ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books
  • Maps
  • Other Sources  (4,796)
  • NASA Technical Reports  (4,796)
  • 2005-2009  (4,796)
  • 1950-1954
  • 1945-1949
  • 2007  (4,796)
  • 1
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The NASA STARDUST mission collected thousands of particles from Comet Wild 2 that are now being studied by two hundred scientists around the world. The spacecraft captured the samples during a close flyby of the comet in 2004 and returned them to Earth with a dramatic entry into the atmosphere early in 2006. The precious cargo of comet dust is being studied to determine new information about the origin of the Sun and planets. The comet formed at the edge of the solar system, beyond the orbit of Neptune, and is a sample of the material from which the solar system was formed. One of the most dramatic early findings from the mission was that a comet that formed in the coldest place in the solar system contained minerals that formed in the hottest place in the solar system. The comet samples are telling stories of fire and ice and they providing fascinating and unexpected information about our origins.
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: There is a growing number of observational evidences of dynamic quasi-periodical magnetosphere response to continuously southward interplan etary magnetic field (IMF). However, traditional global MHD simulatio ns with magnetic reconnection supported by numerical dissipation and ad hoc anomalous resistivity driven by steady southward IMF often prod uce only quasi-steady configurations with almost stationary near-eart h neutral line. This discrepancy can be explained by the assumption that global MHD simulations significantly underestimate the reconnectio n rate in the magnetotail during substorm expansion phase. Indeed, co mparative studies of magnetic reconnection in small scale geometries demonstrated that traditional resistive MHD did not produce the fast r econnection rates observed in kinetic simulations. The major approxim ation of the traditional MHD approach is an isotropic fluid assumption) with zero off-diagonal pressure tensor components. The approximatio n, however, becomes invalid in the diffusion region around the reconn ection site where ions become unmagnetized and experience nongyrotropic behaviour. Deviation from gyrotropy in particle distribution functi on caused by kinetic effects manifests itself in nongyrotropic pressu re tensor with nonzero off-diagonal components. We use the global MHD code BATS-R-US and replace ad hoc parameters such as "critical curren t density" and "anomalous resistivity" with a physically motivated di ssipation model. The key element of the approach is to identify diffusion regions where the isotropic fluid MHD approximation is not applic able. We developed an algorithm that searches for locations of magnet otail reconnection sites. The algorithm takes advantage of block-based domain-decomposition technique employed by the BATS-R-US. Boundaries of the diffusion region around each reconnection site are estimated from the gyrotropic orbit threshold condition, where the ion gyroradius is equal to the distance to the reconnection site. Inside diffusion regions ions are treated as nongyrotropic fluid with nonzero off-dia gonal components of the pressure tensor. The primary kinetic mechanism controlling the dissipation in the diffusion region is incorporated into global MHD simulations in terms of spatially localized nongyrotropic corrections to the induction equation. The magnitude of the non-g yrotropic corrections to the electric field and spatial scales of the diffusion regions are calculated self-consistently at each time step of the simulation using local MHD plasma and field parameters at the reconnection site without introduction of any ad hoc parameters. We d emonstrated that magnetotail reconnection is inherently unsteady even when the solar wind is steady. Global MHD simulations with nongyrotropic corrections produce bursts of fast reconnection typically observe d in small-scale kinetic simulations. During the bursts the length of the diffusion region does not exceed 2R(sub E) approximates 12(c/ome ga * pi). The bursts of the fast reconnection last only for a few min utes. After reaching the maximum value the reconnection rate decreases while the length of the diffusion region increases. The decreased ra te, however, is still significantly larger that the steady reconnection rate characteristic for MHD simulations with reconnection supported by numerical resistivity alone. Magnetotail reconnection supported b y nongyrotropic effects results in a tailward retreat of the reconnection site with average speed of the order of 100 km/s, accompanied by magnetotail stretching and thin current sheet formation in the near-E arth plasma sheet. Overall magnetotail response to the steady low-mach-number solar wind with southward IMF exhibits quasi-periodic loading /unloading dynamics typical for frequently observed multiple substorm s.
    Keywords: Geophysics
    Type: 2007 US-Japan Reconnection Workshop; 26-29 Mar. 2007; Saint Michaels, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-26
    Description: .We interpret observations of trace-gases from three satellite platforms to provide top-down constraints on the production of NO by lightning. The space-based observations are tropospheric NO2 columns from SCIAMACHY, tropospheric O3 columns from OMI and MLS, and upper tropospheric HNO3 from ACE-FTS. A global chemical transport model (GEOS-Chem) is used to identify locations and time periods in which lightning would be expected to dominate the trace gas observations. The satellite observations are sampled at those locations and time periods. All three observations exhibit a maximum in the tropical Atlantic region and a minimum in the tropical Pacific. This wave-1 pattern is driven by injection of lightning NO into the upper troposphere over the tropical continents, followed by photochemical production of NO2, HNO3, and O3 during transport. Lightning produces a broad enhancement over the tropical Atlantic and Africa of 2-6 x 10(exp 14) molecules NO2/sq cm, 4 x 10(exp 17) molecules O3/sq cm (15 Dobson Units), and 125 pptv of upper tropospheric HNO3. The lightning background is 25-50% weaker over the tropical Pacific. A global source of 6+/-2 Tg N/yr from lightning in the model best represents the satellite observations of tropospheric NO2, O3, and HNO3.
    Keywords: Meteorology and Climatology
    Type: Journal of Geophysical Research; Volume 112
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-03-16
    Description: An alternative optical thermometry technique that utilizes the low-resolution (order 10(exp 1)/cm) pure-rotational spontaneous Raman scattering of air is developed to aid single-shot multiscalar measurements in turbulent combustion studies. Temperature measurements are realized by correlating the measured envelope bandwidth of the pure-rotational manifold of the N2/O2 spectrum with a theoretical prediction of a species-weighted bandwidth. By coupling this thermometry technique with conventional vibrational Raman scattering for species determination, we demonstrate quantitative spatially resolved, single-shot measurements of the temperature and fuel/oxidizer concentrations in a high-pressure turbulent Cf4-air flame. Our technique provides not only an effective means of validating other temperature measurement methods, but also serves as a secondary thermometry technique in cases where the anti-Stokes vibrational N2 Raman signals are too low for a conventional vibrational temperature analysis.
    Keywords: Optics
    Type: Measurement Science and Technology (ISSN 0957-0233); Volume 19; No. 1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-04-10
    Description: Provides an overview of the X-48B prototype system flight test including vehicle characteristics and configuration. There are two X-48B Vehicles: the first, Vehicle 1, is the wind tunnel and flight test model. The second, Vehicle 2, provides the primary flight test. In mid-May 2006 the research team successfully completed 250 hours of wind tunnel tests on the X-48B Vehicle 1 at NASA's Langley Air Force Base. The prototype was then shipped to NASA's Dryden Flight Research Center at Edwards Air Force Base to serve as a backup to Vehicle 2, which is used for planned remotely piloted flight tests at Dryden.
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-04-04
    Description: A hyperthermophilic, sulfur-reducing, organo-heterotrophic archaeon, strain OGL-20P was isolated from black smoker chimney material from the Rainbow hydrothermal vent site on the Mid-Atlantic Ridge (36.2 N, 33.9 W). The cells of strain OGL-20P(sup T) have an irregular coccoid shape and are motile with a single flagellum. Growth was observed within the pH range 5.0-8.5 (optimum pH 7.0), NaCl concentration range 1-5 % (w/v) (optimum 3%), and temperature range 55-94 C (optimum 83-85 C). The novel isolate is strictly anaerobic and obligately dependent upon elemental sulfur as an electron acceptor, but it does not reduce sulfate, sulfite, thiosulfate, iron (III) or nitrate. Proteolysis products (peptone, bacto-tryptone, casamino-acids, and yeast extract) are utilized as substrates during sulfur-reduction. Strain OGL-20P(sup T) is resistant to ampicillin, chloramphenicol, kanamycin, and gentamycin, but sensitive to tetracycline and rifampicin. The G+C content of DNA is 52.9 mol%. The 16S rRNA gene sequence analysis revealed that strain OGL-20P(sup T) is closely related to Thermococcus coalescens and related species, but no significant homology by DNA-DNA hybridization was observed between those species and the new isolate. On the basis of physiological and molecular properties of the new isolate, we conclude that strain OGL-20P(sup T) represents a new separate species within the genus Thermococcus, and propose the name Thermococcus thioreducens sp. nov. The type strain is OGL-20P(sup T) (= ATCC BAA-394(sup T) = JCM 12859(sup T) = DSM 14981(sup T)).
    Keywords: Life Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-04-04
    Description: We show that the strength of the magnetic field in the area covered by the flare arcade following a CME-producing ejective solar eruption can be estimated from the final angular width of the CME in the outer corona and the final angular width of the flare arcade. We assume (1) the flux-rope plasmoid ejected from the flare site becomes the interior of the CME plasmoid, (2) in the outer corona (R greater than 2R(sub Sun)) the CME is roughly a spherical plasmoid with legs shaped like a light bulb, and (3) beyond some height in or below the outer corona the CME plasmoid is in lateral pressure balance with the surrounding magnetic field. The strength of the nearly radial magnetic field in the outer corona is estimated from the radial component of the interplanetary magnetic field measured by Ulysses. We apply this model to three well-observed CMEs that exploded from flare regions of extremely different size and magnetic setting. One of these CMEs is an over-and-out CME that exploded from a laterally far offset compact ejective flare. In each event, the estimated source-region field strength is appropriate for the magnetic setting of the flare. This agreement (1) indicates that CMEs are propelled by the magnetic field of the CME plasmoid pushing against the surrounding magnetic field, (2) supports the magnetic-arch-blowout scenario for over-and-out CMEs, and (3) shows that a CME s final angular width in the outer corona can be estimated from the amount of magnetic flux covered by the source-region flare arcade.
    Keywords: Solar Physics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-04-04
    Description: The lunar surface is covered with a thick layer of sub-micron/micron size dust grains formed by meteoritic impact over billions of years. The fine dust grains are levitated and transported on the lunar surface, as indicated by the transient dust clouds observed over the lunar horizon during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar UV radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon s surface with its observed adhesive characteristics has the potential of severe impact on human habitat and operations and lifetime of a variety of equipment, it is necessary to investigate the charging properties and the lunar dust phenomena in order to develop appropriate mitigating strategies. Photoelectric emission induced by the solar UV radiation with photon energies higher than the work function of the grain materials is recognized to be the dominant process for charging of the lunar dust, and requires measurements of the photoelectric yields to determine the charging and equilibrium potentials of individual dust grains. In this paper, we present the first laboratory measurements of the photoelectric efficiencies and yields of individual sub-micron/micron size dust grains selected from sample returns of Apollo 17, and Luna 24 missions, as well as similar size dust grains from the JSC-1 simulants. The measurements were made on a laboratory facility based on an electrodynamic balance that permits a variety of experiments to be conducted on individual sub-micron/micron size dust grains in simulated space environments. The photoelectric emission measurements indicate grain size dependence with the yield increasing by an order of magnitude for grains of sub-micron to several micron size radii, at which it reaches asymptotic values. The yield for large size grains is found to be more than an order of magnitude higher than the bulk measurements on lunar fines reported in the literature.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-11
    Description: The contents include: 1) Experience Base; 2) Emergent Knowledge Processes; and 3) Lessons and Insights including flexibility and adaptability, embeddedness, measures of success, knowledge obsolescence, willingness to share and learning.
