ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles
  • Other Sources  (39)
  • CITATION GEO-LEO  (39)
  • geoleo_oai
  • iass_oai
  • ddc:550.724  (39)
  • 2020-2024  (39)
Collection
  • Articles
  • Other Sources  (39)
Source
  • CITATION GEO-LEO  (39)
  • geoleo_oai
  • iass_oai
Keywords
Language
Years
Year
  • 1
    Publication Date: 2023-10-24
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉In a reconnaissance study, we investigated the potential of γ‐ray induced production of 〈sup〉38〈/sup〉Ar〈sub〉K〈/sub〉 from 〈sup〉39〈/sup〉K for geochronological applications. For this purpose, various age monitors commonly in use for the established 〈sup〉40〈/sup〉Ar/〈sup〉39〈/sup〉Ar‐method were co‐irradiated for 60 h at 17.6 MeV maximum energy in the ELBE facility, Dresden‐Rossendorf, Germany. Because the available energy was low, total production of 〈sup〉38〈/sup〉Ar〈sub〉K〈/sub〉 was depressed, leading to low 〈italic toggle="no"〉J〈/italic〉〈sub〉38〈/sub〉‐values of (2.1–4.1) × 10〈sup〉‐6〈/sup〉 and hence resulted in only minor 〈sup〉38〈/sup〉Ar excess when compared with atmospheric 〈sup〉38〈/sup〉Ar〈sub〉/〈/sub〉〈sup〉36〈/sup〉Ar ratios. In spite of these restrictions, ages of younger monitors could be reproduced within error, whereas older age reference materials showed discrepancies due to the low production rate. We observed Ca‐derived contributions on 〈sup〉36〈/sup〉Ar in analysed CaF〈sub〉2〈/sub〉 reference materials, and calculated a limit for Ca‐interference on 〈sup〉38〈/sup〉Ar〈sub〉Ca〈/sub〉 of (〈sup〉38〈/sup〉Ar/〈sup〉36〈/sup〉Ar)〈sub〉Ca〈/sub〉 = 0.07 ± 0.03 (1〈italic toggle="no"〉s〈/italic〉). In addition, we investigated a potential recoil redistribution of 〈sup〉38〈/sup〉Ar by stepwise heating experiments, but could not quantify this further because of concurring processes. More work at higher photon energies is necessary to resolve other open issues, in particular the potential of utilising 〈sup〉40〈/sup〉Ar/〈sup〉37〈/sup〉Ar ratios for age determination and the possibility of 〈sup〉42〈/sup〉Ar production from 〈sup〉44〈/sup〉Ca, which would allow correction for Ca‐interference reactions on other Ar isotopes. This would be a pre‐requisite for dating extra‐terrestrial rocks.〈/p〉
    Description: Klaus‐Tschira‐Stiftung gGmbH
    Keywords: ddc:550.724 ; geochronology ; γ‐irradiation ; 40Ar/39Ar dating ; age spectra ; isochrons
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-10-24
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Complex functional materials play a crucial role in a broad range of energy‐related applications and in general for materials science. Revealing the structural mechanisms is challenging due to highly correlated coexisting phases and microstructures, especially for 〈italic〉in situ〈/italic〉 or 〈italic〉operando〈/italic〉 investigations. Since the grain sizes influence the properties, these microstructural features further complicate investigations at synchrotrons due to the limitations of illuminated sample volumes. In this study, it is demonstrated that such complex functional materials with highly correlated coexisting phases can be investigated under 〈italic〉in situ〈/italic〉 conditions with neutron diffraction. For large grain sizes, these experiments are valuable methods to reveal the structural mechanisms. For an example of 〈italic〉in situ〈/italic〉 experiments on barium titanate with an applied electric field, details of the electric‐field‐induced phase transformation depending on grain size and frequency are revealed. The results uncover the strain mechanisms in barium titanate and elucidate the complex interplay of stresses in relation to grain sizes as well as domain‐wall densities and mobilities.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉This work reports 〈italic〉in situ〈/italic〉 neutron diffraction experiments on a broad range of grain sizes of barium titanate. The study reveals the grain‐size‐dependent strain mechanisms and shows the competitiveness of neutron diffraction with high‐resolution synchrotron diffraction.〈boxed-text position="anchor" content-type="graphic" xml:lang="en"〉〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:16005767:jcr2vb5054:jcr2vb5054-fig-0001"〉 〈alt-text〉image〈/alt-text〉 〈/graphic〉〈/boxed-text〉〈/p〉
    Keywords: ddc:550.724 ; ddc:548 ; neutron diffraction ; in situ ; applied electric fields ; barium titanate ; strain mechanisms ; grain sizes ; complex functional materials ; microstructures ; coexisting phases
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-21
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Linear kinematic features (LKFs) are found everywhere in the Arctic sea‐ice cover. They are strongly localized deformations often associated with the formation of leads and pressure ridges. In viscous‐plastic (VP) sea‐ice models, the simulation of LKFs depends on several factors such as the grid resolution, the numerical solver convergence, and the placement of the variables on the mesh. In this study, we compare two recently proposed discretization with a CD‐grid placement with respect to their ability to reproduce LKFs. The first (CD1) is based on a nonconforming finite element discretization, whereas the second (CD2) uses a conforming subgrid discretization. To analyze their resolution properties, we evaluate runs from different models (e.g., FESOM, MPAS) on a benchmark problem using quadrilateral, hexagonal and triangular meshes. Our findings show that the CD1 setup simulates more deformation structure than the CD2 setup. This highlights the importance of the type of spatial discretization for the simulation of LKFs. Due to the higher number of degrees of freedom, both CD‐grids resolve more LKFs than traditional A, B, and C‐grids at fixed mesh level. This is an advantage of the CD‐grid approach, as high spatial mesh resolution is needed in VP sea‐ice models to simulate LKFs.〈/p〉
    Description: Plain Language Summary: Sea ice in the polar regions is an important component of the climate system. Satellite images demonstrate that the sea‐ice cover can contain long features, such as cracks or leads and areas of increased sea‐ice density known as pressure ridges. In order to simulate these features, mathematical equations that describe the drift of ice are solved on a computational grid. A recent study showed that the simulation of these features on a grid with a given spacing is influenced by the way the variables are placed on grid cells. Locating them at the edge midpoints of the cells leads to simulations with more features than placing the variables on vertices or centers of cells. In this contribution, we show that, along with the placement, also the mathematical method used to approximate the equations on the computational grid plays a pivotal role on the number of simulated features.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉The type of spatial discretization used in CD‐grid approximations is important for the amount of simulated local kinematic features (LKFs)〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉The CD‐grid discretization based on nonconforming finite elements simulates the highest amount of LKFs〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉The CD‐grids resolve more LKFs than A‐grids, B‐grids, or C‐grids〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: German Research Foundation
    Description: https://doi.org/10.5281/zenodo.7662610
    Description: https://doi.org/10.5281/zenodo.7646908
    Description: https://data.mendeley.com/datasets/7h9hkjvx48/1
    Keywords: ddc:550.724 ; sea‐ice dynamics ; CD‐grids ; linear kinematic features ; nonconforming finite elements
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-06
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉We have performed in situ time‐of‐flight neutron diffraction experiments to examine the uptake of deuterium in iron monosulfide at pressures up to 11.4 GPa and temperatures to 1300 K. A D〈sub〉2〈/sub〉 fluid was formed in the experiments through the decomposition of ND〈sub〉3〈/sub〉BD〈sub〉3〈/sub〉, resulting in an oxygen fugacity of approximately 1.2 log units below the iron‐wüstite buffer. Deuterium positions and site occupancies were determined in FeS V, using Rietveld refinements of the powder neutron diffraction patterns. Our structural model indicates that two normally unoccupied sites in the 〈italic〉P〈/italic〉6〈sub〉3〈/sub〉/〈italic〉mmc〈/italic〉 FeS V structure, at Wyckoff positions 〈italic〉6h〈/italic〉 and 〈italic〉4f〈/italic〉, are partially occupied by D atoms, with the latter being more dominant. The deuterium content D〈sub〉x〈/sub〉 in FeSD〈sub〉X〈/sub〉 increases with both pressure and temperature over the experimental conditions explored, from 0.126 (14) at 2.3 GPa and 787 K to 1.20 (16) at 9.7 GPa and 1300 K. The unit‐cell volume expansion per deuterium atom is 1.53 ± 0.16 Å〈sup〉3〈/sup〉 at 6.9 GPa and 960 K, which is smaller than that determined for metallic iron phases at similar conditions. The variation in unit‐cell volume indicates that most deuterium is lost from FeS V upon temperature quenching at high‐pressures. By fitting the obtained FeS V deuterium site occupancies to a thermodynamic model, estimates for the hydrogen contents of iron monosulfide at conditions and oxygen fugacities consistent with the base of the cratonic lithosphere can be made. This results in values in the range of 1,700–2,700 ppm, which contribute to approximately 2–3 ppm hydrogen in the bulk mantle.〈/p〉
    Description: Plain Language Summary: Small amounts of iron sulfide minerals are found in most rocks from the Earth's mantle and as inclusions trapped in natural diamonds. Hydrogen may dissolve into iron sulfide minerals under high pressures and temperature, but is most likely lost once pressure and temperature are removed. In this study, we determined deuterium contents (deuterium was used as a proxy for hydrogen as it has better neutron scattering properties) in iron sulfide, held under high pressure and temperature conditions, using neutron diffraction measurements. Our results show that the amount of deuterium in iron sulfide increases with both pressure and temperature, but the deuterium is lost on recovery to room conditions. The results are used to estimate hydrogen contents of iron sulfide minerals in the deep continental lithospheric mantle, which are found to be in the range 1,700–2,700 ppm. This corresponds to approximately 2–3 ppm of hydrogen in the bulk mantle.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉Deuterium contents in iron sulfide were measured at high‐〈italic〉P〈/italic〉, up to 11.4 GPa and high‐〈italic〉T〈/italic〉 to 1300 K in in situ neutron diffraction experiments〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉The total deuterium content, D〈sub〉x〈/sub〉 in FeSD〈sub〉X〈/sub〉, increases with both 〈italic〉P〈/italic〉 and 〈italic〉T〈/italic〉, from 0.126 (14) at 2.3 GPa and 787 K to 1.20 (16) at 9.7 GPa and 1300 K〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉A thermodynamic model shows that the hydrogen contents of iron monosulfide at the base of the cratonic lithosphere could be 1,700–2,700 ppm〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: https://doi.org/10.6084/m9.figshare.21820677.v2
