetische Tiefenforschung: St. Marienthal, 25. September - 29. September 2023
    Publication Date: 2024-06-05
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    In:  Protokoll über das 30. Schmucker-Weidelt-Kolloquium für Elektromagnetische Tiefenforschung: St. Marienthal, 25. September - 29. September 2023
    Publication Date: 2024-06-05
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    In:  Protokoll über das 30. Schmucker-Weidelt-Kolloquium für Elektromagnetische Tiefenforschung: St. Marienthal, 25. September - 29. September 2023
    Publication Date: 2024-06-05
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2024-06-05
    Description: play significant roles in coastal hydrologic systems. Despite the importance of these offshore groundwater systems and their interactions with onshore systems along global coastlines, a lack of understanding persists due to limitations in geophysical methodologies. Controlled-source electromagnetic (CSEM) techniques are one promising noninvasive avenue for identifying and characterizing OFG and SGD. However, the current availability of CSEM systems in academic research is limited, and applications are still restricted to specific regions. Existing CSEM systems are commonly associated with high deployment costs, logistical complexity, limited modification options and in case of seafloor-towed applications, slow data acquisition rates. To address these limitations, we introduce SWAN - a low-cost, modular, surface-towed hybrid time-frequency domain CSEM system capable of detecting OFG and SGD up to water depths of 100 m. A field test conducted in the central Adriatic Sea showcased the system's capabilities at water depths ranging from several tens to approximately 160 m. SWAN's ability to provide continuous measurements has proven effective in acquiring high-quality data while operating at towing speeds of 2.5 to 3 knots. The system's data coverage allows for the detection of subsurface resistivity variations to depths of approximately 150–200 m below the seafloor. With its user-friendly, modular design, SWAN offers a cost-efficient solution for investigating the hydrogeology of shallow offshore environments. The presentation shows the technological developments of SWAN, including illustrations of measured time series, processed data and first 2D inversion results from the Adriatic Sea.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    In:  Protokoll über das 30. Schmucker-Weidelt-Kolloquium für Elektromagnetische Tiefenforschung: St. Marienthal, 25. September - 29. September 2023
    Publication Date: 2024-06-05
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    facet.materialart.
    Unknown
    In:  Protokoll über das 30. Schmucker-Weidelt-Kolloquium für Elektromagnetische Tiefenforschung: St. Marienthal, 25. September - 29. September 2023
    Publication Date: 2024-06-05
    Description: Semi-airborne EM (sAEM) transfer functions are estimated by regression over Fourier coefficients over a (small) number of time windows and binned frequencies. The estimation error is determined from the prediction error. However, Fourier coefficients themselves are afflicted with noise and thus erroneously estimated. Here, we make an attempt to incorporate the noise level as weighting coefficients in a weighted least squares regression (WLS). Reliable error estimates are crucial for inverting data; we show 2D inversion results with new error estimates for a test data set using a scalar magnetometer (OPM).
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    facet.materialart.
    Unknown
    In:  Protokoll über das 30. Schmucker-Weidelt-Kolloquium für Elektromagnetische Tiefenforschung: St. Marienthal, 25. September - 29. September 2023
    Publication Date: 2024-06-05
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...