    Keywords: Computer Programming and Software
    Type: NASA Knowledge Management Workshop, Pasadena, California, July 18, 2007; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-06-11
    Description: Optical astrometry of quasars and active galaxies can provide key information on the spatial distribution and variability of emission in compact nuclei. The Space Interferometry Mission (SIM PlanetQuest) will have the sensitivity to measure a significant number of quasar positions at the microarcsecond level. SIM will be very sensitive to astrometric shifts for objects as faint as V = 19. A variety of AGN phenomena are expected to be visible to SIM on these scales, including time and spectral dependence in position offsets between accretion disk and jet emission. These represent unique data on the spatial distribution and time dependence of quasar emission. It will also probe the use of quasar nuclei as fundamental astrometric references. Comparisons between the time-dependent optical photocenter position and VLBI radio images will provide further insight into the jet emission mechanism. Observations will be tailored to each specific target and science question. SIM will be able to distinguish spatially between jet and accretion disk emission; and it can observe the cores of galaxies potentially harboring binary supermassive black holes resulting from mergers.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-11
    Description: This report presents the results from the first task of the SARP Center Initiative, 'Product Line Verification of Safety-Critical Software.' Task 1 is a literature survey of available techniques for product line verification and validation. Section 1 of the report provides an introduction to product lines and motivates the survey of verification techniques. It describes what is reused in product-line engineering and explains the goal of verifiable conformance of the developed system to its product-line specifications. Section 2 of the report describes six lifecycle steps in product-line verification and validation. This description is based on, and refers to, the best practices extracted from the readings. It ends with a list of verification challenges for NASA product lines (2.7) and verification enablers for NASA product lines (2.8) derived from the survey. Section 3 provides resource lists of related conferences, workshops, industrial and defense industry experiences and case studies of product lines, and academic/industrial consortiums. Section 4 is a bibliography of papers and tutorials with annotated entries for relevant papers not previously discussed in sections 2 or 3.
    Keywords: Mathematical and Computer Sciences (General)
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018-06-11
    Description: The first five Titan flybys with Cassini's Synthetic Aperture RADAR (SAR) and radiometer are examined with emphasis on the calibration and interpretation of the high-resolution radiometry data acquired during the SAR mode (SAR-radiometry). Maps of the 2-cm wavelength brightness temperature are obtained coincident with the SAR swath imaging, with spatial resolution approaching 6 km. A preliminary calibration shows that brightness temperature in these maps varies from 64 to 89 K. Surface features and physical properties derived from the SAR-radiometry maps and SAR imaging are strongly correlated; in general, we find that surface features with high radar reflectivity are associated with radiometrically cold regions, while surface features with low radar reflectivity correlate with radiometrically warm regions. We examined scatterplots of the normalized radar cross-section sigma(exp o) versus brightness temperature, finding differing signatures that characterize various terrains and surface features. Implications for the physical and compositional properties of these features are discussed. The results indicate that volume scattering is important in many areas of Titan's surface, particularly Xanadu, while other areas exhibit complex brightness temperature variations consistent with variable slopes or surface material and compositional properties.
    Keywords: Communications and Radar
    Type: Icarus; Volume 191; No. 1; 211-222
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2018-06-11
    Description: We present new models of the deuterium chemistry in protoplanetary disks, including, for the first time, multiply deuterated species. We use these models to explore whether observations in combination with models can give us clues as to which desorption processes occur in disks.We find, in common with other authors, that photodesorption can allow strongly bound molecules such as HDO to exist in the gas phase in a layer above the midplane. Models including this process give the best agreement with the observations. In the midplane, cosmic-ray heating can desorb weakly bound molecules such as CO and N2. We find the observations suggest that N2 is gaseous in this region, but that CO must be retained on the grains to account for the observed DCO+/HCO+. This could be achieved by CO having a higher binding energy than N2 (as may be the case when these molecules are accreted onto water ice) or by a smaller cosmic-ray desorption rate for CO than assumed here, as suggested by recent theoretical work. For gaseous molecules the calculated deuteration can be greatly changed by chemical processing in the disk from the input molecular cloud values. On the grains singly deuterated species tend to retain the D/H ratio set in the molecular cloud, whereas multiply deuterated species are more affected by the disk chemistry. Consequently, the D/H ratios observed in comets may be partly set in the parent cloud and partly in the disk, depending on the molecule.
    Keywords: Inorganic, Organic and Physical Chemistry
    Type: The Astrophysical Journal; Volume 660; 441-460
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2018-06-11
    Description: We present validation studies of MLS version 2.2 upper tropospheric and stratospheric ozone profiles using ozonesonde and lidar data as well as climatological data. Ozone measurements from over 60 ozonesonde stations worldwide and three lidar stations are compared with coincident MLS data. The MLS ozone stratospheric data between 150 and 3 hPa agree well with ozonesonde measurements, within 8% for the global average. MLS values at 215 hPa are biased high compared to ozonesondes by approximately 20% at middle to high latitude, although there is a lot of variability in this altitude region.
    Keywords: Meteorology and Climatology
    Type: Journal Of Geophysical Research; Volume 112
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-11
    Description: Multiyear estimates of sea ice drift in Baffin Bay and Davis Strait are derived for the first time from the 89 GHz channel of the AMSR-E instrument. Uncertainties in the drift estimates, assessed with Envisat ice motion, are approximately 2-3 km/day. A persistent atmospheric trough, between the coast of Greenland and Baffin Island, drives the prevailing southward drift pattern with average daily displacements in excess of 18-20 km during winter. Over the 5-year record, the ice export ranges between 360 and 675 x 10(exp 3) km(exp 2), with an average of 530 x 10(exp 3) km(exp 2). Sea ice area inflow from the Nares Strait, Lancaster Sound and Jones Sound potentially contribute up to a third of the net area outflow while ice production at the North Water Polynya contributes the balance. Rough estimates of annual volume export give approximately 500-800 km(exp 3). Comparatively, these are approximately 70% and approximately 30% of the annual area and Strait.
    Keywords: Meteorology and Climatology
    Type: Geophysical Research Letters (ISSN 0094-8276); Volume 34
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2018-06-11
    Description: Vertical profiles of stratospheric HOCl calculated with a diurnal steady-state photochemical model that uses currently recommended reaction rates and photolysis cross sections underestimate observed profiles of HOCl obtained by two balloon-borne instruments, FIRS-2 (a far-infrared emission spectrometer) and MkIV (a mid-infrared, solar absorption spectrometer). Considerable uncertainty (a factor of two) persists in laboratory measurements of the rate constant (k(sub 1)) for the reaction ClO + HO2 yields HOCl + O2. Agreement between modeled and measured HOCl can be attained using a value of k(sub 1) from Stimpfle et al. (1979) that is about a factor-of-two faster than the currently recommended rate constant. Comparison of modeled and measured HOCl suggests that models using the currently recommended value for k(sub 1) may underestimate the role of the HOCl catalytic cycle for ozone depletion, important in the midlatitude lower stratosphere.
    Keywords: Meteorology and Climatology
    Type: Geophysical Research Letters (ISSN 0094-8276); Volume 34
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018-06-11
    Description: Measurement of precipitation Doppler velocity by spaceborne radar is complicated by the large velocity of the satellite platform. Even if successive pulses are well correlated, the velocity measurement may be biased if the precipitation target does not uniformly fill the radar footprint. It has been previously shown that the bias in such situations can be reduced if full spectral processing is used. The authors present a processor based on field-programmable gate array (FPGA) technology that can be used for spectral processing of data acquired by future spaceborne precipitation radars. The requirements for and design of the Doppler processor are addressed. Simulation and laboratory test results show that the processor can meet real-time constraints while easily fitting in a single FPGA.
    Keywords: Communications and Radar
    Type: Journal of Atmosphere and Oceanic Technology; Volume 24; Issue 10; 1811-1815
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2018-06-11
    Description: SIM PlanetQuest (hereafter, just SIM) is a NASA mission to measure the angular positions of stars with unprecedented accuracy. We outline the main astrophysical science programs planned for SIM, and related opportunities for community participation. We focus especially on SIM's ability to detect exoplanets as small as the Earth around nearby stars. The planned synergy between SIM and other planet-finding missions including Kepler and GAIA, and planet-characterizing missions including the James Webb Space Telescope (JWST), Terrestrial Planet Finder--Coronagraph (TPF-C), and Terrestrial Planet Finder--Interferometer (TPF-I), is a key element in NASA's Navigator Program to find Earth-like planets, determine their habitability, and search for signs of life in the universe. SIM's technology development is now complete and the project is proceeding towards a launch in the next decade.
    Keywords: Astrophysics
    Type: Acta Astronautica; Volume 61; 52-62
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2018-06-11
    Description: In this paper we address efficient conversion between a Gaussian beam (a truncated plane wave) and a truncated Bessel beam of agiven order, using cylindrical optical waveguides and whispering gallery mode resonators. Utilizing a generator based on waveguides combined with whispering gallery mode resonators, we have realized Bessel beams of the order of 200 with a conversion efficiency exceeding 10 %.
    Keywords: Optics
    Type: Optics Express; Volume 15; No. 9; 5866-5871
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2018-06-11
    Description: The Martian ionosphere's local total electron content (TEC) and the neutral atmosphere scale height can be derived from radar echoes reflected from the surface of the planet. We report the global distribution of the TEC by analyzing more than 750,000 echoes of the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS). This is the first direct measurement of the TEC of the Martian ionosphere. The technique used in this paper is a novel 'transmission-mode' sounding of the ionosphere of Mars in contrast to the Active Ionospheric Sounding experiment (AIS) on MARSIS, which generally operates in the reflection mode. This technique yields a global map of the TEC for the Martian ionosphere. The radar transmits a wideband chirp signal that travels through the ionosphere before and after being reflected from the surface. The received waves are attenuated, delayed and dispersed, depending on the electron density in the column directly below the spacecraft. In the process of correcting the radar signal, we are able to estimate the TEC and its global distribution with an unprecedented resolution of about 0.1 deg in latitude (5 km footprint). The mapping of the relative geographical variations in the estimated nightside TEC data reveals an intricate web of high electron density regions that correspond to regions where crustal magnetic field lines are connected to the solar wind. Our data demonstrates that these regions are generally but not exclusively associated with areas that have magnetic field lines perpendicular to the surface of Mars. As a result, the global TEC map provides a high-resolution view of where the Martian crustal magnetic field is connected to the solar wind. We also provide an estimate of the neutral atmospheric scale height near the ionospheric peak and observe temporal fluctuations in peak electron density related to solar activity.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Geophysical Research Letters; Volume 34; 2007
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2018-06-11
    Description: An understanding of the effect of aerosols on biologically- and photochemically-active UV radiation reaching the Earth's surface is important for many ongoing climate, biophysical, and air pollution studies. In particular, estimates of the UV characteristics of the most common Australian aerosols will be valuable inputs to UV Index forecasts, air quality studies, and assessments of the impact of regional environmental changes. By analyzing climatological distributions of Australian aerosols we have identified sites where co-located ground-based UV-B and ozone measurements were available during episodes of relatively high aerosol activity. Since at least June 2003, surface UV global irradiance spectra (285-450 nm) have been measured routinely at Darwin and Alice Springs in Australia by the Australian Bureau of Meteorology (BoM). Using colocated sunphotometer measurements at Darwin and Alice Springs, we identified several episodes of relatively high aerosol activity. Aerosol air mass types were analyzed from sunphotometer-derived angstrom parameter, MODIS fire maps and MISR aerosol property retrievals. To assess aerosol effects we compared the measured UV irradiances for aerosol-loaded and clear-sky conditions with each other and with irradiances simulated using the libRadtran radiative transfer model for aerosol-free conditions. We found that for otherwise similar atmospheric conditions, smoke aerosols over Darwin reduced the surface UV irradiance by as much as 40-50% at 290-300 nm and 20-25% at 320-400 nm near active fires (aerosol optical depth, AOD, at 500 nm approximately equal to 0.6). Downwind of fires, the smoke aerosols over Darwin reduced the surface irradiance by 15-25% at 290-300 nm and approximately 10% at 320-350 nm (AOD at 500 nm approximately equal to 0.2). The effect of smoke increased with decrease of wavel strongest in the UV-B. The aerosol attenuation factors calculated for the selected cases suggest smoke over Darwin has an effect on surface 340-380 nm irradiances that is comparable to that produced by smoke over Sub-Saharan Africa. Dust activity was very low at Alice Springs during 2004, therefore we were not able to identify strong dust events to fully assess the UVeffect of dust. For the cases studied, smoke aerosols seem to produce a stronger reduction in surface UV irradiances than dust aerosols.