    Keywords: ddc:550.724 ; iron monosulfide ; neutron diffraction ; deuterium ; Earth's mantle
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-09
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Fluid flow in fracture porosity in the Earth's crust is in general accompanied by crystallization or dissolution depending on the state of saturation. The evolution of the microstructure in turn affects the transport and mechanical properties of the rock, but the understanding of this coupled system is incomplete. Here, we aim to simulate spatio‐temporal observations of laboratory experiments at the grain scale (using potash alumn), where crystals grow in a fracture during reactive flow, and show a varying growth rate along the fracture due to saturation differences. We use a multiphase‐field modeling approach, where reactive fluid flow and crystal growth is computed and couple the chemical driving force for grain growth to the local saturation state of the fluid. The supersaturation of the fluid is characterized by a concentration field which is advected by fluid flow and in turn affects the crystal growth with anisotropic growth kinetics. The simulations exhibit good agreement with the experimental results, providing the basis for upscaling our results to larger scale computations of combined multi‐physical processes in fractured porous media for applications as groundwater protection, geothermal, and hydrocarbon reservoir prediction, water recovery, or storing H〈sub〉2〈/sub〉 or CO〈sub〉2〈/sub〉 in the subsurface.〈/p〉
    Description: Plain Language Summary: In the Earth's crust fluid flow can occur in fractured rock and depending on the composition of the fluid and physical conditions minerals can precipitate or dissolve. This affects the properties of the rock system and is for example, of interest to subsurface engineering applications. In this work we simulate observations of laboratory experiments at the grain scale, where crystals grow in an open fracture during fluid flow. In these experiments, the growth rate of the crystals varies along the fracture since the supersaturation of the fluid decreases due to the crystallization. We use a multiphase‐field model for the numerical simulation of crystal growth in the open fracture and combine it with reactive fluid flow. With the presented model the driving force for grain growth is coupled to the local supersaturation, which enables the incorporation of reactive mass transport in open fractures. Our phase‐field simulations agree with the laboratory experiments. The presented simulative approach can be used for upscaling the results on microscale to larger length and time scales and can help to better predict the subsurface behavior for example, of groundwater, fractured geothermal, and hydrocarbon reservoirs.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉Reactive fluid flow with advective mass transfer causes locally variable precipitation rate in open fracture〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉A higher flow velocity or a higher supersaturation results in faster precipitation along the flow channel〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Phase‐field modeling allows reproduction of laboratory crystal growth experiments from an advecting fluid using transmitted light microscopy〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Helmholtz Association http://dx.doi.org/10.13039/501100009318
    Description: https://doi.org/10.5281/zenodo.7516287
    Description: http://www.steinbeis.de/
    Keywords: ddc:550.724 ; phase‐field modeling ; fluid flow ; supersaturation ; crystal growth ; flow channel
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-05
    Description: We present an experimental study simulating atmospheric dust devils in a controlled laboratory experiment. The experimental facility, called the “Barrel of Ilmenau” (www.ilmenauer-fass.de) represents a classical Rayleigh‐Bénard set‐up and is believed to model the phenomena in a convective atmospheric boundary layer fairly well. Our work complements and extends the numerical work of Giersch and Raasch (2021)https//doi.org/10.1029/2020jd034334 by experiments. Dust devils are thermal convective vortices with a vertical axis of rotation visualized by entrained soil particles. They evolve in the convective atmospheric boundary layer and are believed to substantially contribute to the aerosol transport into the atmosphere. Thus, their evolution, size, lifetime, and frequency of occurrence are of particular research interest. Extensive experimental studies have been conducted by field measurements and laboratory experiments so far. Beyond that, our study is the first attempt of Rayleigh‐Bénard convection (RBC) in air to investigate dust devil‐like vortices in a laboratory experiment. Up to now, this set‐up mimics the natural process of dust devil evolution as closest to reality. The flow measurement was carried out by particle tracking velocimetry using neutrally buoyant soap bubbles. We initially identified dust devil‐like vortices by eye from the Lagrangian velocity field, and in a later, more sophisticated analysis by a specific algorithm from the corresponding Eulerian velocity field. We analyzed their frequency of occurrence, observation time, and size. With our work, we could demonstrate that turbulent RBC is an appropriate model to mimic the natural process of the evolution of dust devils in the convective atmospheric boundary layer without artificial stimulation.
    Description: Plain Language Summary: We could experimentally demonstrate that dust devil‐like vortices spontaneously arise in turbulent Rayleigh‐Bénard convection. This first‐time experimental survey simulates the evolution of dust devil‐like vortices in a laboratory experiment which mimics the convective atmospheric boundary layer quite closely and gets by without any artificial input of rotation. Dust devil‐like vortices are measured and identified using the particle tracking velocimetry technique. Within an observation period of 2 hr, 56 dust devil‐like vortices could be detected in total. Their properties coincide quite well with those structures identified in very recent direct numerical simulations (DNS) by Giersch and Raasch (2021, https//doi.org/10.1029/2020jd034334). As well, they show similarity to atmospheric dust devils. The size of our experimentally generated dust devil‐like vortices starts at about 1 dm and ranges up to about 1 m. This is larger than in DNS, but still smaller than in the atmosphere or in large eddy simulation.
    Description: Key Points: Dust devil‐like vortices spontaneously evolve in turbulent Rayleigh‐Bénard convection at sufficiently high Rayleigh numbers Ra 〉 1010. We studied their properties in a large‐scale Rayleigh‐Bénard experiment using Lagrangian particle tracking velocimetry. The vortical structures in the laboratory experiment are weaker than atmospheric dust devils, but they exhibit similar features.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: https://ftp.tu-ilmenau.de/hpc-private/mb/Dust_Devil_Scripts.rar
    Description: https://ftp.tu-ilmenau.de/hpc-private/mb/Kaestner_et_al_2022_dust_devil-like_vortex_in_turbulent_Rayleigh_Benard_convection.avi
    Keywords: ddc:550.724 ; dust devils ; particle tracking velocimetry ; Rayleigh‐Bénard convection ; turbulence ; atmospheric boundary layer
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-12-14
    Description: Hydraulic fractures often turn or branch, interacting with preexisting discontinuities in the rock mass (e.g., natural fractures or defects). The criteria for fracture penetration or deflection are typically based on the in situ stress, and the angle and strength of discontinuities. However, in hydraulic fracture experiments on carbonate rocks (Naoi et al., 2020, https://doi.org/10.1093/gji/ggaa183), small scale analyses show that the fractures deflected more frequently at discontinuities (grain boundaries) as they propagated farther from the wellbore, a finding not explained by the conventional criteria. Here, we demonstrate that the energy dissipation of a deflecting fracture increases with the distance from the wellbore, such that a propagating hydraulic fracture more easily deflects at a discontinuity from an energetic standpoint. This tendency was confirmed by hydraulic fracture simulations based on a successive energy minimization approach. Our findings, which show that wellbores appreciably affect the behavior of hydraulic fractures, highlight the importance of energetic stability analysis for determining fracture paths.
    Description: Plain Language Summary: Hydraulic fractures may form complex patterns as they grow outward from a wellbore by turning or deflecting when they interact with preexisting discontinuities in rocks. Because complex fractures enhance the permeability of rock formations more effectively than planar fractures, many studies have investigated how a fracture interacts with a preexisting discontinuity such as a natural fracture. The fate of a growing fracture at a discontinuity—whether it penetrates or deflects—is typically judged based on the in situ subsurface stress, and the characteristics of the discontinuity. However, we observed in experiments that fractures deflected more often at discontinuities (grain boundaries) as they propagated farther away from the wellbore, which cannot be explained by the conventional criteria. To explain these observations, we analyzed the energy expenditure of a deflecting fracture and showed that it becomes energetically more favorable for a fracture to deflect at a discontinuity as it grows farther away from the wellbore. We confirmed this insight by using numerical simulations. We thus caution that the conventional criteria may not be applicable in the near wellbore region, and we suggest that energetic stability, rather than the local stress at the fracture tip, should be analyzed to determine fracture paths.
    Description: Key Points: Experimental results show that hydraulic fractures deflect more frequently at grain boundaries with increasing distance from the wellbore. Numerical analyses demonstrate that energy dissipation increases with the distance from the wellbore, consistent with our experimental findings. Criteria for fracture deflection/penetration based on the in situ stress and fracture geometry may not apply to near wellbore regions.