    Keywords: Meteorology and Climatology
    Type: Remote Sensing of Environment: Multi-angle Imaging SpectroRadiometer (MISR) Special Issue; Volume 107; Issues 1-2; 65-80
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2018-06-11
    Description: We report on the design and performance of a novel broadband, biased, subharmonic 520-590 GHz fix-tuned frequency mixer that utilizes planar Schottky diodes. The suspended stripline circuit is fabricated on a GaAs membrane mounted in a split waveguide block. The chip is supported by thick beam leads that are also used to provide precise radio frequency (RF) grounding, RF coupling and dc/intermediate frequency connections. At room temperature, the mixer has a measured double sideband noise temperature of 3000 to 4000 K across the design band.
    Keywords: Electronics and Electrical Engineering
    Type: IEEE Microwave and Wireless Components Letters (ISSN 1531-1309); Volume 17; No. 12; 879-881
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2018-06-11
    Description: The analysis of the response of the Earth Climate System to the seasonal changes of solar forcing in the tropical oceans using four years of the Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit (AMSU) data between 2002 and 2006 gives new insight into amplitude and phase relationships between surface and tropospheric temperatures, humidity, and convective activity. The intensity of the convective activity is measured by counting deep convective clouds. The peaks of convective activity, temperature in the mid-troposphere, and water vapor in the 0-30 N and 0-30 S tropical ocean zonal means occur about two months after solstice, all leading the peak of the sea surface temperature by several weeks. Phase is key to the evaluation of feedback. The evaluation of climate models in terms of zonal and annual means and annual mean deviations from zonal means can now be supplemented by evaluating the phase of key atmospheric and surface parameters relative to solstice. The ability of climate models to reproduce the statistical flavor of the observed amplitudes and relative phases for broad zonal means should lead to increased confidence in the realism of their water vapor and cloud feedback algorithms. AIRS and AMSU were launched into a 705 km altitude polar sun-synchronous orbit on the EOS Aqua spacecraft on May 4, 2002, and have been in routine data gathering mode since September 2002.
    Keywords: Meteorology and Climatology
    Type: Geophysical Research Letters; Volume 34
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2018-06-11
    Description: Iapetus has preserved evidence that constrains the modeling of its geophysical history from the time of its accretion until now. The evidence is (a) its present 79.33-day rotation or spin rate, (b) its shape that corresponds to the equilibrium figure for a hydrostatic body rotating with a period of approximately 16 h, and (c) its high, equatorial ridge, which is unique in the Solar System. This paper reports the results of an investigation into the coupling between Iapetus' thermal and orbital evolution for a wide range of conditions including the spatial distributions with time of composition, porosity, short-lived radioactive isotopes (SLRI), and temperature. The thermal model uses conductive heat transfer with temperature-dependent conductivity. Only models with a thick lithosphere and an interior viscosity in the range of about the water ice melting point can explain the observed shape. Short-lived radioactive isotopes provide the heat needed to decrease porosity in Iapetus? early history. This increases thermal conductivity and allows the development of the strong lithosphere that is required to preserve the 16-h rotational shape and the high vertical relief of the topography. Long-lived radioactive isotopes and SLRI raise internal temperatures high enough that significant tidal dissipation can start, and despin Iapetus to synchronous rotation. This occurred several hundred million years after Iapetus formed. The models also constrain the time when Iapetus formed because the successful models are critically dependent upon having just the right amount of heat added by SLRI decay in this early period. The amount of heat available from short-lived radioactivity is not a free parameter but is fixed by the time when Iapetus accreted, by the canonical concentration of Al-26, and, to a lesser extent, by the concentration of Fe-60. The needed amount of heat is available only if Iapetus accreted between 2.5 and 5.0Myr after the formation of the calcium aluminum inclusions as found in meteorites. Models with these features allow us to explain Iapetus? present synchronous rotation, its fossil 16-h shape, and the context within which the equatorial ridge arose.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Icarus; Volume 190; 179-202
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2018-06-11
    Description: Recent studies have shown that the presence of elevated ducts in the lower atmosphere has an adverse effect on the inversion of GPS radio occultation data. The problem arises because the microwave refractivity within and below an elevated duct is no longer uniquely determined by the bending angle profile. Applying Abel inversion without a priori knowledge of the duct will introduce a negative bias in the retrieved refractivity profile within and below the duct. In this work, high vertical resolution radiosonde data are used to give a quantitative assessment of the characteristics and effects of ducts, including their frequency of occurrences, heights, and thicknesses at different latitudes and seasons. The negative bias from the Abel-retrieved refractivity profiles resulting from these ducts is also computed. The results give a strong indication that ducting in the lower troposphere is a frequent phenomenon over the tropics and midlatitudes. The ducts are shown to be predominantly caused by sharp changes in the vertical structure of water vapor. The majority of the ducts are found to be below 2 km, with a median duct layer thickness of about 100 m. The negative refractivity bias is shown to be largest below 2 km, with a median value of about 0.5-1% in the tropics and 0.2-0.5% in midlatitudes. The bias is about a factor of 2-3 smaller between 2 to 3 km and is negligible above 4 km.
    Keywords: Earth Resources and Remote Sensing
    Type: Radio Science; Volume 42
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2018-06-11
    Description: Evolution has resolved many of nature's challenges leading to working and lasting solutions that employ principles of physics, chemistry, mechanical engineering, materials science, and many other fields of science and engineering. Nature's inventions have always inspired human achievements leading to effective materials, structures, tools, mechanisms, processes, algorithms, methods, systems, and many other benefits. Some of the technologies that have emerged include artificial intelligence, artificial vision, and artificial muscles, where the latter is the moniker for electroactive polymers (EAPs). To take advantage of these materials and make them practical actuators, efforts are made worldwide to develop capabilities that are critical to the field infrastructure. Researchers are developing analytical model and comprehensive understanding of EAP materials response mechanism as well as effective processing and characterization techniques. The field is still in its emerging state and robust materials are still not readily available; however, in recent years, significant progress has been made and commercial products have already started to appear. In the current paper, the state-of-the-art and challenges to artificial muscles as well as their potential application to biomimetic mechanisms and devices are described and discussed.
    Keywords: Cybernetics, Artificial Intelligence and Robotics
    Type: Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science; Volume 221; Issue 10; 1149-1156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2018-06-11
    Description: Optical interferometry will open new vistas for astronomy over the next decade. The Space Interferometry Mission (SIM-PlanetQuest), operating unfettered by the Earth's atmosphere, will offer unprecedented astrometric precision that promises the discovery of Earth-analog extra-solar planets as well as a wealth of important astrophysics. Results from SIM will permit the determination of stellar masses to accuracies of 2% or better for objects ranging from brown dwarfs through main sequence stars to evolved white dwarfs, neutron stars, and black holes. Studies of star clusters will yield age determinations and internal dynamics. Microlensing measurements will present the mass spectrum of the Milky Way internal to the Sun while proper motion surveys will show the Sun's orbital radius and speed. Studies of the Galaxy's halo component and companion dwarf galaxies permit the determination of the Milky Way's mass distribution, including its Dark Matter component and the mass distribution and Dark Matter component of the Local Group. Cosmology benefits from precision (1-2%) determination of distances to Cepheid and RR Lyrae standard candles. The emission mechanism of supermassive black holes will be investigated. Finally, radio and optical celestial reference frames will be tied together by an improvement of two orders of magnitude. Optical interferometers present severe technological challenges. The Jet Propulsion Laboratory, with the support of Lockheed Martin Advanced Technology Center (LM ATC) and Northrop Grumman Space Technology (NGST), has addressed these challenges with a technology development program that is now complete. The requirements for SIM have been satisfied, based on outside peer review, using a series of laboratory tests and appropriate computer simulations: laser metrology systems perform with 10 picometer precision; mechanical vibrations have been controlled to nanometers, demonstrating orders of magnitude disturbance rejection; and knowledge of component positions throughout the whole test assembly has been demonstrated to the required picometer level. Technology transfer to the SIM flight team is now well along.
    Keywords: Astronomy
    Type: Proceedings, SPIE; Volume 6693
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2018-06-11
    Description: We present the design of a compact, wide-angle pushbroom imaging spectrometer suitable for exploration of solar system bodies from low orbit. The spectrometer is based on a single detector array with a broadband response that covers the range 400 to 3000 nm and provides a spectral sampling of 10 nm. The telescope has a 24-deg field of view with 600 spatially resolved elements (detector pixels). A specially designed convex diffraction grating permits optimization of the signal-to-noise ratio through the entire spectral band. Tolerances and design parameters permit the achievement of high uniformity of response through field and wavelength. The spectrometer performance is evaluated in terms of predicted spectral and spatial response functions and from the point of view of minimizing their variation through field and wavelength. The design serves as an example for illustrating the design principles specific to this type of system.
    Keywords: Instrumentation and Photography
    Type: Optical Engineering; Volume 46; No. 6
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2018-06-11
    Description: We present a design for a cryogenically cooled large aperture telescope for far-infrared astronomy in the wavelength range 30 micrometers to 300 micrometers. The Cryogenic Aperture Large Infrared Space Telescope Observatory, or CALISTO, is based on an off-axis Gregorian telescope having a 4 m by 6 m primary reflector. This can be launched using an Atlas V 511, with the only optical deployment required being a simple hinged rotation of the secondary reflector. The off-axis design, which includes a cold stop, offers exceptionally good performance in terms of high efficiency and minimum coupling of radiation incident from angles far off the direction of maximum response. This means that strong astronomical sources, such as the Milky Way and zodiacal dust in the plane of the solar system, add very little to the background. The entire optical system is cooled to 4 K to make its emission less than even this low level of astronomical emission. Assuming that detector technology can be improved to the point where detector noise is less than that of the astronomical background, we anticipate unprecedented low values of system noise equivalent power, in the vicinity of 10(exp -19) WHz(exp -0.5), through CALISTO's operating range. This will enable a variety of new astronomical investigations ranging from studies of objects in the outer solar system to tracing the evolution of galaxies in the universe throughout cosmic time.
    Keywords: Optics
    Type: Proceedings of the SPIE; Volume 6687
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2018-06-11
    Description: We have updated the orbits of the small inner Saturnian satellites using additional Cassini imaging observations through 2007 March. Statistically significant changes from previously published values appear in the eccentricities and inclinations of Pan and Daphnis, but only small changes have been found in the estimated orbits of the other satellites. We have also improved our knowledge of the masses of Janus and Epimetheus as a result of their close encounter observed in early 2006.
    Keywords: Astrophysics
    Type: The Astronomical Journal; Volume 135; 261
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2018-06-11
    Description: Many years of high-resolution measurements by a number of space-based sensors and from Lagrangian drifters became available recently and are used to examine the persistent atmospheric imprints of the semi-permanent meanders of the Agulhas Extension Current (AEC), where strong surface current and temperature gradients are found. The sea surface temperature (SST) measured by the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) and the chlorophyll concentration measured by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) support the identification of the meanders and related ocean circulation by the drifters. The collocation of high and low magnitudes of equivalent neutral wind (ENW) measured by Quick Scatterometer (QuikSCAT), which is uniquely related to surface stress by definition, illustrates not only the stability dependence of turbulent mixing but also the unique stress measuring capability of the scatterometer. The observed rotation of ENW in opposition to the rotation of the surface current clearly demonstrates that the scatterometer measures stress rather than winds. The clear differences between the distributions of wind and stress and the possible inadequacy of turbulent parameterization affirm the need of surface stress vector measurements, which were not available before the scatterometers. The opposite sign of the stress vorticity to current vorticity implies that the atmosphere spins down the current rotation through momentum transport. Coincident high SST and ENW over the southern extension of the meander enhance evaporation and latent heat flux, which cools the ocean. The atmosphere is found to provide negative feedback to ocean current and temperature gradients. Distribution of ENW convergence implies ascending motion on the downwind side of local SST maxima and descending air on the upwind side and acceleration of surface wind stress over warm water (deceleration over cool water); the convection may escalate the contrast of ENW over warm and cool water set up by the dependence of turbulent mixing on stability; this relation exerts a positive feedback to the ENW-SST relation. The temperature sounding measured by the Atmospheric Infrared Sounder(AIRS) is consistent with the spatial coherence between the cloud-top temperature provided by the International Satellite Cloud Climatology Project (ISCCP) and SST. Thus ocean mesoscale SST anomalies associated with the persistent meanders may have a long-term effect well above the midlatitude atmospheric boundary layer, an observation not addressed in the past.