    Description: Japan Organization for Metals and Energy Security
    Description: https://www.opengeosys.org/
    Description: https://doi.org/10.5281/zenodo.6390977
    Description: https://doi.org/10.5281/zenodo.6811452
    Keywords: ddc:550.724 ; fracture interaction ; fracture energy ; hydraulic fracture
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-01-12
    Description: A split‐and‐delay unit for the extreme ultraviolet and soft X‐ray spectral regions has been built which enables time‐resolved experiments at beamlines FL23 and FL24 at the Free‐electron LASer in Hamburg (FLASH). Geometric wavefront splitting at a sharp edge of a beam splitting mirror is applied to split the incoming soft X‐ray pulse into two beams. Ni and Pt coatings at grazing incidence angles have been chosen in order to cover the whole spectral range of FLASH2 and beyond, up to hν = 1800 eV. In the variable beam path with a grazing incidence angle of ϑd = 1.8°, the total transmission (T) ranges are of the order of 0.48 〈 T 〈 0.84 for hν 〈 100 eV and T 〉 0.50 for 100 eV 〈 hν 〈 650 eV with the Ni coating, and T 〉 0.06 for hν 〈 1800 eV for the Pt coating. For a fixed beam path with a grazing incidence angle of ϑf = 1.3°, a transmission of T 〉 0.61 with the Ni coating and T 〉 0.23 with a Pt coating is achieved. Soft X‐ray pump/soft X‐ray probe experiments are possible within a delay range of −5 ps 〈 Δt 〈 +18 ps with a nominal time resolution of tr = 66 as and a measured timing jitter of tj = 121 ± 2 as. First experiments with the split‐and‐delay unit determined the averaged coherence time of FLASH2 to be τc = 1.75 fs at λ = 8 nm, measured at a purposely reduced coherence of the free‐electron laser.
    Description: The properties of the recently installed split‐and‐delay unit at beamlines FL23 and FL24 at FLASH2 are presented. Its operational range, performance parameters and results of a first experiment are described. image
    Keywords: ddc:550.724 ; time‐resolved pump–probe ; XUV ; soft X‐rays ; free‐electron laser
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-01-15
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Transient creep of crustal rocks is important to explain time‐dependent geological processes such as postseismic deformation following a large continental earthquake. While the steady‐state creep flow law parameters of quartz and feldspar, major minerals in the upper and lower crust, are well known, the physical mechanism behind transient creep and the corresponding flow law parameters are poorly understood. We quantify the flow law parameters for both quartz and granulite (mixture of plagioclase and pyroxene) under wet conditions with a nonlinear Burgers model using a Markov chain Monte Carlo (MCMC) method. Modeling results yield an activation energy of 70 ± 20 kJ/mol and a stress exponent of 2.0 ± 0.1 for transient creep of quartz aggregates. For granulite/feldspar, we find activation energies of 280 ± 30 and 220 ± 20 kJ/mol and stress exponents of 1.0 ± 0.2 and 0.9 ± 0.1 under mid (1050–1100°C) and high (1125–1150°C), temperature conditions, respectively. The stress exponents and activation energies of transient creep are consistently smaller than those of steady‐state creep for both quartz and granulite/feldspar. Combined with results for transient creep of olivine that were previously obtained (Masuti & Barbot, 2021, 〈ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1186/s40623-021-01543-9"〉https://doi.org/10.1186/s40623-021-01543-9〈/ext-link〉), we suggest that the activation energies and stress exponents of transient creep are smaller than those of steady‐state creep for volumetrically important silicate minerals of the crust and upper mantle. Extrapolation of the estimated flow law parameters of granulite/feldspar to natural conditions suggests that transient creep may dominate during the postseismic period and lasts longer than previously thought.〈/p〉
    Description: Plain Language Summary: Earthquakes induce intermittent deformation of the solid Earth at rates that are higher or lower than the interseismic strain rates. When an earthquake occurs, it is accompanied by a sudden slip on the fault and a rapid stress change in the lower crust leading to an evolving rock strength. Lower crustal rocks represent a complex assembly of minerals and several different micro‐mechanisms may be activated during deformation. We use experimental data for quartz and feldspar to constrain the mechanical properties of the transient creep (i.e., stress changes with strain under constant strain rate conditions or strain changes nonlinearly with time under constant stress conditions). Based on our results, we conclude that the transient creep following an earthquake may not be as short lived as previously has been thought.〈/p〉
    Description: Key Points: 〈list-item〉 〈p xml:lang="en"〉Transient creep flow law parameters of quartz and granulite are determined using a Markov chain Monte Carlo method〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Low stress exponent of the transient creep in silicates could be due to weak dependency of dislocation density on the stress〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Transient creep could be dominant during the postseismic phase of the earthquake cycle〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: Japan Society for the Promotion of Science http://dx.doi.org/10.13039/501100001691
    Description: Humboldt Research Fellowship for Postdoctoral Researchers
    Description: Alexander von Humboldt‐Stiftung http://dx.doi.org/10.13039/100005156
    Description: https://doi.org/10.5281/zenodo.8304793
    Description: https://doi.org/10.5281/zenodo.8304760
    Keywords: ddc:550.724 ; transient creep ; quartz ; feldspar ; rheology ; lower crust ; granulite
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-01-22
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉The emergence, geometry and activation of faults are intrinsically linked to frictional rheology. The latter is thus a central element in geodynamic simulations which aim at modeling the generation and evolution of fault zones and plate boundaries. However, resolving frictional strain localization in geodynamic models is problematic. In simulations, equilibrium cannot always be attained and results can depend on mesh resolution. Spatial and temporal regularization techniques have been developed to alleviate these issues. Herein, we investigate three popular regularization techniques, namely viscoplasticity, gradient plasticity and the use of a Cosserat continuum. These techniques have been implemented in a single framework based on an accelerated pseudo‐transient solution strategy. The latter allows to explore the effects of regularization on shear banding using the same code and model configuration. We have used model configurations that involve three levels of complexity: from the emergence of a single isolated shear band to the visco‐elasto‐plastic stress buildup of a crust. All considered approaches allow to resolve shear banding, provide convergence upon mesh refinement and satisfaction of equilibrium. Viscoplastic regularization is straightforward to implement in geodynamic codes. Nevertheless, more stable shear banding patterns and strength estimates are achieved with computationally more expensive gradient and Cosserat‐type regularizations. We discuss the relative benefits of these techniques and their combinations for geodynamic modeling. Emphasis is put on the potential of Cosserat‐type media for geodynamic applications.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉Regularization approaches for plastic strain localization are tested using a single code based on pseudo‐transient method〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉All considered schemes provide convergent result upon mesh refinement and satisfaction of equilibrium〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉The use of Cosserat continuum is most robust regularization approach and is also is the most demanding〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: https://doi.org/10.5281/zenodo.7971379
    Description: https://doi.org/10.5281/zenodo.7692569
    Description: https://github.com/PTsolvers/PlasticityRegularisations_G3
    Keywords: ddc:550.724 ; strain localization ; frictional plasticity ; regularization ; viscoplasticity ; gradient plasticity ; Cosserat continuum
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2024-01-26
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Riverbed clogging is key to assessing vertical connectivity in the hyporheic zone and is often quantified using single‐parameter or qualitative approaches. However, clogging is driven by multiple, interacting physical and bio‐geochemical parameters, which do not allow for a conclusive assessment of hyporheic connectivity with single‐parameter approaches. In addition, existing qualitative assessments lack transparency and repeatability. This study introduces a Multi‐Parameter Approach to quantify Clogging and vertical hyporheic connectivity (MultiPAC), which builds on standardized measurements of physical (grain size characteristics, porosity, hydraulic conductivity) and bio‐geochemical (interstitial dissolved oxygen) parameters. We apply MultiPAC at three gravel‐bed rivers and show how the set of parameters provides a representative appreciation of physical riverbed clogging, thus quantifying vertical hyporheic connectivity. However, more parameters are required to fully characterize biological clogging. In addition, MultiPAC locates clogged layers in the hyporheic zone through multi‐parameter vertical profiles over the riverbed depth. The discussion outlines the relevance of MultiPAC to guide field surveys.〈/p〉
    Description: https://github.com/Ecohydraulics/kf-converter-w-flopy
    Keywords: ddc:550.724 ; colmation ; dissolved oxygen ; grain size ; hydraulic conductivity ; porosity ; siltation
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2024-03-12
    Description: Three‐dimensional (3d) numerical models are state‐of‐the‐art for investigating complex hydrodynamic flow patterns in reservoirs and lakes. Such full‐complexity models are computationally demanding and their calibration is challenging regarding time, subjective decision‐making, and measurement data availability. In addition, physically unrealistic model assumptions or combinations of calibration parameters may remain undetected and lead to overfitting. In this study, we investigate if and how so‐called Bayesian calibration aids in characterizing faulty model setups driven by measurement data and calibration parameter combinations. Bayesian calibration builds on recent developments in machine learning and uses a Gaussian process emulator as a surrogate model, which runs considerably faster than a 3d numerical model. We Bayesian‐calibrate a Delft3D‐FLOW model of a pump‐storage reservoir as a function of the background horizontal eddy viscosity and diffusivity, and initial water temperature profile. We consider three scenarios with varying degrees of faulty assumptions and different uses of flow velocity and water temperature measurements. One of the scenarios forces completely unrealistic, rapid lake stratification and still yields similarly good calibration accuracy as more correct scenarios regarding global statistics, such as the root‐mean‐square error. An uncertainty assessment resulting from the Bayesian calibration indicates that the completely unrealistic scenario forces fast lake stratification through highly uncertain mixing‐related model parameters. Thus, Bayesian calibration describes the quality of calibration and correctness of model assumptions through geometric characteristics of posterior distributions. For instance, most likely calibration parameter values (posterior distribution maxima) at the calibration range limit or with widespread uncertainty characterize poor model assumptions and calibration.
    Description: Plain Language Summary: Software tools for replicating a real‐world element, such as an artificial lake, need to account for many unknown parameters to create a physically sound conceptual computer model. Still, simplification assumptions are necessary to break down the complex reality into parameters that are easier to calculate. But the simplified parameters take on different values for each model and require specific adjustments. To perform these adjustments, a past event is typically reproduced with the conceptual model and different simplification parameter combinations. The simplification parameter combinations leading to the best possible replication of the past event are assumed to be valid to use the conceptual model for predictions of future events. Alas, many potentially false combinations can replicate a past event with very good results. Thus, a conceptual computer model can be overly adjusted regarding a particular phenomenon, such as heat transfer. Also, the number of possible adjustment tests is limited due to the long computing time of a conceptual model. For these reasons, we use a fast, simplified statistical model of a more complex conceptual model and machine learning for the adjustment process. We find that the statistic uncertainty increases with decreasing physical correctness of simplification parameter combinations.
    Description: Key Points: Bayesian calibration efficiently and objectively fits constrained, case‐specific model parameters and identifies remaining uncertainties. Post‐calibration uncertainty assessments help identify incorrect parameter combinations and constraints. More constrained calibration leads to lower uncertainty, which is not detected by global statistics.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Ministerium für Wissenschaft, Forschung und Kunst Baden‐Württemberg http://dx.doi.org/10.13039/501100003542
    Description: https://github.com/sergiocallau/ManuscriptSBT/releases/tag/v0.1
    Description: https://github.com/sschwindt/schwarzenbach-bc/archive/refs/tags/boundary-data.zip
    Keywords: ddc:550.724 ; Gaussian process regression ; Bayesian optimization ; supervised machine learning ; Delft3D ; surrogate ; meta model
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2023-10-26
    Description: In rivers, fine sediments are often transported over immobile coarse grains. With low sediment supply, they tend to aggregate in longitudinal ribbons. Yet, the long‐term evolution of such ribbons and the influence of immobile grains on the erosion of fine sediments are still not well understood. Flume experiments without sediment supply were therefore performed to investigate the erosion of an initially uniform fine‐sediment bed covering an immobile bed of staggered spheres through topographic and flow measurements. The topographic measurements yielded the spheres' protrusion above the fine sediment (P) and revealed long‐lived ribbons with ridges and troughs. The ridges are the main long‐term sediment source as the troughs are quickly eroded to a stable bed level resulting from the spheres' sheltering. The ridges stabilize with a spacing of 1.3 effective water depths, their number resulting from the integer number of wavelengths fitting into the effective channel width which excludes side‐wall accumulations. The ridges' erosion is damped by the local upflow of secondary current cells, which displaces the strongest sweep events above the bed. The upflow intensity is controlled by the ridges' height for low P, while for high P by the lateral roughness heterogeneity. The trends in erosion rates over ridges and troughs are similar and characterized by the following sequence of four regimes with increasing P: a drag sheltering, a turbulence‐enhancement, a wake‐interference sheltering, and a skimming‐flow sheltering regime. The critical P levels at the transitions are independent of the flow above the canopy, depending only on the geometrical configuration of the immobile bed.
    Description: Key Points: Four erosive regimes are identified: drag sheltering, turbulence‐enhancement, wake‐interference sheltering and skimming‐flow sheltering. Secondary currents influence the momentum redistribution but the erosive behavior is controlled by the protrusion of the immobile grains. The sediment‐ribbon spacing is about 1.3 effective water depths.
    Description: Landesgraduiertenförderung of the Land Baden‐Württemberg
    Description: Graduate School for Climate and Environment, KIT
    Description: https://doi.org/10.5281/zenodo.5787371
    Keywords: ddc:550.724 ; sediment erosion ; rough beds ; sediment ribbons ; secondary currents ; open‐channel ; ridge morphology
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2023-11-24
    Description: The Middle Miocene (15.99–11.65 Ma) of Europe witnessed major climatic, environmental, and vegetational change, yet we are lacking detailed reconstructions of Middle Miocene temperature and precipitation patterns over Europe. Here, we use a high‐resolution (∼0.75°) isotope‐enabled general circulation model (ECHAM5‐wiso) with time‐specific boundary conditions to investigate changes in temperature, precipitation, and δ〈sup〉18〈/sup〉O in precipitation (δ〈sup〉18〈/sup〉O〈sub〉p〈/sub〉). Experiments were designed with variable elevation configurations of the European Alps and different atmospheric CO〈sub〉2〈/sub〉 levels to examine the influence of Alpine elevation and global climate forcing on regional climate and δ〈sup〉18〈/sup〉Op patterns. Modeling results are in agreement with available paleobotanical temperature data and with low‐resolution Middle Miocene experiments of the Miocene Model Intercomparison Project (MioMIP1). However, simulated precipitation rates are 300–500 mm/yr lower in the Middle Miocene than for pre‐industrial times for central Europe. This result is consistent with precipitation estimates from herpetological fossil assemblages, but contradicts precipitation estimates from paleobotanical data. We attribute the Middle Miocene precipitation change in Europe to shifts in large‐scale pressure patterns in the North Atlantic and over Europe and associated changes in wind direction and humidity. We suggest that global climate forcing contributed to a maximum δ〈sup〉18〈/sup〉O〈sub〉p〈/sub〉 change of ∼2‰ over high elevation (Alps) and ∼1‰ over low elevation regions. In contrast, we observe a maximum modeled δ〈sup〉18〈/sup〉O〈sub〉p〈/sub〉 decrease of 8‰ across the Alpine orogen due to Alpine topography. However, the elevation‐δ〈sup〉18〈/sup〉O〈sub〉p〈/sub〉 lapse rate shallows in the Middle Miocene, leading to a possible underestimation of paleotopography when using present‐day δ〈sup〉18〈/sup〉O〈sub〉p〈/sub〉—elevation relationships data for stable isotope paleoaltimetry studies.
    Description: Key Points: A high‐resolution isotope‐enabled general circulation model is used to explore Middle Miocene climate and precipitation δ〈sup〉18〈/sup〉O across Europe. Middle Miocene bi‐directional precipitation change consistent with herpetological fossils and account for precipitation δ〈sup〉18〈/sup〉O variations. Global Miocene climate forcing contributed a max δ〈sup〉18〈/sup〉O change of ∼2‰ over the high Alpine elevation and to ∼1‰ over low elevation.
    Description: German research fondation
    Description: Alexander‐von‐Humboldt foundation, Feodor‐Lynen‐Fellowship
    Description: Alexander‐von‐Humboldt foundation, Humboldt Research Fellowship
    Description: Scientific Steering Committee
    Description: https://mpimet.mpg.de/fileadmin/projekte/ICON-ESM/mpi-m_sla_201202.pdf
    Description: https://gitlab.awi.de/mwerner/mpi-esm-wiso
    Description: https://zenodo.org/record/6308475#.Y0gmDSFS-2w
    Keywords: ddc:550.724 ; Europe ; Middle Miocene ; climate modeling ; stable water isotopes ; temperature ; precipitation ; paleoclimate ; paleoelevation ; Alps
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2024-02-05
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Penetrating, high‐energy synchrotron X‐rays are in strong demand, particularly for high‐pressure research in physics, chemistry and geosciences, and for materials engineering research under less extreme conditions. A new high‐energy wiggler beamline P61 has been constructed to meet this need at PETRA III in Hamburg, Germany. The first part of the paper offers an overview of the beamline front‐end components and beam characteristics. The second part describes the performance of the instrumentation and the latest developments at the P61B endstation. Particular attention is given to the unprecedented high‐energy photon flux delivered by the ten wigglers of the PETRA III storage ring and the challenges faced in harnessing this amount of flux and heat load in the beam. Furthermore, the distinctiveness of the world's first six‐ram Hall‐type large‐volume press, Aster‐15, at a synchrotron facility is described for research with synchrotron X‐rays. Additionally, detection schemes, experimental strategies and preliminary data acquired using energy‐dispersive X‐ray diffraction and radiography techniques are presented.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉The operation of the P61B endstation large‐volume press and optics of P61 are reviewed. The instrumentation at P61B, including the large‐volume press, detection systems and data acquisition for 〈italic〉in situ〈/italic〉 high‐pressure experiments are described.〈boxed-text position="anchor" content-type="graphic" xml:lang="en"〉〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:16005775:jsy2ju5040:jsy2ju5040-fig-0001"〉 〈/graphic〉〈/boxed-text〉〈/p〉
    Keywords: ddc:550.724 ; extreme conditions ; high‐pressure ; large‐volume press ; energy‐dispersive X‐ray diffraction ; radiography ; resistive heating ; ultrasonic interferometry ; acoustic emissions detection
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2023-12-16
    Description: Melting and vaporization of rocks in impact cratering is mostly attributed to be a consequence of shock compression. However, other mechanism such as plastic work and decompression by structural uplift also contribute to melt production. In this study we expand the commonly used method to determine shock‐induced melting in numerical models from the peak shock pressure by a new approach to account for additional heating due plastic work and internal friction. We compare our new approach with the straight‐forward method to simply quantify melting from the temperature relative to the solidus temperature at any arbitrary point in time in the course of crater formation. This much simpler method does account for plastic work but suffers from reduced accuracy due to numerical diffusion inherent to ongoing advection in impact crater formation models. We demonstrate that our new approach is more accurate than previous methods in particular for quantitative determination of impact melt distribution in final crater structures. In addition, we assess the contribution of plastic work to the overall melt volume and find, that melting is dominated by plastic work for impacts at velocities smaller than 7.5–12.5 km/s in rocks, depending on the material strength. At higher impact velocities shock compression is the dominating mechanism for melting. Here, the conventional peak shock pressure method provides similar results compared with our new model. Our method serves as a powerful tool to accurately determine impact‐induced heating in particular at relatively low‐velocity impacts.
    Description: Plain Language Summary: During the collision of cosmic bodies such as planets and asteroids on various scales, the involved material is heated such that melting or vaporization can occur. The vast amount of heat is considered to be generated during shock compression, however recent studies found that plastic deformation during decompression also contribute to the heating process. In this study, we introduce a new approach to quantify impact‐induced melting more accurately under consideration of the latter heating mechanisms. We demonstrate that our approach is more accurate than previous attempts and quantify the contribution from plastic work on impact‐induced melting. We systematically study the effect of impact velocity and material strength on melt production and find, that it is dominated by plastic work for impact velocities up to 7.5–12.5 km/s in rocks, depending on the material strength.