    Keywords: Oceanography
    Type: Journal of Climate; Volume 20; Issue 23
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2018-06-11
    Description: Arecibo delay-Doppler measurements of (99942) Apophis in 2005 and 2006 resulted in a five standard-deviation trajectory correction to the optically predicted close approach distance to Earth in 2029. The radar measurements reduced the volume of the statistical uncertainty region entering the encounter to 7.3% of the pre-radar solution, but increased the trajectory uncertainty growth rate across the encounter by 800% due to the closer predicted approach to the Earth. A small estimated Earth impact probability remained for 2036. With standard-deviation plane-of-sky position uncertainties for 2007-2010 already less than 0.2 arcsec, the best near-term ground-based optical astrometry can only weakly affect the trajectory estimate. While the potential for impact in 2036 will likely be excluded in 2013 (if not 2011) using ground-based optical measurements, approximations within the Standard Dynamical Model (SDM) used to estimate and predict the trajectory from the current era are sufficient to obscure the difference between a predicted impact and a miss in 2036 by altering the dynamics leading into the 2029 encounter. Normal impact probability assessments based on the SDM become problematic without knowledge of the object's physical properties; impact could be excluded while the actual dynamics still permit it. Calibrated position uncertainty intervals are developed to compensate for this by characterizing the minimum and maximum effect of physical parameters on the trajectory. Uncertainty in accelerations related to solar radiation can cause between 82 and 4720 Earth-radii of trajectory change relative to the SDM by 2036. If an actionable hazard exists, alteration by 2-10% of Apophis' total absorption of solar radiation in 2018 could be sufficient to produce a six standard-deviation trajectory change by 2036 given physical characterization; even a 0.5% change could produce a trajectory shift of one Earth-radius by 2036 for all possible spin-poles and likely masses. Planetary ephemeris uncertainties are the next greatest source of systematic error, causing up to 23 Earth-radii of uncertainty. The SDM Earth point-mass assumption introduces an additional 2.9 Earth-radii of prediction error by 2036. Unmodeled asteroid perturbations produce as much as 2.3 Earth-radii of error. We find no future small-body encounters likely to yield an Apophis mass determination prior to 2029. However, asteroid (144898) 2004 VD17, itself having a statistical Earth impact in 2102, will probably encounter Apophis at 6.7 lunar distances in 2034, their uncertainty regions coming as close as 1.6 lunar distances near the center of both SDM probability distributions.
    Keywords: Space Sciences (General)
    Type: Icarus; Volume 193; Issue 1; 1-19
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2018-06-11
    Description: The National Aeronautics and Space Administration has developed a capacity approaching modulation and coding scheme that comprises a serial concatenation of an inner accumulate pulse-position modulation (PPM) and an outer convolutional code [or serially concatenated PPM (SCPPM)] for deep-space optical communications. Decoding of this code uses the turbo principle. However, due to the nonbinary property of SCPPM, a straightforward application of classical turbo decoding is very inefficient. Here, we present various optimizations applicable in hardware implementation of the SCPPM decoder. More specifically, we feature a Super Gamma computation to efficiently handle parallel trellis edges, a pipeline-friendly 'maxstar top-2' circuit that reduces the max-only approximation penalty, a low-latency cyclic redundancy check circuit for window-based decoders, and a high-speed algorithmic polynomial interleaver that leads to memory savings. Using the featured optimizations, we implement a 6.72 megabits-per-second (Mbps) SCPPM decoder on a single field-programmable gate array (FPGA). Compared to the current data rate of 256 kilobits per second from Mars, the SCPPM coded scheme represents a throughput increase of more than twenty-six fold. Extension to a 50-Mbps decoder on a board with multiple FPGAs follows naturally. We show through hardware simulations that the SCPPM coded system can operate within 1 dB of the Shannon capacity at nominal operating conditions.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: IEEE Transactions On Circuits and Systems--I: Regular Papers; Volume 55; No. 2; 644-658
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2018-06-11
    Description: With a dynamic atmosphere and a large supply of particulate material, the surface of Mars is heavily influenced by wind-driven, or aeolian, processes. The High Resolution Imaging Science Experiment (HiRISE) camera on the Mars Reconnaissance Orbiter (MRO) provides a new view of Martian geology, with the ability to see decimeter-size features. Current sand movement, and evidence for recent bedform development, is observed. Dunes and ripples generally exhibit complex surfaces down to the limits of resolution. Yardangs have diverse textures, with some being massive at HiRISE scale, others having horizontal and cross-cutting layers of variable character, and some exhibiting blocky and polygonal morphologies. 'Reticulate' (fine polygonal texture) bedforms are ubiquitous in the thick mantle at the highest elevations.
    Keywords: Instrumentation and Photography
    Type: Geophysical Research Letters; Volume 34
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2018-06-11
    Description: This paper presents an approach for slip prediction from a distance for wheeled ground robots using visual information as input. Large amounts of slippage which can occur on certain surfaces, such as sandy slopes, will negatively affect rover mobility. Therefore, obtaining information about slip before entering such terrain can be very useful for better planning and avoiding these areas. To address this problem, terrain appearance and geometry information about map cells are correlated to the slip measured by the rover while traversing each cell. This relationship is learned from previous experience, so slip can be predicted remotely from visual information only. The proposed method consists of terrain type recognition and nonlinear regression modeling. The method has been implemented and tested offline on several off-road terrains including: soil, sand, gravel, and woodchips. The final slip prediction error is about 20%. The system is intended for improved navigation on steep slopes and rough terrain for Mars rovers.
    Keywords: Geophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2018-06-11
    Description: Amino acids are considered organic molecular indicators in the search for extant and extinct life in the Solar System. Extraction of these molecules from a particulate solid matrix, such as Martian regolith, will be critical to their in situ detection and analysis. The goals of this study were to optimize a laboratory amino acid extraction protocol by quantitatively measuring the yields of extracted amino acids as a function of liquid water temperature and sample extraction time and to compare the results to the standard HCl vapor- phase hydrolysis yields for the same soil samples. Soil samples from the Yungay region of the Atacama Desert ( Martian regolith analog) were collected during a field study in the summer of 2005. The amino acids ( alanine, aspartic acid, glutamic acid, glycine, serine, and valine) chosen for analysis were present in the samples at concentrations of 1 - 70 parts- per- billion. Subcritical water extraction efficiency was examined over the temperature range of 30 - 325 degrees C, at pressures of 17.2 or 20.0 MPa, and for water- sample contact equilibration times of 0 - 30 min. None of the amino acids were extracted in detectable amounts at 30 degrees C ( at 17.2 MPa), suggesting that amino acids are too strongly bound by the soil matrix to be extracted at such a low temperature. Between 150 degrees C and 250 degrees C ( at 17.2 MPa), the extraction efficiencies of glycine, alanine, and valine were observed to increase with increasing water temperature, consistent with higher solubility at higher temperatures, perhaps due to the decreasing dielectric constant of water. Amino acids were not detected in extracts collected at 325 degrees C ( at 20.0 MPa), probably due to amino acid decomposition at this temperature. The optimal subcritical water extraction conditions for these amino acids from Atacama Desert soils were achieved at 200 degrees C, 17.2 MPa, and a water- sample contact equilibration time of 10 min.
    Keywords: Geophysics
    Type: Journal of Geophysical Research; Volume 112
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2018-06-11
    Description: The analysis of the response of the Earth Climate System to the seasonal changes of solar forcing in the tropical oceans using four years of the Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit (AMSU) data between 2002 and 2006 gives new insight into amplitude and phase relationships between surface and tropospheric temperatures, humidity, and convective activity. The intensity of the convective activity is measured by counting deep convective clouds. The peaks of convective activity, temperature in the mid-troposphere, and water vapor in the 0 - 30 N and 0 - 30 S tropical ocean zonal means occur about two months after solstice, all leading the peak of the sea surface temperature by several weeks. Phase is key to the evaluation of feedback. The evaluation of climate models in terms of zonal and annual means and annual mean deviations from zonal means can now be supplemented by evaluating the phase of key atmospheric and surface parameters relative to solstice. The ability of climate models to reproduce the statistical flavor of the observed amplitudes and relative phases for broad zonal means should lead to increased confidence in the realism of their water vapor and cloud feedback algorithms. AIRS and AMSU were launched into a 705 km altitude polar sun-synchronous orbit on the EOS Aqua spacecraft on May 4, 2002, and have been in routine data gathering mode since September 2002.
    Keywords: Meteorology and Climatology
    Type: Geophysical Research Letters; Volume 24
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2018-06-11
    Description: This paper describes a vision-guided manipulation algorithm that improves arm end-effector positioning to subpixel accuracy and meets the highly restrictive imaging and computational constraints of a planetary robotic flight system. Analytical, simulation-based, and experimental analyses of the algorithm's effectiveness and sensitivity to camera and arm model error is presented along with results on several prototype research systems and 'ground-in-the-loop' technology experiments on the Mars Exploration Rover (MER) vehicles. A computationally efficient and robust subpixel end-effector fiducial detector that is instrumental to the algorithm's ability to achieve high accuracy is also described along with its validation results on MER data.
    Keywords: Cybernetics, Artificial Intelligence and Robotics
    Type: Journal of Field Robotics; Volume 24; No. 5; 399-420
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2018-06-11
    Description: To reduce weight and increase the mobility, comfort, and performance of future spacesuits, flexible, thermally conductive fabrics and plastic tubes are needed for the Liquid Cooling and Ventilation Garment. Such improvements would allow astronauts to operate more efficiently and safely for extended extravehicular activities. As an approach to raise the thermal conductivity (TC) of an ethylene vinyl acetate copolymer (Elvax 260), it was compounded with three types of carbon based nanofillers: multi-walled carbon nanotubes (MWCNTs), vapor grown carbon nanofibers (CNFs), and expanded graphite (EG). In addition, other nanofillers including metallized CNFs, nickel nanostrands, boron nitride, and powdered aluminum were also compounded with Elvax 260 in the melt at various loading levels. In an attempt to improve compatibility between Elvax 260 and the nanofillers, MWCNTs and EG were modified by surface coating and through noncovalent and covalent attachment of organic molecules containing alkyl groups. Ribbons of the nanocomposites were extruded to form samples in which the nanofillers were aligned in the direction of flow. Samples were also fabricated by compression molding to yield nanocomposites in which the nanofillers were randomly oriented. Mechanical properties of the aligned samples were determined by tensile testing while the degree of dispersion and alignment of nanoparticles were investigated using high-resolution scanning electron microscopy. TC measurements were performed using a laser flash (Nanoflash ) technique. TC of the samples was measured in the direction of, and perpendicular to, the alignment direction. Additionally, tubing was also extruded from select nanocomposite compositions and the TC and mechanical flexibility measured.