    Description: Key Points: We propose an improved method to quantify impact‐induced melt production for rocks. We quantify impact‐induced melt production and separate between heating due to shock compression and plastic work. Melting due to frictional heating (plastic work) dominates over shock melting for impact velocities below 7–13 km/s depending on strength.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Japan Society for the Promotion of Science London http://dx.doi.org/10.13039/501100000646
    Description: http://www.isale-code.de/redmine/projects/isale/wiki/Terms_of_use
    Description: https://doi.org/10.35003/HVTJQD
    Keywords: ddc:550.724 ; impact heating ; numerical modeling ; impact melt ; melt quantification
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2023-07-29
    Description: The mechanical behavior and the influence of compaction banding on the hydraulic properties in soft porous rocks were studied. The tested rock was Calcarenite Tuffeau de Maastricht. In the frame of experimental investigations, triaxial and oedometric tests were conducted under dry and drained conditions. The results demonstrated that the rock is forming discrete compaction bands under high confining stresses and steep angle shear bands under low confining stresses. Permeability measurements during the oedometric and triaxial compression tests under drained conditions demonstrated that the axial permeability decreases with increasing axial strain. The maximum permeability decrease was three orders of magnitude for 40% of axial strain.
    Description: Karlsruher Institut für Technologie (KIT) (4220)
    Keywords: ddc:550.724 ; Compaction band ; Rock permeability ; Grain crushing ; Strain localization ; Porous rocks
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2023-07-29
    Description: In this paper the performance of a constitutive model for the description of the hydro mechanical behaviour of soft rock is evaluated with respect to the experimentally observed behaviour of Maastricht Calcarenite under different stress states that is presented in the companion paper. The mechanical model is elasto-plastic and consists of an associated yield surface, internal variables for the description of the hardening and softening behaviour and a non-local extension for the simulation of strain localization in form of shear bands and compaction bands. The model is implemented in the software ABAQUS and the laboratory results from the tests under dry condition with Maastricht Calcarenite are used for the calibration. The good agreement of the numerical results with the laboratory results is shown and the suitability of the model is discussed. To describe the effect of compaction bands on the permeability of soft rocks a simple analytical model based on the Kozeny–Carman equation is proposed and calibrated with the experimental results from drained tests under different stress states for Maastricht Calcarenite rock material. As the results are in good accordance with the experimental results, the model is implemented in the software ABAQUS and the numerical results are presented and discussed. Finally the performance of the model is evaluated and possible improvements are suggested.
    Description: Karlsruher Institut für Technologie (KIT) (4220)
    Keywords: ddc:550.724 ; Compaction band ; Permeability ; Grain crushing ; Strain localization
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2023-07-29
    Description: A concomitant effect of a hydraulic fracturing experimenting is frequently fluid permeation into the rock matrix, with the injected fluid permeating through the porous rock matrix (leak-off) rather than contributing to the buildup of borehole pressure, thereby slowing down or impeding the hydro-fracturing process. Different parameters, such as low fluid viscosity, low injection rate and high rock permeability, contribute to fluid permeation. This effect is particularly prominent in highly permeable materials, therefore, making sleeve fracturing tests (where an internal jacket separates the injected fluid in the borehole from the porous rock matrix) necessary to generate hydraulic fractures. The side effect, however, is an increase in pressure breakdown, which results in higher volume of injected fluid and in higher seismic activity. To better understand this phenomenon, we report data from a new comparative study from a suite of micro-hydraulic fracturing experiments on highly permeable and on low-permeability rock samples. Experiments were conducted in both sleeve fracture and direct fluid fracture modes using two different injection rates. Consistent with previous studies, our results show that hydraulic fracturing occurred only with low permeation, either due to the intrinsic low permeability or due to the presence of an inner silicon rubber sleeve. In particular, due to the presence of quasi-impermeable inner sleeve or borehole skin in the sleeve fracturing experiment, fracturing occurs, with the breakdown pressure supporting the linear elastic approach considering poroelastic effects, therefore, with low stress drop and consequently low microseismicity. Rock matrix permeability also controls the presence of precursory Acoustic Emission activity, as this is linked to the infiltration of fluids and consequent expansion of the pore space. Finally, permeability is shown to mainly control fracturing speed, because the permeation of fluid into the newly created fracture via the highly permeable rock matrix slows down its full development. The application of these results to the field may help to reduce induced seismicity and to conduct well stimulation in a more efficient way.
    Description: Petroleum Technology Development Fund http://dx.doi.org/10.13039/501100009614
    Description: Niedersächsische Ministerium für Wissenschaft und Kultur (DE)
    Description: Georg-August-Universität Göttingen (1018)
    Keywords: ddc:550.724 ; Permeability ; Hydraulic fracturing ; Acoustic emissions ; Fracture propagation speed ; Fluid permeation ; Leak-off
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2023-08-01
    Description: In this study, we suggest a temperature-based assessment and mitigation approach for deep-seated landslides that allows to forecast the behavior of the slide and assess its stability. The suggested approach is validated through combined field monitoring and experimental testing of the El Forn landslide (Andorra), whose shear band material is Silurian shales. Thermal and rate controlled triaxial tests have shown that this material is thermal- and rate-sensitive, and in combination with the field data, they validate the theoretical assumption that by measuring the basal temperature of an active landslide, we can quantify and reduce the uncertainty of the model’s parameters, and adequately monitor and forecast the response of the selected deep-seated landslide. The data and results of this letter show that the presented model can give threshold values that can be used as an early-warning assessment and mitigation tool.
    Description: National Science Foundation http://dx.doi.org/10.13039/100000001
    Description: RWTH Aachen University (3131)
    Keywords: ddc:550.724 ; Basal temperature ; Landslide monitoring ; Experimental tests ; Constitutive equations ; Numerical modeling
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2023-08-02
    Description: Landslide run-out modeling involves various uncertainties originating from model input data. It is therefore desirable to assess the model’s sensitivity to these uncertain inputs. A global sensitivity analysis that is capable of exploring the entire input space and accounts for all interactions often remains limited due to computational challenges resulting from a large number of necessary model runs. We address this research gap by integrating Gaussian process emulation into landslide run-out modeling and apply it to the open-source simulation tool r.avaflow. The feasibility and efficiency of our approach is illustrated based on the 2017 Bondo landslide event. The sensitivity of aggregated model outputs, such as the angle of reach, impact area, and spatially resolved maximum flow height and velocity, to the dry-Coulomb friction coefficient, turbulent friction coefficient, and the release volume is studied. The results of first-order effects are consistent with previous results of common one-at-a-time sensitivity analyses. In addition to that, our approach allows us to rigorously investigate interactions. Strong interactions are detected on the margins of the flow path where the expectation and variation of maximum flow height and velocity are small. The interactions generally become weak with an increasing variation of maximum flow height and velocity. Besides, there are stronger interactions between the two friction coefficients than between the release volume and each friction coefficient. In the future, it is promising to extend the approach for other computationally expensive tasks like uncertainty quantification, model calibration, and smart early warning.
    Description: China Scholarship Council http://dx.doi.org/10.13039/501100004543
    Keywords: ddc:550.724 ; Landslide run-out modeling ; Global sensitivity analysis ; Gaussian process emulation ; Emulator uncertainty
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2024-02-23
    Description: Pharmaceutically active compounds (PhACs) released into the environment have an adverse impact on the soil and water ecosystem as well as human health. Sorption of PhACs by soils and its potential modification through introduced DOM in the applied animal manure or treated wastewater (TWW) determines the mobility and environmental relevance of PhACs. Sulfadiazine, caffeine and atenolol were selected as target PhACs to investigate their sorption behaviors by five selected arable soils in the absence and presence of pig manure DOM. Sulfadiazine was least sorbed, followed by caffeine and atenolol according to the Freundlich sorption isotherm fit (soil average Kf [μg〈sup〉(1−n)〈/sup〉 mL〈sup〉n〈/sup〉 g〈sup〉−1〈/sup〉] 4.07, 9.06, 18.92, respectively). The addition of manure DOM (31.34 mg C L〈sup〉−1〈/sup〉) decreased the sorption of sulfadiazine and especially of caffeine and atenolol (average K〈sub〉f〈/sub〉 3.04, 6.17, 5.79, respectively). Freundlich sorption isotherms of the PhACs became more nonlinear in the presence of manure DOM (Freundlich exponent n changed from 0.74–1.40 to 0.62–1.12), implying more heterogeneous sorption of PhACs in soil–DOM binary systems. Sorption competition of DOM molecules with sulfadiazine and caffeine mostly contributed to their decreased soil sorption when DOM was present. In contrast, the formation of DOM–atenolol associates in the solution phase caused the largely decreased soil sorption of atenolol in the presence of DOM. It is suggested that DOM concentration (e.g., ≥ 60 mg C L〈sup〉−1〈/sup〉) and its interaction with PhACs should be taken into consideration when assessing the environmental impact of land application of animal manure or irrigation with TWW.
    Description: China Scholarship Council http://dx.doi.org/10.13039/501100004543
    Description: CAS, Inst. of Mountain Hazard, Strategic program
    Description: Universität Trier (3163)
    Keywords: ddc:550.724 ; DOM associate ; Sorption competition ; Sorption nonlinearity ; Sorption strength ; Spectroscopy ; Treated wastewater
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2023-11-16
    Description: Küstennahe Niedermoore wurden durch den Menschen verändert, bspw. durch das Anlegen von Entwässerungsgräben, dem Bau von Küstenschutzdeichen oder aktuell einer Renaturierung. Außerdem ist es wichtig die komplexe Interaktion mit der See zu verstehen, um Aussagen über die zukünftige Entwicklung treffen zu können. In der vorliegenden Studie wurde die ober- und unterirdische Strömung in einem Feuchtgebiet an der mecklenburgischen Ostseeküste nahe Warnemünde (Deutschland) untersucht, um dessen wechselseitigen Austausch mit der Ostsee zu quantifizieren und zu analysieren, wie sich ein Sturmhochwasserereignis auf den Salzeintrag ins Gebiet auswirkt. Hierfür wurde ein dreidimensionales instationäres Grundwassermodell erstellt, mit einem eindimensionalen Modell des Grabensystems gekoppelt und mit Messungen im Gebiet kalibriert und verglichen. Die Ergebnisse zeigen, dass neben der oberirdischen Entwässerung auch der Grundwasserabstrom in Richtung Ostsee eine wesentliche Komponente der Wasserbilanz darstellt. Das Verhalten entlang der Küste wird deutlich durch die Dynamik der Ostseewasserstände geprägt, wobei ein Grundwasserabstrom mit einem Zustrom von Ostseewasser bei hohen Küstenwasserständen innerhalb täglicher bis wöchentlicher Zeitskalen wechselt.
    Description: Universität Potsdam (1031)
    Keywords: ddc:550.724 ; Numerische Modellierung ; Ostseeküste ; Grundwasser-Oberflächenwasser-Interaktion ; Sturmhochwasser ; Versalzung ; Numerical modeling ; Baltic Sea coast ; Groundwater-surface water interaction ; Storm flood ; Salinization
    Language: German
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2023-11-14
    Description: Simple and complex climate models suggest a hard snowball – a completely ice-covered planet – is one of the steady-states of Earth’s climate. However, a seemingly insurmountable challenge to the hard-snowball hypothesis lies in the difficulty in explaining how the planet could have exited the glaciated state within a realistic range of atmospheric carbon dioxide concentrations. Here, we use simulations with the Earth system model MPI-ESM to demonstrate that terminal deglaciation could have been triggered by high dust deposition fluxes. In these simulations, deglaciation is not initiated in the tropics, where a strong hydrological cycle constantly regenerates fresh snow at the surface, which limits the dust accumulation and snow aging, resulting in a high surface albedo. Instead, comparatively low precipitation rates in the mid-latitudes in combination with high maximum temperatures facilitate lower albedos and snow dynamics that – for extreme dust fluxes – trigger deglaciation even at present-day carbon dioxide levels.
    Description: Snowball Earth could have thawed at atmospheric CO2-levels comparable to the present as a result of low surface albedo in mid-latitudes from a combination dust deposition and low precipitation rates, according to Earth System Model simulations
    Description: https://cera-www.dkrz.de/WDCC/ui/cerasearch/entry?acronym=DKRZ_LTA_231_ds00002
    Keywords: ddc:550.724 ; Atmospheric dynamics ; Climate sciences ; Cryospheric science
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2023-11-18
    Description: Atomic oxygen is a main component of the mesosphere and lower thermosphere of the Earth, where it governs photochemistry and energy balance and is a tracer for dynamical motions. However, its concentration is extremely difficult to measure with remote sensing techniques since atomic oxygen has few optically active transitions. Current indirect methods involve photochemical models and the results are not always in agreement, particularly when obtained with different instruments. Here we present direct measurements—independent of photochemical models—of the ground state 〈sup〉3〈/sup〉P〈sub〉1〈/sub〉 →〈sup〉3〈/sup〉 P〈sub〉2〈/sub〉 fine-structure transition of atomic oxygen at 4.7448 THz using the German Receiver for Astronomy at Terahertz Frequencies (GREAT) on board the Stratospheric Observatory for Infrared Astronomy (SOFIA). We find that our measure ments of the concentration of atomic oxygen agree well with atmospheric models informed by satellite observations. We suggest that this direct observation method may be more accurate than existing indirect methods that rely on photochemical models.
    Description: Atomic oxygen concentrations in the upper atmosphere can be measured directly with an airborne terahertz heterodyne spectrometer. This approach is probably more accurate than indirect estimates from photochemical models, according to a comparison of the two methods.
    Description: German Federal Ministry of Research and Education grant number 50 OK 1104
    Description: https://irsa.ipac.caltech.edu/applications/sofia/?__action=layout.showDropDown&visible=true&view=Search
    Description: ftp://saber.gats-inc.com/Version2_0/SABER_atox_Panka_etal_2018_GRL/SABER_o3p_oh_night_2015_v1.0.nc
    Description: https://atran.arc.nasa.gov/cgi-bin/atran/atran.cgi
    Description: https://ccmc.gsfc.nasa.gov/modelweb/models/nrlmsise00.php
    Keywords: ddc:550.724 ; Astronomical instrumentation ; Atmospheric chemistry ; Planetary science ; mesosphere ; lower thermosphere ; atomic oxygen measurement
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2023-09-14
    Description: The present paper gives an overview of the GeomInt project “Geomechanical integrity of host and barrier rocks—experiment, modelling and analysis of discontinuities” which has been conducted from 2017–2020 within the framework of the “Geo:N Geosciences for Sustainability” program. The research concept of the collaborative project is briefly introduced followed by a summary of the most important outcomes. The research concept puts geological discontinuities into the centre of investigations—as these belong to the most interesting and critical elements for any subsurface utilisation. Thus, while research questions are specific, they bear relevance to a wide range of applications. The specific research is thus integrated into a generic concept in order to make the results more generally applicable and transferable. The generic part includes a variety of conceptual approaches and their numerical realisations for describing the evolution of discontinuities in the most important types of barrier rocks. An explicit validation concept for the generic framework was developed and realised by specific “model-experiment-exercises” (MEX) which combined experiments and models in a systematic way from the very beginning. 16 MEX have been developed which cover a wide range of fundamental fracturing mechanisms, i.e. swelling/shrinkage, fluid percolation, and stress redistribution processes. The progress in model development is also demonstrated by field-scale applications, e.g. in the analysis and design of experiments in underground research laboratories in Opalinus Clay (URL Mont Terri, Switzerland) and salt rock (research mine Springen, Germany).
    Description: BMBF
    Description: Helmholtz-Zentrum für Umweltforschung GmbH - UFZ (4215)
    Keywords: ddc:550.724 ; GeomInt ; Fracture flow ; Fracture mechanics ; Barrier integrity ; Discontinuities ; Open source ; OpenGeoSys
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2023-12-19
    Description: We applied a hybrid-dimensional flow model to pressure transients recorded during pumping experiments conducted at the Reiche Zeche underground research laboratory to study the opening behavior of fractures due to fluid injection. Two distinct types of pressure responses to flow-rate steps were identified that represent radial-symmetric and plane-axisymmetric flow regimes from a conventional pressure-diffusion perspective. We numerically modeled both using a radial-symmetric flow formulation for a fracture that comprises a non-linear constitutive relation for the contact mechanics governing reversible fracture surface interaction. The two types of pressure response can be modeled equally well. A sensitivity study revealed a positive correlation between fracture length and normal fracture stiffness that yield a match between field observations and numerical results. Decomposition of the acting normal stresses into stresses associated with the deformation state of the global fracture geometry and with the local contacts indicates that geometrically induced stresses contribute the more the lower the total effective normal stress and the shorter the fracture. Separating the contributions of the local contact mechanics and the overall fracture geometry to fracture normal stiffness indicates that the geometrical stiffness constitutes a lower bound for total stiffness; its relevance increases with decreasing fracture length. Our study demonstrates that non-linear hydro-mechanical coupling can lead to vastly different hydraulic responses and thus provides an alternative to conventional pressure-diffusion analysis that requires changes in flow regime to cover the full range of observations.
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Bundesministerium für Bildung und Forschung (DE)
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Universität Stuttgart (1023)
    Keywords: ddc:550.724 ; Hydro-mechanics of fractures ; Hybrid-dimensional modeling ; Fracture contact mechanics ; Fracture stiffness ; Hydraulic testing of fractures ; Reiche Zeche underground research laboratory
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2024-01-12
    Description: Purpose: Microplastics have become a ubiquitous pollutant in marine, terrestrial and freshwater systems that seriously affects aquatic and terrestrial ecosystems. Common methods for analysing microplastic abundance in soil or sediments are based on destructive sampling or involve destructive sample processing. Thus, substantial information about local distribution of microplastics is inevitably lost. Methods: Tomographic methods have been explored in our study as they can help to overcome this limitation because they allow the analysis of the sample structure while maintaining its integrity. However, this capability has not yet been exploited for detection of environmental microplastics. We present a bimodal 3D imaging approach capable to detect microplastics in soil or sediment cores non-destructively. Results: In a first pilot study, we demonstrate the unique potential of neutrons to sense and localize microplastic particles in sandy sediment. The complementary application of X-rays allows mineral grains to be discriminated from microplastic particles. Additionally, it yields detailed information on the 3D surroundings of each microplastic particle, which supports its size and shape determination. Conclusion: The procedure we developed is able to identify microplastic particles with diameters of approximately 1 mm in a sandy soil. It also allows characterisation of the shape of the microplastic particles as well as the microstructure of the soil and sediment sample as depositional background information. Transferring this approach to environmental samples presents the opportunity to gain insights of the exact distribution of microplastics as well as their past deposition, deterioration and translocation processes.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Deutsche Forschungsgemeinschaft (DE)
    Keywords: ddc:550.724 ; Neutron imaging ; Sediment core ; Non-destructive analysis ; Microplastic detection ; Shape and size
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2023-06-19
    Description: Ge/Si ratios of plant phytoliths have been widely used to trace biogeochemical cycling of Si. However, until recently, information on how much of the Ge and Si transferred from soil to plants is actually stored in phytoliths was lacking. The aim of the present study is to (i) compare the uptake of Si and Ge in three grass species, (ii) localize Ge and Si stored in above-ground plant parts and (iii) evaluate the amounts of Ge and Si sequestrated in phytoliths and plant tissues. Mays (Zea mays), oat (Avena sativa) and reed canary grass (Phalaris arundinacea) were cultivated in the greenhouse on soil and sand to control element supply. Leaf phytoliths were extracted by dry ashing. Total elemental composition of leaves, phytoliths, stems and roots were measured by ICP-MS. For the localization of phytoliths and the determination of Ge and Si within leaf tissues and phytoliths scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX) and laser ablation inductively coupled mass spectrometry (LA-ICP-MS) was used. The amounts of Si and Ge taken up by the species corresponded with biomass formation and decreased in the order Z. mays 〉 P. arundinacea, A. sativa. Results from LA-ICP-MS revealed that Si was mostly localized in phytoliths, while Ge was disorderly distributed within the leaf tissue. In fact, from the total amounts of Ge accumulated in leaves only 10% was present in phytoliths highlighting the role of organic matter on biogeochemical cycling of Ge and the necessity for using bulk Ge/Si instead of Ge/Si in phytoliths to trace biogeochemical cycling of Si.