    Keywords: Composite Materials
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2018-06-11
    Description: This paper documents the development of the first integrated data set of global vertical profiles of clouds, aerosols, and radiation using the combined NASA A-Train data from the Aqua Clouds and Earth's Radiant Energy System (CERES) and Moderate Resolution Imaging Spectroradiometer (MODIS), Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), and CloudSat. As part of this effort, cloud data from the CALIPSO lidar and the CloudSat radar are merged with the integrated column cloud properties from the CERES-MODIS analyses. The active and passive datasets are compared to determine commonalities and differences in order to facilitate the development of a 3- dimensional cloud and aerosol dataset that will then be integrated into the CERES broadband radiance footprint. Preliminary results from the comparisons for April 2007 reveal that the CERES-MODIS global cloud amounts are, on average, 0.14 less and 0.15 greater than those from CALIPSO and CloudSat, respectively. These new data will provide unprecedented ability to test and improve global cloud and aerosol models, to investigate aerosol direct and indirect radiative forcing, and to validate the accuracy of global aerosol, cloud, and radiation data sets especially in polar regions and for multi-layered cloud conditions.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2018-06-11
    Description: The world's first extravehicular activity (EVA) was performed by A. A. Leonov on March 18, 1965 during the Russian Voskhod-2 mission. The first US EVA was executed by Gemini IV astronaut Ed White on June 3, 1965, with an umbilical tether that included communications and an oxygen supply. A hand-held maneuvering unit (HHMU) also was used to test maneuverability during the brief EVA; however the somewhat stiff umbilical limited controlled movement. That constraint, plus difficulty returning through the vehicle hatch, highlighted the need for increased thermal control and improved EVA ergonomics. Clearly, requirements for a useful EVA were interrelated with the vehicle design. The early Gemini EVAs generated requirements for suits providing micro-meteor protection, adequate visual field and eye protection from solar visual and infrared radiation, gloves optimized for dexterity while pressurized, and thermal systems capable of protecting the astronaut while rejecting metabolic heat during high workloads. Subsequent Gemini EVAs built upon this early experience and included development of a portable environmental control and life support systems (ECLSS) and an astronaut maneuvering unit. The ECLSS provided a pressure vessel and controller with functional control over suit pressure, oxygen flow, carbon dioxide removal, humidity, and temperature control. Gemini EVA experience also identified the usefulness of underwater neutral buoyancy and altitude chamber task training, and the importance of developing reliable task timelines. Improved thermal management and carbon dioxide control also were required for high workload tasks. With the Apollo project, EVA activity was primarily on the lunar surface; and suit durability, integrated liquid cooling garments, and low suit operating pressures (3.75 pounds per square inch absolute [psia] or 25.8 kilopascal [kPa],) were required to facilitate longer EVAs with ambulation and significant physical workloads with average metabolic rates of 1000 BTU/hr and peaks of up to 2200 BTU/hr. Mobility was further augmented with the Lunar Roving Vehicle. The Apollo extravehicular mobility unit (EMU) was made up of over 15 components, ranging from a biomedical belt for capturing and transmitting biomedical data, urine and fecal containment systems, a liquid cooling garment, communications cap, a modular portable life support system (PLSS), a boot system, thermal overgloves, and a bubble helmet with eye protection. Apollo lunar astronauts performed successful EVAs on the lunar surface from a 5 psia (34.4 kPa) 100% oxygen environment in the Lunar Lander. A maximum of three EVAs were performed on any mission. For Skylab a modified A7LB suit, used for Apollo 15, was selected. The Skylab astronaut life support assembly (ALSA) provided umbilical support through the life support umbilical (LSU) and used open loop oxygen flow, rather than closed-loop as in Apollo missions. Thermal control was provided by liquid water circulated by spacecraft pumps and electrical power also was provided from the spacecraft via the umbilical. The cabin atmosphere of 5 psia (34.4 kPa), 70% oxygen, provided a normoxic atmosphere and because of the very low nitrogen partial pressures, no special protocols were required to protect against decompression sickness (DCS) as was the case with the Apollo spacecraft with a 5 psi, 100% oxygen environment.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2018-06-11
    Description: Beginning in 2005, an optical measurement center (OMC) was created to measure the photometric signatures of debris pieces. Initially, the OMC was equipped with a 300 W xenon arc lamp, a SBIG 512 x 512 ST8X MEI CCD camera with standard Johnson filters, and a Lynx 6 robotic arm with five degrees of freedom. As research progressed, modifications were made to the equipment. A customized rotary table was built to overcome the robot s limitation of 180 degree wrist rotation and provide complete 360 degree rotation with little human interaction. This change allowed an initial phase angle (source-object-camera angle) of roughly 5 degrees to be adjusted to 7, 10, 15, 18, 20, 25, or 28 degrees. Additionally, the Johnson R and I CCD filters were replaced with the standard astronomical filters suite (Bessell R,I). In an effort to reduce object saturation, the two generic aperture stops were replaced with neutral density filters. Initially data were taken with aluminum debris pieces from the European Space Operations Centre ESOC2 ground test and more recently with samples from a thermal multi-layered insulation (MLI) commonly used on rocket bodies and satellites. The ESOC2 data provided light curve analysis for one type of material but many different shapes, including flat, bent, curled, folded, and torn. The MLI samples are roughly the same size and shape, but have different surfaces that give rise to interesting photometric light curves. In addition, filter photometry was conducted on the MLI pieces, a process that also will be used on the ESOC2 samples. While obtaining light curve data an anomalous drop in intensity was observed when the table revolved through the second 180 degree rotation. Investigation revealed that the robot s wrist rotation is not reliable past 80 degrees, thus the object may be at slightly different angles at the 180 degree transition. To limit this effect, the initial rotation position begins with the object s minimal surface area facing the camera.
    Keywords: Astronomy
    Type: Orbital Debris Quarterly News, Vol. 11, No. 3; 7
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-11
    Description: Topics discussed include: a) Investigation of MMOD Impact on STS-115 Shuttle Payload Bay Door; b) Optical Observations of GEO Debris with Two Telescopes; and c) Optical Measurement Center Status.
    Keywords: Space Transportation and Safety
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2018-06-11
    Description: For several years, the Michigan Orbital DEbris Survey Telescope (MODEST), the University of Michigan s 0.6/0.9-m Schmidt telescope on Cerro Tololo Inter-American Observatory in Chile has been used to survey the debris population at GEO in the visible regime. Magnitudes, positions, and angular rates are determined for GEO objects as they move across the telescope s field-of-view (FOV) during a 5-minute window. This short window of time is not long enough to determine a full six parameter orbit so usually a circular orbit is assumed. A longer arc of time is necessary to determine eccentricity and to look for changes in the orbit with time. MODEST can follow objects in real-time, but only at the price of stopping survey operations. A second telescope would allow for longer arcs of orbit to obtain the full six orbital parameters, as well as assess the changes over time. An additional benefit of having a second telescope is the capability of obtaining BVRI colors of the faint targets, aiding efforts to determine the material type of faint debris. For 14 nights in March 2007, two telescopes were used simultaneously to observe the GEO debris field. MODEST was used exclusively in survey mode. As objects were detected, they were handed off in near real-time to the Cerro Tololo 0.9-m telescope for follow-up observations. The goal was to determine orbits and colors for all objects fainter than R = 15th magnitude (corresponds to 1 meter in size assuming a 0.2 albedo) detected by MODEST. The hand-off process was completely functional during the final eight nights and follow-ups for objects from night-to-night were possible. The cutoff magnitude level of 15th was selected on the basis of an abrupt change in the observed angular rate distribution in the MODEST surveys. Objects brighter than 15th magnitude tend to lie on a well defined locus in the angular rate plane (and have orbits in the catalog), while fainter objects fill the plane almost uniformly. We need to determine full six-parameter orbits to investigate what causes this change in observed angular rates. Are these faint objects either the same population of high area-to-mass (A/M) objects on eccentric orbits as discovered by the ESA Space Debris Telescope (Schildknecht, et al. 2004), or are they just normal debris from breakups in GEO?
    Keywords: Astronomy
    Type: Orbital Debris Quarterly News, Vol. 11, No. 3; 6-7
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2018-06-11
    Description: The Orbiter radiator system consists of eight individual 4.6 m x 3.2 m panels located with four on each payload bay door. Forward panels #1 and #2 are 2.3 cm thick while the aft panels #3 and #4 have a smaller overall thickness of 1.3 cm. The honeycomb radiator panels consist of 0.028 cm thick Aluminum 2024-T81 facesheets and Al5056-H39 cores. The face-sheets are topped with 0.005 in. (0.127 mm) silver-Teflon tape. The radiators are located on the inside of the shuttle payload bay doors, which are closed during ascent and reentry, limiting damage to the on-orbit portion of the mission. Post-flight inspections at the Kennedy Space Center (KSC) following the STS-115 mission revealed a large micrometeoroid/orbital debris (MMOD) impact near the hinge line on the #4 starboard payload bay door radiator panel. The features of this impact make it the largest ever recorded on an orbiter payload bay door radiator. The general location of the damage site and the adjacent radiator panels can be seen in Figure 2. Initial measurements of the defect indicated that the hole in the facesheet was 0.108 in. (2.74 mm) in diameter. Figure 3 shows an image of the front side damage. Subsequent observations revealed exit damage on the rear facesheet. Impact damage features on the rear facesheet included a 0.03 in. diameter hole (0.76 mm), a approx.0.05 in. tall bulge (approx.1.3 mm), and a larger approx.0.2 in. tall bulge (approx.5.1 mm) that exhibited a crack over 0.27 in. (6.8 mm) long. A large approx.1 in. (25 mm) diameter region of the honeycomb core was also damaged. Refer to Figure 4 for an image of the backside damage to the panel. No damage was found on thermal blankets or payload bay door structure under the radiator panel. Figure 5 shows the front facesheet with the thermal tape removed. Ultrasound examination indicated a maximum facesheet debond extent of approximately 1 in. (25 mm) from the entry hole. X-ray examinations revealed damage to an estimated 31 honeycomb cells with an extent of 0.85 in. x 1.1 in. (21.6 x 27.9 mm). Pieces of the radiator at and surrounding the impact site were recovered during the repair procedures at KSC. They included the thermal tape, front facesheet, honeycomb core, and rear facesheet. These articles were examined at JSC using a scanning electron microscope (SEM) with an energy dispersive x-ray spectrometer (EDS). Figure 6 shows SEM images of the entry hole in the facesheet. The asymmetric height of the lip may be attributed to projectile shape and impact angle. Numerous instances of a glass-fiber organic matrix composite were observed in the facesheet tape sample. The fibers were approximately 10 micrometers in diameter and variable lengths. EDS analysis indicated a composition of Mg, Ca, Al, Si, and O. Figures 7 and 8 present images of the fiber bundles, which were believed to be circuit board material based on similarity in fiber diameter, orientation, consistency, and composition. A test program was initiated in an attempt to simulate the observed damage to the radiator facesheet and honeycomb. Twelve test shots were performed using projectiles cut from a 1.6 mm thick fiberglass circuit board substrate panel. Results from test HITF07017, shown in figures 9 and 10, correlates with the observed impact features reasonably well. The test was performed at 4.14 km/sec with an impact angle of 45 degrees using a cylindrical projectile with a diameter and length of 1.25 mm. The fiberglass circuit board material had a density of 1.65 g/cu cm, giving a projectile mass of 2.53 mg. An analysis was performed using the Bumper code to estimate the probability of impact to the shuttle from a 1.25 mm diameter particle. Table 1 shows a 1.6% chance (impact odds = 1 in 62) of a 1.25 mm or larger MMOD impact on the radiators of the vehicle during a typical ISS mission. There is a 0.4% chance (impact odds = 1 in 260) that a 1.25 mm or larger MMOD particle would impact the RCC wing leading edge and nose cap during a typical miion. Figure 11 illustrates the vulnerable areas of the wing leading edge reinforced carbon-carbon (RCC), an area of the vehicle that is very sensitive to impact damage. The highlighted red, orange, yellow, and light green areas would be expected to experience critical damage if impacted by an OD particle such as the one that hit the RH4 radiator panel on STS-115.