    Keywords: ddc:550.724 ; Germanium ; Ge/Si ratio ; Phytoliths ; Poaceae ; LA-ICP-MS
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2023-06-19
    Description: Dynamics of snow avalanches or landslides can be described by rapid granular flow. Experimental investigations of granular flow at laboratory scale are often required to analyze flow behaviour and to develop adequate mathematical and numerical models. Most investigations use image-based analysis, and additional sensors such as pressure gauges are not always possible. Testing various scenarios and parameter variations such as different obstacle shapes and positions as well as basal topography and friction usually requires either the construction of a new laboratory setups for each test or a cumbersome reconstruction. In this work, a highly flexible and modular laboratory setup is presented based on LEGO bricks. The flexibility of the model is demonstrated, and possible extensions for future laboratory tests are outlined. The setup is able to reproduce published laboratory experiments addressing current scientific research topics, such as overflow of a rigid reflector, flow on a bumpy surface and against a rigid wall using standard image-based analysis. This makes the setup applicable for quick scenario testing, e.g. for hypothesis testing or for low-cost testing prior to large-scale experiments, and it can contribute to the validation of external results and to benchmarks of numerical models. Small-scale laboratory setups are also very useful for demonstration purposes such as education and public outreach, both crucial in the context of natural hazards. The presented setup enables variation of parameters such as of slope length, channel width, height and shape, inclination, bed friction, obstacle position and shape, as well as density, composition, amount and grain size of flowing mass. Observable quantities are flow type, flow height, flow path and flow velocity, as well as runout distance, size and shape of the deposited material. Additional sensors allow further quantitative assessments, such as local pressure values.
    Description: Ruhr-Universit+ochum (1007)
    Keywords: ddc:550.724 ; Landslides ; Granular flow ; Laboratory setup ; Education ; Outreach
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2023-06-23
    Description: Magmas vesiculate during ascent, producing complex interconnected pore networks, which can act as outgassing pathways and then deflate or compact to volcanic plugs. Similarly, in-conduit fragmentation events during dome-forming eruptions create open systems transiently, before welding causes pore sealing. The percolation threshold is the first-order transition between closed- and open-system degassing dynamics. Here, we use time-resolved, synchrotron-source X-ray tomography to image synthetic magmas that go through cycles of opening and closing, to constrain the percolation threshold ΦC at a range of melt crystallinity, viscosity and overpressure pertinent to shallow magma ascent. During vesiculation, we observed different percolative regimes for the same initial bulk crystallinity depending on melt viscosity and gas overpressure. At high viscosity (〉 106 Pa s) and high overpressure (~ 1–4 MPa), we found that a brittle-viscous regime dominates in which brittle rupture allows system-spanning coalescence at a low percolation threshold (ΦC~0.17) via the formation of fracture-like bubble chains. Percolation was followed by outgassing and bubble collapse causing densification and isolation of the bubble network, resulting in a hysteresis in the evolution of connectivity with porosity. At low melt viscosity and overpressure, we observed a viscous regime with much higher percolation threshold (ΦC 〉 0.37) due to spherical bubble growth and lower degree of crystal connection. Finally, our results also show that sintering of crystal-free and crystal-bearing magma analogues is characterised by low percolation thresholds (ΦC = 0.04 – 0.10). We conclude that the presence of crystals lowers the percolation threshold during vesiculation and may promote outgassing in shallow, crystal-rich magma at initial stages of Vulcanian and Strombolian eruptions.
    Description: Paul Scherrer Institut http://dx.doi.org/10.13039/501100004219
    Description: European Research Council http://dx.doi.org/10.13039/501100000781
    Description: NERC
    Description: Deutsche Forschungsgemeinschaft
    Keywords: ddc:550.724 ; Effusive-explosive transition ; Percolation threshold ; Outgassing ; Crystal-rich magma ; Magma viscosity ; Gas overpressure ; Porosity ; Pore connectivity ; Hysteresis ; Strombolian/Vulcanian eruptions ; Dome-forming eruptions
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2023-06-23
    Description: Magma ascent during silicic dome-forming eruptions is characterized by significant changes in magma viscosity, permeability, and gas overpressure in the conduit. These changes depend on a set of parameters such as ascent rate, outgassing and crystallization efficiency, and magma viscosity, which in turn may influence the prevailing conditions for effusive versus explosive activity. Here, we combine chemical and textural analyses of tephra with viscosity models to provide a better understanding of the effusive-explosive transitions during Vulcanian phases of the 9.4 ka eruption of Kilian Volcano, Chaîne des Puys, France. Our results suggest that effusive activity at the onset of Vulcanian episodes at Kilian Volcano was promoted by (i) rapid ascent of initially crystal-poor and volatile-rich trachytic magma, (ii) a substantial bulk and melt viscosity increase driven by extensive volatile loss and crystallization, and (iii) efficient degassing/outgassing in a crystal-rich magma at shallow depths. Trachytic magma repeatedly replenished the upper conduit, and variations in the amount of decompression and cooling caused vertical textural stratification, leading to variable degrees of crystallization and outgassing. Outgassing promoted effusive dome growth and occurred via gas percolation through large interconnected vesicles, fractures, and tuffisite veins, fostering the formation of cristobalite in the carapace and talus regions. Build-up of overpressure was likely caused by closing of pore space (bubbles and fractures) in the dome through a combination of pore collapse, cristobalite formation, sintering in tuffisite veins, and limited pre-fragmentation coalescence in the dome or underlying hot vesicular magma. Sealing of the carapace may have caused a transition from open- to closed- system degassing and to renewed explosive activity. We generalize our findings to propose that the broad spectrum of eruptive styles for trachytic magmas may be inherited from a combination of characteristics of trachytic melts that include high water solubility and diffusivity, rapid microlite growth, and low melt viscosity compared to their more evolved subalkaline dacitic and rhyolitic equivalents. We show that trachytes may erupt with a similar style (e.g., Vulcanian) but at significantly higher ascent rates than their andesitic, dacitic, and rhyolitic counterparts. This suggests that the periodicity of effusive-explosive transitions at trachytic volcanoes may differ from that observed at the well-monitored andesitic, dacitic, and rhyolitic volcanoes, which has implications for hazard assessment associated with trachytic eruptions.