    Keywords: Spacecraft Design, Testing and Performance
    Type: Orbital Debris Quarterly News, Vol. 11, No. 3; 2-5
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2018-06-11
    Description: Numerous studies have indicated that dysregulation of the immune system occurs during or after spaceflight. Using 21 day -6 degrees head-down tilt bed rest as a spaceflight analog, this study describes the effects of artificial gravity (AG) as a daily countermeasure on immunity, stress and reactivation of clinically important latent herpes viruses. The specific aims were to evaluate psychological and physiological stress, to determine the status of the immune system, and to quantify reactivation of latent herpes viruses. Blood, saliva, and urine samples were collected from each participating subject at different times throughout the study. An immune assessment was performed on all treatment and control subjects that consisted of a comprehensive peripheral immunophenotype analysis, intracellular cytokine profiles and a measurement of T cell function. The treatment group displayed no differences throughout the course of the study with regards to peripheral leukocyte distribution, cytokine production or T cell function. Shedding of Epstein barr virus (EBV), Cytomegalovirus (CMV), and Varicella zoster virus (VZV) was quantified by real time PCR in saliva and urine samples, respectively. There was no significant difference in CMV DNA in the treatment group as compared to the control group. EBV and VZV on the other hand showed a mild reactivation during the study. There were no significant differences in cortisol between the control and treatment groups. In addition, no significant differences between antiviral antibody titers (EBV-VCA, -EA, -EBNA, CMV) or tetramer-positive (EBV, CMV) were found between the two groups. EBV DNA copies in blood were typically undetectable but never exceeded 1,500 copies per 106 PBMCs. Overall, these data indicate that the artificial gravity countermeasure and the 21 day head-down tilt bed rest regimen had no observable adverse effect on immune function.
    Keywords: Aerospace Medicine
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2018-06-11
    Description: This viewgraph document concerns the Window Observational Research Facility (WORF) Rack, a unique facility designed for use with the US Lab Destiny Module window. WORF will provide valuable resources for Earth Science payloads along with serving the purpose of protecting the lab window. The facility can be used for remote sensing instrumentation test and validation in a shirt sleeve environment. WORF will also provide a training platform for crewmembers to do orbital observations of other planetary bodies. WORF payloads will be able to conduct terrestrial studies utilizing the data collected from utilizing WORF and the lab window.
    Keywords: Ground Support Systems and Facilities (Space)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2018-06-11
    Description: Accurate details of the general performance of fluid actuators is desirable over a range of flow conditions, within some predetermined error tolerance. Designers typically model actuators with different levels of fidelity depending on the acceptable level of error in each circumstance. Crude properties of the actuator (e.g., peak mass rate and frequency) may be sufficient for some designs, while detailed information is needed for other applications (e.g., multiple actuator interactions). This work attempts to address two primary objectives. The first objective is to develop a systematic methodology for approximating realistic 3-D fluid actuators, using quasi-1-D reduced-order models. Near full fidelity can be achieved with this approach at a fraction of the cost of full simulation and only a modest increase in cost relative to most actuator models used today. The second objective, which is a direct consequence of the first, is to determine the approximate magnitude of errors committed by actuator model approximations of various fidelities. This objective attempts to identify which model (ranging from simple orifice exit boundary conditions to full numerical simulations of the actuator) is appropriate for a given error tolerance.
    Keywords: Numerical Analysis
    Type: Proceedings of the 2004 Workshop on CFD Validation of Synthetic Jets and Turbulent Separation Control; 1.10.1 - 1.10.4; NASA/CP-2007-214874
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-11
    Description: This case was run using CFL3D, a multi-zone Reynolds-averaged Navier-Stokes code developed at NASA Langley [1]. It solves the thin-layer form of the Navier-Stokes equations in each of the (selected) coordinate directions. It can use 1-to-1, patched, or overset grids, and employs local time step scaling, grid sequencing, and multigrid to accelerate convergence to steady state. In time-accurate mode, CFL3D has the option to employ dual-time stepping with subiterations and multigrid, and it achieves second order temporal accuracy. CFL3D is a finite volume method. It uses third-order upwind-biased spatial differencing on the convective and pressure terms, and second-order differencing on the viscous terms; it is globally second-order spatially accurate. The flux difference-splitting (FDS) method of Roe is employed to obtain fluxes at the cell faces. It is advanced in time with an implicit three-factor approximate factorization method.
    Keywords: Numerical Analysis
    Type: Proceedings of the 2004 Workshop on CFD Validation of Synthetic Jets and Turbulent Separation Control; 2.4.1 - 2.4.5; NASA/CP-2007-214874
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2018-06-11
    Description: A second-order unstructured-grid code, developed and used primarily for steady aerodynamic simulations, is applied to the synthetic jet in a cross flow. The code, FUN3D, is a vertex-centered finite-volume method originally developed by Anderson[1, 2], and is currently supported by members of the Fast Adaptive Aerospace Tools team at NASA Langley. Used primarily for design[3] and analysis[4] of steady aerodynamic configurations, FUN3D incorporates a discrete adjoint capability, and supports parallel computations using MPI. A detailed description of the FUN3D code can be found in the references given above. The code is under continuous development and contains a variety of flux splitting algorithms for the inviscid terms, two methods for computing gradients, several turbulence models, and several solution methodologies; all in varying states of development. Only the most robust and reliable components, based on experiences with steady aerodynamic simulations, were employed in this work. As applied in this work, FUN3D solves the Reynolds averaged Navier-Stokes equations using the one equation turbulence model of Spalart and Allmaras[5]. The spatial discretization is formed on unstructured meshes using a vertex-centered approach. The inviscid terms are evaluated by a flux-difference splitting formulation using least-squares reconstruction and Roe-type approximate Riemann fluxes. Green-Gauss gradient evaluations are used for viscous and turbulence modeling terms. The discrete spatial operator is combined with a backward time operator which is then solved iteratively using point or line Gauss-Seidel and local time stepping in a pseudo time. For steady flows, the physical time step is set to infinity and the pseudo time step is ramped up with the iteration count. A second-order backward in time operator is used for time accurate flows with 20 to 50 steps in the pseudo time applied at each physical time step. For this effort, FUN3D was modified to support spatially varying boundary and initial conditions, and unsteady boundary conditions. Also, a specialized in/out flow boundary condition was implemented to model the action of the diaphragm. This boundary condition is described below in more detail. The grids were generated using the internally developed codes GridEX[6] for meshing the surfaces and inviscid regions of the domain, and for CAD access; and MesherX[7] for meshing the viscous regions. Grid spacing in on the surfaces and in the inviscid regions are indirectly controlled by specifying sources. The viscous layers are generated using an advancing layer technique. MeshersX allows the user to control the spatial variation of the first step off the surface, growth rates, and the termination criterion by providing small problem dependent subroutines.
    Keywords: Aerodynamics
    Type: Proceedings of the 2004 Workshop on CFD Validation of Synthetic Jets and Turbulent Separation Control; 2.6.1 - 2.6.5; NASA/CP-2007-214874
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2018-06-11
    Description: To identify accurate predictors for the risk of sudden death in patients with familial dysautonomia (FD). Ten-minute resting high-fidelity 12-lead ECGs were obtained from 14 FD patients and 14 age/gender-matched healthy subjects. Multiple conventional and advanced ECG parameters were studied for their ability to predict sudden death in FD over a subsequent 4.5-year period, including multiple indices of linear and non-linear heart rate variability (HRV); QT variability; waveform complexity; high frequency QRS; and derived Frank-lead parameters. Four of the 14 FD patients died suddenly during the follow-up period, usually with concomitant pulmonary disorder. The presence of low vagally-mediated HRV was the ECG finding most predictive of sudden death. Concomitant left ventricular hypertrophy and other ECG abnormalities such as increased QTc and JTc intervals, spatial QRS-T angles, T-wave complexity, and QT variability were also present in FD patients, suggesting that structural heart disease is fairly common in FD. Although excessive or unopposed cardiac vagal (relative to sympathetic) activity has been postulated as a contributor to sudden death in FD, the presence of low vagally-mediated HRV was paradoxically the best predictor of sudden death. However, we suggest that low vagally-mediated HRV be construed not as a direct cause of sudden death in FD, but rather as an effect of concurrent pathological processes, especially hypoxia due to pulmonary disorders and sleep apnea, that themselves increase the risk of sudden death in FD and simultaneously diminish HRV. We speculate that adenosine may play a role in sudden death in FD, possibly independently of vagal activity, and that adenosine inhibitors such as theophylline might therefore be useful as prophylaxis in this disorder.
    Keywords: Life Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2018-06-11
    Description: A growing number of studies show strong associations between stress and altered immune function. In vivo studies of chronic and acute stress have demonstrated that cognitive stressors are strongly correlated with high levels of catecholamines (CT) and corticosteroids (CS). Although both CS and CT individually can inhibit the production of T-helper 1 (TH1, type-1 like) cytokines and simultaneously promote the production of T-helper 2 (TH2, type-2 like) cytokines in antigen-specific and mitogen stimulated human leukocyte cultures in vitro, little attention has been focused on the effects of combination CT and CS in immune responses that may be more physiologically relevant. We therefore investigated the combined effects of in vitro CT and CS upon the type-1/type-2 cytokine balance of human peripheral blood mononuclear cells (PBMC) as a model to study the immunomodulatory effects of superimposed acute and chronic stress. Results demonstrated a significant decrease in type-1 cytokine production (IFN-gamma) and a significant increase in type-2 cytokine production (IL-4, IL-10) in our CS+CT incubated cultures when compared to either CT or CS agents alone. Furthermore, variable enhancement of type-1/type-2 immune deviation occurred depending upon when the CT was added. The data suggest that CS can increase the sensitivity of PBMC to the immunomodulatory effects of CT and establishes an in vitro model to study the combined effects of in vivo type-1/type-2 cytokine alterations observed in acute and chronic stress.
    Keywords: Aerospace Medicine
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-11
    Description: A viewgraph presentation describing orbital debris from a policy perspective is shown. The contents include: 1) Voyage through near-Earth Space-animation; 2) What is Orbital Debris?; 3) Orbital Debris Detectors and Damage Potential; 4) Hubble Space Telescope; 5) Mir Space Station Solar Array; 6) International Space Station; 7) Space Shuttle; 8) Satellite Explosions; 9) Satellite Collisions; 10) NASA Orbital Debris Mitigation Guidelines; 11) International Space Station Jettison Policy; 12) Controlled/Uncontrolled Satellite Reentries; 13) Return of Space Objects; 14) Orbital Debris and U.S. National Space Policy; 15) U.S Government Policy Strategy; 16) Bankruptcy of the Iridium Satellite System; 17) Inter-Agency Space Debris Coordination Committee (IADC); 18) Orbital Debris at the United Nations; 19) Chinese Anti-satellite System; 20) Future Evolution of Satellite Population; and 21) Challenge of Orbital Debris
    Keywords: Space Transportation and Safety
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-11
    Description: Phase space symmetries inherent in the statistical theory of ideal magnetohydrodynamic (MHD) turbulence are known to be broken dynamically to produce large-scale coherent magnetic structure. Here, results of a numerical study of decaying MHD turbulence are presented that show large-scale coherent structure also arises and persists in the presence of dissipation. Dynamically broken symmetries in MHD turbulence may thus play a fundamental role in the dynamo process.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2018-06-11
    Description: A viewgraph presentation on the Decompression Sickness (DCS) Contingency Plan for manned spaceflight is shown. The topics include: 1) Approach; 2) DCS Contingency Plan Overview; 3) Extravehicular Activity (EVA) Cuff Classifications; 4) On-orbit Treatment Philosophy; 5) Long Form Malfunction Procedure (MAL); 6) Medical Checklist; 7) Flight Rules; 8) Crew Training; 9) Flight Surgeon / Biomedical Engineer (BME) Training; and 10) DCS Emergency Landing Site.
    Keywords: Aerospace Medicine
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2018-06-11
    Description: Sonography is the only medical imaging modality aboard the ISS, and is likely to remain the leading imaging modality in future human space flight programs. While trauma sonography (TS) has been well recognized for terrestrial trauma settings, the technique had to be evaluated for suitability in space flight prior to adopting it as an operational capability. The authors found the following four-phased evaluative approach applicable to this task: 1) identifying standard or novel terrestrial techniques for potential use in space medicine; 2) developing and testing these techniques with suggested modifications on the ground (1g) either in clinical settings or in animal models, as appropriate; 3) evaluating and refining the techniques in parabolic flight (0g); and 4) validating and implementing for clinical use in space. In Phase I of the TS project, expert opinion and literature review suggested TS to be a potential screening tool for trauma in space. In Phase II, animal models were developed and tested in ground studies, and clinical studies were carried out in collaborating trauma centers. In Phase III, animal models were flight-tested in the NASA KC-135 Reduced Gravity Laboratory. Preliminary results of the first three phases demonstrated potential clinical utility of TS in microgravity. Phase IV studies have begun to address crew training issues, on-board imaging protocols, and data transfer procedures necessary to offer the modified TS technique for space use.