    Description: ERC ADV 2018
    Keywords: ddc:550.724 ; Effusive-explosive transitions ; Trachytic magma ; Vulcanian eruption ; Magma Viscosity ; Crystallization ; Degassing ; Nanolites ; Cristobalite
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2023-06-23
    Description: Subsurface magmatic–hydrothermal systems are often associated with elevated electrical conductivities in the Earthʼs crust. To facilitate the interpretation of these data and to allow distinguishing between the effects of silicate melts and fluids, the electrical conductivity of aqueous fluids in the system H 2 O–HCl was measured in an externally heated diamond anvil cell. Data were collected to 700 °C and 1 GPa, for HCl concentrations equivalent to 0.01, 0.1, and 1 mol/l at ambient conditions. The data, therefore, more than double the pressure range of previous measurements and extend them to geologically realistic HCl concentrations. The conductivities 𝜎 (in S/m) are well reproduced by a numerical model log 𝜎 = −2.032 + 205.8 T−1 + 0.895 log c + 3.888 log 𝜌 + logΛ0(T,𝜌), where T is the temperature in K, c is the HCl concentration in wt. %, and 𝜌 is the density of pure water at the corresponding pressure and temperature conditions. Λ0(T,𝜌) is the limiting molar conductivity (in S cm2 mol −1 ) at infinite dilution, Λ0(T,𝜌) = 2550.14 − 505.10𝜌 − 429,437 T−1 . A regression fit of more than 800 data points to this model yielded R2 = 0.95. Conductivities increase with pressure and fluid densities due to an enhanced dissociation of HCl. However, at constant pressures, conductivities decrease with temperature because of reduced dissociation. This effect is particularly strong at shallow crustal pressures of 100–200 MPa and can reduce conductivities by two orders of magnitude. We, therefore, suggest that the low conductivities sometimes observed at shallow depths below the volcanic centers in magmatic–hydrothermal systems may simply reflect elevated temperatures. The strong negative temperature effect on fluid conductivities may offer a possibility for the remote sensing of temperature variations in such systems and may allow distinguishing the effects of magma intrusions from changes in hydrothermal circulation. The generally very high conductivities of HCl–NaCl–H 2 O fluids at deep crustal pressures (500 MPa–1 GPa) imply that electrical conductors in the deep crust, as in the Altiplano magmatic province and elsewhere, may at least partially be due to hydrothermal activity.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Universität Bayreuth (3145)
    Keywords: ddc:550.724 ; Electrical conductivity ; Fluid ; HCl ; Hydrothermal systems ; Magnetotelluric data
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2023-06-23
    Description: Hydrothermal eruptions are characterised by violent explosions ejecting steam, water, mud, and rock. They pose a risk to tourism and the operation of power plants in geothermal areas around the world. Large events with a severe destructive threat are often intensified by the injection of magmatic fluids along faults and fractures within volcano-tectonic rifting environments, such as the Taupo Volcanic Zone. How these hydrothermal eruptions progress, how craters form and the scale of ejecta impacts, are all influenced by the local geology and reservoir hydrology. By analysing breccia lithology, undisturbed strata proximal to the explosion sites, and conducting tailored decompression experiments, we elucidate the eruption sequence that formed Champagne Pool, Wai-o-tapu, New Zealand. This iconic touristic site was formed by a violent hydrothermal eruption at ~ 700 years B.P. Samples from undisturbed drill cores and blocks ejected in the eruption were fragmented in shock-tube experiments under the moderate pressure/temperature conditions estimated for this system (3–4 MPa, 210–220 °C). Our results show that this was a two-phase eruption. It started with an initial narrow jetting of deep-sourced lithologies, ejecting fragments from at least a 110-m depth. This event was overtaken by a larger, broader, and dominantly shallower eruption driven by decompression of much more geothermal fluid within a soft and porous ignimbrite horizon. The second phase was triggered once the initial, deeper-sourced eruption broke through a strong silicified aquitard cap. The soft ignimbrite collapsed during the second-phase eruption into the crater, to repeatedly choke the explosions causing short-term pressure rises that triggered ongoing deeper-sourced eruptions. The eruption spread laterally also by exploiting a local fault. These results are relevant for hydrothermal eruption hazard scenarios in environments where strong vertical variations in rock strength and porosity occur.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Ministry of Business, Innovation and Employment http://dx.doi.org/10.13039/501100003524
    Keywords: ddc:550.724 ; Hydrothermal eruptions ; Geothermal ; Champagne pool ; Experimental ; Eruption dynamics
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2023-06-23
    Description: While Terzaghi justified his principle of effective stress for water-saturated soil empirically, it can be derived by means of the neutrality of the mineral with respect to changes of the pore water pressure p w. This principle works also with dilating shear bands arising beyond critical points of saturated grain fabrics, and with patterns of shear bands as relics of critical phenomena. The shear strength of over-consolidated clay is explained without effective cohesion, which results also from swelling up to decay, while rapid shearing of water-saturated clay can lead to a cavitation of pore water. The p w-neutrality is also confirmed by triaxial tests with sandstone samples, while Biot’s relation with a reduction factor for p w is contestable. An effective stress tensor is heuristically legitimate also for soil and rock with relics of critical phenomena, particularly for critical points with a Mohr–Coulomb condition. Therein, the p w-neutrality of the solid mineral determines the interaction of solid fabric and pore water, but numerical models are questionable due to fractal features.
    Description: Karlsruher Institut für Technologie (KIT) (4220)
    Keywords: ddc:550.724 ; Effective stress ; Interaction of solid fabric and pore water ; Pore pressure neutrality of mineral ; Shear bands and cracks
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2023-06-23
    Description: In this work, a constitutive model able to capture the strain rate dependency, small strain effects and the inherent anisotropy is proposed considering the influence of the overconsolidation ratio (OCR). Small strain effects are captured by using an extended ISA plasticity formulation (Fuentes and Triantafyllidis in Int J Numer Anal Methods Geomech 39(11):1235–1254, 2015). The strain rate dependency is reproduced by incorporating a third strain rate mechanism (in addition to the elastic and hypoplastic strain rate). A loading surface has been incorporated to define a three-dimensional (3D) overconsolidation ratio and to account for its effects on the simulations. Experimental investigations using Kaolin Clay and Lower Rhine Clay with horizontal bedding plane have shown that under undrained cycles of small strain amplitudes (\10-4 ), the effective stress path in the p–q space is significantly inclined towards the left upper corner of the p - q plane. Consequently, a transversely (hypo)elastic stiffness has been successfully formulated to capture this behaviour. The performance of the model has been inspected by simulating the database of approximately 50 cyclic undrained triaxial (CUT) tests on low-plasticity Kaolin Clay (Wichtmann and Triantafyllidis) considering different deviatoric stress amplitudes, initial stress ratios, displacement rate, overconsolidation ratio and cutting direction. Furthermore, 4 CUT tests conducted on high-plasticity Lower Rhine Clay were simulated, whereby the influence of the displacement rate, as well as the deviatoric stress amplitude, has been analysed. The simulations showed a good congruence with the experimental observations.
    Keywords: ddc:550.724 ; Anisotropy ; Clay ; Cyclic loading ; Excessive pore water pressure ; Rate dependency ; Soft soils ; Silt ; Time dependency ; Viscosity
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2023-06-08
    Description: Contact interaction of two bodies can be modeled using the penalty function approach while its accuracy and robustness are directly associated with the geometry of contact bodies. Particularly, in the research fields of rock mechanics, we need to treat polygonal shapes such as mineral grains/particles at a mesoscale and rock blocks at a macroscale. The irregular shapes (e.g., polygons with small angles or small edges) pose challenges to traditional contact solution approach in terms of algorithmic robustness and complexity. This paper proposed a robust potential-based penalty function approach to solve contact of polygonal particles/block. An improved potential function is proposed considering irregular polygonal shapes. A contact detection procedure based on the entrance block concept is presented, followed by a numerical integral algorithm to compute the contact force. The proposed contact detection approach is implemented into discontinuous deformation analysis with an explicit formulation. The accuracy and robustness of the proposed contact detection approach are verified by benchmarking examples. The potential of the proposed approach in analysis of kinetic behavior of complex polygonal block systems is shown by two application examples. It can be applied in any discontinuous computation models using stepwise contact force-based solution procedures.
    Description: Alexander von Humboldt Foundation
    Description: National Natural Science Foundation of China http://dx.doi.org/10.13039/501100001809
    Keywords: ddc:550.724 ; Block system ; Explicit discontinuous deformation analysis ; Irregular polygon ; Penalty function method ; Potential contact force
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2023-06-08
    Description: The water retention curve (WRC), representing an important key for the modelling of hydro-mechanical behaviour of unsaturated soils, is still not fully understood, because it originates from microscopic hydraulic and capillary phenomena. Furthermore, its experimental measurement, especially for cyclic drainage and imbibition paths, is challenging and time-consuming. In this contribution, a recently developed low-cost easy-to-use miniature testing device for the investigation of the WRC of unsaturated granular soils, such as coarse-grained sand and a packing of glass beads, is presented. With the help of the new device, that can be controlled by a Raspberry Pi single-board computer, the hysteretic WRC can be investigated in a conventional macroscopic approach by plotting the macroscopic specimen degree of saturation versus measured matric suction. The test set-up allows an automatic measurement of the WRC which is measured continuously following a programmed test procedure. In addition to the technical realisation of the new device, this contribution focuses on macroscopic results of water retention tests. Moreover, the testing device has been designed in a miniaturised size, in order to obtain microscopic insights into the phase distribution during cyclic drainage and imbibition paths with the help of computed tomography in future applications.
    Description: German Research Foundation (Deutsche Forschungsgemeinschaft, DFG)
    Keywords: ddc:550.724 ; Single-board computers ; Suction measurement ; Unsaturated granular soils ; Water retention behaviour ; X-ray computed tomography
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2023-06-08
    Description: The knowledge about thermo-mechanical properties of granite is still limited to some extent. Individual measurements are necessary to obtain reliable properties for specific granite types. A reliable numerical model of thermal cracking behaviours of granite exposed to extreme high temperatures (e.g. 800–1000 °C) is missing. In this study, the impact of temperature up to 1000 °C on physical, mechanical, and thermal properties as well as thermo-mechanical coupled behaviour of Eibenstock granite was investigated by laboratory testing and numerical simulations. The physical properties including mineral composition, density, P-wave velocity, and open porosity are measured to be temperature dependent. Uniaxial compression and Brazilian tests were carried out to measure uniaxial compressive strength (UCS), Young’s modulus, stress–strain relationship, and tensile strength of Eibenstock granite before and after thermal treatment, respectively. Thermal properties including specific heat, thermal conductivity, thermal diffusivity, and linear thermal expansion coefficient are also measured and found to be temperature dependent, especially the expansion coefficient which shows a steep increase around 573 °C as well as at 870 °C. The numerical simulation code FLAC3D was used to develop a numerical scheme to simulate the thermal-induced damage of granite at high temperatures. Statistical methods combined with real mineral composition were used to characterize the heterogeneity of granite. The numerical model is featured with reliable temperature-dependent parameters obtained from laboratory tests. It can well reproduce the laboratory results in form of thermal-induced micro- and macrocracks, as well as the stress–strain behaviour and the final failure pattern of Eibenstock granite after elevated temperatures up to 1000 °C. The simulation results also reveal that the thermal-induced microcracks are randomly distributed across the whole sample. Although most thermal-induced damages are tensile failures, shear failure begins to develop quickly after 500 °C. The obvious UCS reduction in granite due to heating is mainly caused by the increase in shear failure. The simulation also shows that the dominant impact of α–β quartz transition is widening pre-existing cracks rather than the formation of new microcracks.
    Description: China Scholarship Council http://dx.doi.org/10.13039/501100004543
    Keywords: ddc:550.724 ; Granite property ; Heterogeneity ; Numerical simulation ; Thermo-mechanical behaviour ; Thermal damage
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...