    Keywords: Aerospace Medicine
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2018-06-11
    Description: Spaceflight-induced microgravity appears to be a risk factor for the development of urinary calculi due to skeletal calcium liberation and other undefined factors, resulting in stone disease in crewmembers during and after spaceflight. Calcifying nanoparticles, or nanobacteria, reproduce at a more rapid rate in simulated microgravity conditions and create external shells of calcium phosphate in the form of apatite. The questions arises whether calcifying nanoparticles are niduses for calculi and contribute to the development of clinical stone disease in humans, who possess environmental factors predisposing to the development of urinary calculi and potentially impaired immunological defenses during spaceflight. A case of a urinary calculus passed from an astronaut post-flight with morphological characteristics of calcifying nanoparticles and staining positive for a calcifying nanoparticle unique antigen, is presented.
    Keywords: Life Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2018-06-11
    Description: Randall's plaques, first described by Alexander Randall in the 1930s, are small subepithelial calcifications in the renal papillae (RP) that also extend deeply into the renal medulla. Despite the strong correlation between the presence of these plaques and the formation of renal stones, the precise origin and pathogenesis of Randall s plaque formation remain elusive. The discovery of calcifying nanoparticles (CNP) and their detection in many calcifying processes of human tissues has raised hypotheses about their possible involvement in renal stone formation. We collected RP and blood samples from 17 human patients who had undergone laparoscopic nephrectomy due to neoplasia. Homogenized RP tissues and serum samples were cultured for CNP. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis were performed on fixed RP samples. Immunohistochemical staining (IHS) was applied on the tissue samples using CNP-specific monoclonal antibody (mAb). Randall s plaques were visible on gross inspection in 11 out of 17 collected samples. Cultures of all serum samples and 13 tissue homogenates had CNP growth within 4 weeks. SEM revealed spherical apatite formations in 14 samples, with calcium and phosphate peaks detected by EDS analysis. IHS was positive in 9 out of 17 samples. A strong link was found between the presence of Randall s plaques and the detection of CNP, also referred to as nanobacteria. These results suggest new insights into the etiology of Randall's plaque formation, and will help us understand the pathogenesis of stone formation. Further studies on this topic may lead us to new approaches on early diagnosis and novel medical therapies of kidney stone formation.
    Keywords: Life Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2018-06-11
    Description: CEV atmosphere will likely change because craft will be used as LEO spacecraft, lunar spacecraft, orbital spacecraft. Possible O2 % increase and overall pressure decrease pressure vessel certs on spacecraft. Want 34% minimum threshold. Higher, better when atmosphere changes. WSTF suggests testing all materials/components to find flammability threshold, pressure and atmosphere.
    Keywords: Space Transportation and Safety
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2018-06-11
    Description: The toxicological assessments of 2 grab sample canisters (GSCs) from the Shuttle are reported. Analytical methods have not changed from earlier reports. The Shuttle atmosphere was acceptable for human respiration.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2018-06-11
    Description: Shock recovery experiments to determine whether magnetite could be produced by the decomposition of iron-carbonate were initiated. Naturally occurring siderite was first characterized by electron microprobe (EMP), transmission electron microscopy (TEM), Mossbauer spectroscopy, and magnetic susceptibility measurements to be sure that the starting material did not contain detectable magnetite. Samples were shocked in tungsten-alloy holders (W=90%, Ni=6%, Cu=4%) to further insure that any iron phases in the shock products were contributed by the siderite rather than the sample holder. Each sample was shocked to a specific pressure between 30 to 49 GPa. Previously reported results of TEM analyses on 49 GPa experiments indicated the presence of nano-phase spinel-structured iron oxide. Transformation of siderite to magnetite as characterized by TEM was found in the 49 GPa shock experiment. Compositions of most magnetites are greater than 50% Fe sup(+2) in the octahedral site of the inverse spinel structure. Magnetites produced in shock experiments display the same range of single-domain, superparamagnetic sizes (approx. 50 100 nm), compositions (100% magnetite to 80% magnetite-20% magnesioferrite), and morphologies (equant, elongated, euhedral to subhedral) as magnetites synthesized by Golden et al. (2001) or magnetites grown naturally by MV1 magnetotactic bacteria, and as the magnetites in Martian meteorite ALH84001. Fritz et al. (2005) previously concluded that ALH84001 experienced approx. 32 GPa pressure and a resultant thermal pulse of approx. 100 - 110 C. However, ALH84001 contains evidence of local temperature excursions high enough to 1 melt feldspar, pyroxene, and a silica-rich phase. This 49 GPa experiment demonstrates that magnetite can be produced by the shock decomposition of siderite as a result of local heating to greater than 470 C. Therefore, magnetite in the rims of carbonates in Martian meteorite ALH84001 could be a product of shock devolatilization of siderite as well.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2018-06-11
    Description: The Imager for Mars Pathfinder (IMP) was a mast-mounted instrument on the Mars Pathfinder lander which landed on Mars Ares Vallis floodplain on July 4, 1997. During the 83 sols of Mars Pathfinders landed operations, the IMP collected over 16,600 images. Multispectral images were collected using twelve narrowband filters at wavelengths between 400 and 1000 nm in the visible and near infrared (VNIR) range. The IMP provided VNIR spectra of the materials surrounding the lander including rocks, bright soils, dark soils, and atmospheric observations. During the primary mission, only a single primary rock spectral class, Gray Rock, was recognized; since then, Black Rock, has been identified. The Black Rock spectra have a stronger absorption at longer wavelengths than do Gray Rock spectra. A number of coated rocks have also been described, the Red and Maroon Rock classes, and perhaps indurated soils in the form of the Pink Rock class. A number of different soil types were also recognized with the primary ones being Bright Red Drift, Dark Soil, Brown Soil, and Disturbed Soil. Examination of spectral parameter plots indicated two trends which were interpreted as representing alteration products formed in at least two different environmental epochs of the Ares Vallis area. Subsequent analysis of the data and comparison with terrestrial analogs have supported the interpretation that the rock coatings provide evidence of earlier martian environments. However, the presence of relatively uncoated examples of the Gray and Black rock classes indicate that relatively unweathered materials can persist on the martian surface.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2018-06-11
    Description: Multispectral imaging from the Panoramic Camera (Pancam) instruments on the Mars Exploration Rovers Spirit and Opportunity has provided important new insights about the geology and geologic history of the rover landing sites and traverse locations in Gusev crater and Meridiani Planum. Pancam observations from near-UV to near-IR wavelengths provide limited compositional and mineralogic constraints on the presence abundance, and physical properties of ferric- and ferrous-iron bearing minerals in rocks, soils, and dust at both sites. High resolution and stereo morphologic observations have also helped to infer some aspects of the composition of these materials at both sites. Perhaps most importantly, Pancam observations were often efficiently and effectively used to discover and select the relatively small number of places where in situ measurements were performed by the rover instruments, thus supporting and enabling the much more quantitative mineralogic discoveries made using elemental chemistry and mineralogy data. This chapter summarizes the major compositionally- and mineralogically-relevant results at Gusev and Meridiani derived from Pancam observations. Classes of materials encountered in Gusev crater include outcrop rocks, float rocks, cobbles, clasts, soils, dust, rock grindings, rock coatings, windblown drift deposits, and exhumed whitish/yellowish salty soils. Materials studied in Meridiani Planum include sedimentary outcrop rocks, rock rinds, fracture fills, hematite spherules, cobbles, rock fragments, meteorites, soils, and windblown drift deposits. This chapter also previews the results of a number of coordinated observations between Pancam and other rover-based and Mars-orbital instruments that were designed to provide complementary new information and constraints on the mineralogy and physical properties of martian surface materials.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2018-06-11
    Description: Aqueous alteration is the change in composition of a rock, produced in response to interactions with H2O-bearing ices, liquids, and vapors by chemical weathering. A variety of mineralogical and geochemical indicators for aqueous alteration on Mars have been identified by a combination of surface and orbital robotic missions, telescopic observations, characterization of Martian meteorites, and laboratory and terrestrial analog studies. Mineralogical indicators for aqueous alteration include goethite (lander), jarosite (lander), kieserite (orbiter), gypsum (orbiter) and other Fe-, Mg-, and Ca-sulfates (landers), halides (meteorites, lander), phyllosilicates (orbiter, meteorites), hematite and nanophase iron oxides (telescopic, orbiter, lander), and Fe-, Mg-, and Ca-carbonates (meteorites). Geochemical indicators (landers only) for aqueous alteration include Mg-, Ca-, and Fe-sulfates, halides, and secondary aluminosilicates such as smectite. Based upon these indicators, several styles of aqueous alteration have been suggested on Mars. Acid-sulfate weathering (e.g., formation of jarosite, gypsum, hematite, and goethite), may occur during (1) the oxidative weathering of ultramafic igneous rocks containing sulfides, (2) sulfuric acid weathering of basaltic materials, and (3) acid fog (i.e., vapors rich in H2SO4) weathering of basaltic or basaltic-derived materials. Near-neutral or alkaline alteration occurs when solutions with pH near or above 7 move through basaltic materials and form phases such as phyllosilicates and carbonates. Very low water:rock ratios appear to have been prominent at most of the sites visited by landed missions because there is very little alteration (leaching) of the original basaltic composition (i.e., the alteration is isochemical or in a closed hydrologic system). Most of the aqueous alteration appears to have occurred early in the history of the planet (3 to 4.5 billion years ago); however, minor aqueous alteration may be occurring at the surface even today (e.g., in thin films of water or by acid fog).
    Keywords: Geosciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2018-06-11
    Description: The National Aeronautics and Space Administration (NASA) has developed a zeolite-based synthetic substrate, termed zeoponics. The zeoponic substrate (consisting of NH4(-) and K-exchanged clinoptilolite, synthetic apatite, and dolomite) provides all of the plant-essential nutrients through mineral dissolution and ion exchange, with only the addition of water. Previous studies have shown high productivity of wheat in zeoponic substrates; however, no experiments have been conducted on other crops. The objective of this study was to determine the productivity and nutrient uptake of radish (Raphanus sativus L.) grown in zeoponic substrates with three successive crops in the same substrate. Radish was chosen because of its sensitivities to NH4(+). Average fresh weights of edible roots were similar for radish grown in zeoponic substrates watered with deionized H2O (10.97 g/plant) and in potting mix control substrate irrigated with nutrient solution (10.92 g/plant). Average fresh weight production of edible roots for radish grown in same zeoponic substrate increased in yield over time with the lowest yield in the first crop (7.10 g/plant) and highest in the third crop (13.90 g/plant). The Ca plant tissue levels in radishes (1.8-2.9 wt. %) grown in zeoponic substrates are lower than the suggested sufficient range of 3.0-4.5 wt. % Ca; however, the Ca level is highest (2.9 wt. %) in radishes grown in the third crop in the same zeoponic substrates. The higher radish yield in the third crop was attributed to a reduction in an NH4(-) induced Ca deficiency that has been previously described for wheat grown in zeoponic substrates. The P levels in plant tissues of radish grown in the zeoponic substrates ranged from 0.94-1.15 wt. %; which is slightly higher than the sufficient levels of 0.3-0.7 wt. %. With the exception of Ca and P, other macronutrient and micronutrient levels in radish grown in zeoponic substrates were well within the recommended sufficient ranges. After three successive crops of radish growth, the zeoponic substrates had 52% of the original NH4(-)N and 78% of the original K remaining on zeolite exchange sites. Zeoponic substrates are capable of long-term productivity of radishes for space.
    Keywords: Life Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2018-06-11
    Description: Home Plate is a layered plateau in Gusev crater on Mars. It is composed of clastic rocks of moderately altered alkali basalt composition, enriched in some highly volatile elements. A coarse-grained lower unit is overlain by a finer-grained upper unit. Textural observations indicate that the lower strata were emplaced in an explosive event, and geochemical considerations favor an explosive volcanic origin over an impact origin. The lower unit likely represents accumulation of pyroclastic materials, while the upper unit may represent eolian reworking of the same pyroclastic materials.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2018-06-11
    Description: Biosafety of nanomaterials has attracted much attention recently. We report here a case where accidental human eye exposure to biogenic nanosized calcium phosphate in the form of calcifying nanoparticles (CNP) raised a strong IgG immune response against proteins carried by CNP. The antibody titer has persisted over ten years at the high level. The IgG was detected by ELISA using CNPs propagated in media containing bovine and human serum as antigen. The exposure incident occurred to a woman scientist (WS) at a research laboratory in Finland at 1993. CNP, also termed "nanobacteria", is a unique self-replicating agent that has not been fully characterized and no data on biohazards were available at that time. Before the accident, her serum samples were negative for both CNP antigen and anti-CNP antibody using specific ELISA tests (Nanobac Oy, Kuopio, Finland). The accident occurred while WS was harvesting CNP cultures. Due to a high pressure in pipetting, CNP pellet splashed into her right eye. Both eyes were immediately washed with water and saline. The following days there was irritation and redness in the right eye. These symptoms disappeared within two weeks without any treatment. Three months after the accident, blood and urine samples of WS were tested for CNP cultures (2), CNP-specific ELISA tests, and blood cell counts. Blood cell counts were normal, CNP antigen and culture tests were negative. A high IgG anti-CNP antibody titer was detected (see Figure). The antibodies of this person have been used thereafter as positive control and standard in ELISA manufacturing (Nano-Sero IgG ELISA, Nanobac Oy, Kuopio, Finland).
    Keywords: Life Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2018-06-11
    Description: A review of currently available data on in vivo induced chromosome damage in the blood lymphocytes of astronauts proves that, after protracted exposure of a few months or more to space radiation, cytogenetic biodosimetry analyses of blood collected within a week or two of return from space provides a reliable estimate of equivalent radiation dose and risk. Recent studies indicate that biodosimetry estimates from single spaceflights lie within the range expected from physical dosimetry and biophysical models, but very large uncertainties are associated with single individual measurements and the total sample population remains low. Retrospective doses may be more difficult to estimate because of the fairly rapid time-dependent loss of "stable" aberrations in blood lymphocytes. Also, biodosimetry estimates from individuals who participate in multiple missions, or very long (interplanetary) missions, may be complicated by an adaptive response to space radiation and/or changes in lymphocyte survival and repopulation. A discussion of published data is presented and specific issues related to space radiation biodosimetry protocols are discussed.
    Keywords: Aerospace Medicine
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2018-06-11
    Description: carbonaceous chondrites are of the major interest since they contain one of the most primitive organic matters. However, aqueous alteration has more or less overprinted their original features in a way that needed to be assessed. That was done in the present study by comparing the mineralogy of the most altered CR1 chondrite, GRO 95577, to a less altered CR2, Renazzo. Their modal analyses were achieved thanks to a new method, based on X-ray elemental maps acquired on electron microprobe, and on IDL image treatment. It allowed the collection of new data on the composition of Renazzo and confirmed the classification of GRO 95577 as a CR1. New alteration products for CRs, vermiculite and clinochlore, were observed. The homogeneity of the Fe-poor clays in the CR1 and the distinctive matrix composition in the two chondrites suggest a wide-range of aqueous alteration on CRs. The preservation of the outlines of the chondrules in GRO 95577 and the elemental transfers of Al, Fe and Ca throughout the chondrule and of Fe and S from the matrix to the chondrule favor the idea of an asteroidal location of the aqueous alteration. From their mineralogical descriptions and modal abundances, the element repartitions in Renazzo and GRO 95577 were computed. It indicates a possible relationship between these two chondrites via an isochemical alteration process. Knowing the chemical reactions that occurred during the alteration, it was thus possible to decipher the mineralogical modal abundances in the unaltered CR body.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2018-06-11
    Description: We report the discovery that impacts in the Stardust cometary collector are not distributed randomly in the collecting media, but appear to be clustered on scales smaller than 10 cm. We also report the discovery of at least two populations of oblique tracks. We evaluated several hypotheses that could explain the observations. No hypothesis was consistent with all the observations, but the preponderance of evidence points toward at least one impact on the central Whipple shield of the spacecraft as the origin of both clustering and low-angle oblique tracks. High-angle oblique tracks unambiguously originate from a non-cometary impact on the spacecraft bus just forward of the collector.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2018-06-11
    Description: Aluminium foils were used on Stardust to stabilize the aerogel specimens in the modular collector tray. Part of these foils were fully exposed to the flux of cometary grains emanating from Wild 2. Because the exposed part of these foils had to be harvested before extraction of the aerogel, numerous foil strips some 1.7 mm wide and 13 or 33 mm long were generated during Stardusts's Preliminary Examination (PE). These strips are readily accommodated in their entirety in the sample chambers of modern SEMs, thus providing the opportunity to characterize in situ the size distribution and residue composition - employing EDS methods - of statistically more significant numbers of cometary dust particles compared to aerogel, the latter mandating extensive sample preparation. We describe here the analysis of nearly 300 impact craters and their implications for Wild 2 dust.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2018-06-11
    Description: Considerable effort and improvement have been made in the study of ionizing radiation exposure occurring in various regions of space. Satellites and spacecrafts equipped with innovative instruments are continually refining particle data and providing more accurate information on the ionizing radiation environment. The major problem in accurate spectral definition of ionizing radiation appears to be the detailed energy spectra, especially at high energies, which is important parameter for accurate radiation risk assessment. Magnitude of risks posed by exposure to radiation in future space missions is subject to the accuracies of predictive forecast of event size of SPE, GCR environment, geomagnetic fields, and atmospheric radiation environment. Although heavy ion fragmentations and interactions are adequately resolved through laboratory study and model development, improvements in fragmentation cross sections for the light nuclei produced from HZE nuclei and their laboratory validation are still required to achieve the principal goal of planetary GCR simulation at a critical exposure site. More accurate prediction procedure for ionizing radiation environment can be made with a better understanding of the solar and space physics, fulfillment of required measurements for nuclear/atomic processes, and their validation and verification with spaceflights and heavy ion accelerators experiments. It is certainly true that the continued advancements in solar and space physics combining with physical measurements will strengthen the confidence of future manned exploration of solar system. Advancements in radiobiology will surely give the meaningful radiation hazard assessments for short and long term effects, by which appropriate and effective mitigation measures can be placed to ensure that humans safely live and work in the space, anywhere, anytime.
    Keywords: Space Radiation
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2018-06-11
    Description: Currently, International Space Station (ISS) crews use a laptop computer to display procedures for performing onboard maintenance tasks. This approach has been determined to be suboptimal. A heuristic evaluation and two studies have been completed to test commercial off-the-shelf (COTS) "near-eye" heads up displays (HUDs) for support of these types of maintenance tasks. In both studies, subjects worked through electronic procedures to perform simple maintenance tasks. As a result of the Phase I study, three HUDs were down-selected to one. In the Phase II study, the HUD was compared against two other electronic display devices - a laptop computer and an e-book reader. Results suggested that adjustability and stability of the HUD display were the most significant acceptability factors to consider for near-eye displays. The Phase II study uncovered a number of advantages and disadvantages of the HUD relative to the laptop and e-book reader for interacting with electronic procedures.
    Keywords: Space Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2018-06-11
    Description: We review methods and data used for determining astronaut organ dose equivalents on past space missions including Apollo, Skylab, Space Shuttle, NASA-Mir, and International Space Station (ISS). Expectations for future lunar missions are also described. Physical measurements of space radiation include the absorbed dose, dose equivalent, and linear energy transfer (LET) spectra, or a related quantity, the lineal energy (y) spectra that is measured by a tissue equivalent proportional counter (TEPC). These data are used in conjunction with space radiation transport models to project organ specific doses used in cancer and other risk projection models. Biodosimetry data from Mir, STS, and ISS missions provide an alternative estimate of organ dose equivalents based on chromosome aberrations. The physical environments inside spacecraft are currently well understood with errors in organ dose projections estimated as less than plus or minus 15%, however understanding the biological risks from space radiation remains a difficult problem because of the many radiation types including protons, heavy ions, and secondary neutrons for which there are no human data to estimate risks. The accuracy of projections of organ dose equivalents described here must be supplemented with research on the health risks of space exposure to properly assess crew safety for exploration missions.
    Keywords: Space Radiation
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2018-06-11
    Description: This paper describes our flight aboard NASA's C9 Weightless Wonder, more affectionately known as The Vomit Comet. The C9 is NASA's aircraft that creates multiple periods of microgravity by conducting a series of parabolic maneuvers over the Gulf of Mexico.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-11
    Description: The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.
    Keywords: Acoustics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2018-06-11
    Description: Simple and efficient numerical procedures for evaluating the gradient of Newton-type potentials are presented. Convergences of both normal and tangential components of the gradient are examined. The convergence of the vector potential is also examined, and it is shown that the scheme for handling near-hypersingular integrals also is effective for the nearly singular potential terms.
    Keywords: Numerical Analysis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2018-06-11
    Description: Spacecraft maximum allowable concentrations (SMACs) for C3 to C8, straight-chain, aliphatic aldehydes have been previously assessed and have been documented in volume 4 of Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants (James, 2000). These aldehydes as well as associated physical properties are shown in Table 1. The C3 to C8 aliphatic aldehydes can enter the habitable compartments and contaminate breathing air of spacecraft by several routes including incomplete oxidation of alcohols in the Environmental Control and Life Support System (ECLSS) air revitalization subsystem, as a byproduct of human metabolism, through materials off-gassing, or during food preparation. These aldehydes have been detected in the atmosphere of manned space vehicles in the past. Analysis performed by NASA of crew cabin air samples from the Russian Mir Space Station revealed the presence of C3 to C8 aldehydes at concentrations peaking at approximately 0.1 mg/cu m.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2018-06-11
    Description: Recent chondritic meteorite finds in Antarctica have included CB, CH, CK and R chondrites, the latter two of which are among the most oxidized materials found in meteorite collections. In this study we present petrographic and mineralogic data for a suite of CK and R chondrites, and compare to previous studies of CK and R, as well as some CV chondrites. In particular we focus on the opaque minerals magnetite, chromite, sulfides, and metal as well as unusual silicates hornblende, biotite, and plagioclase. Several mineral thermometers and oxy-barometers are utilized to calculate temperatures and oxygen fugacities for these unusual meteorites compared to other more common chondrite groups. R and CK chondrites show lower equilibrium temperatures than ordinary chondrites, even though they are at similar petrologic grades (e.g., thermal type 6). Oxygen fugacity calculated for CV and R chondrites ranges from values near the iron-wustite (IW) oxygen buffer to near the fayalite-magnetite-quartz (FMQ) buffer. In comparison, the fO2 recorded by ilmenite-magnetite pairs from CK chondrites are much higher, from FMQ+3.1 to FMQ+5.2. The latter values are the highest recorded for materials in meteorites, and place some constraints on the formation conditions of these magnetite-bearing chondrites. Differences between mineralogic and O isotopic compositions of CK and R chondrites suggest two different oxidation mechanisms, which may be due to high and low water: rock ratios during metamorphism, or to different fluid compositions, or both.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2018-06-11
    Description: Rubidium-strontium and samarium-neodymium isotopes of lunar meteorite LaPaz Icefield (LAP) 02205 are consistent with derivation of the parent magma from a source region similar to that which produced the Apollo 12 low-Ti olivine basalts followed by mixing of the magma with small amounts (1 to 2 wt%) of trace element-enriched material similar to lunar KREEP-rich sample SaU 169. The crystallization age of LAP 02205 is most precisely dated by an internal Rb-Sr isochron of 2991+/-14 Ma, with an initial Sr-87/Sr-88 at the time of crystallization of 0.699836+/-0.000010. Leachable REE-rich phosphate phases of LAP 02205 do not plot on a Sm-Nd mineral isochron, indicating contamination or open system behavior of the phosphates. Excluding anomalous phases from the calculation of a Sm-Nd isochron yields a crystallization age of 2992+/-85 (initial Epsilon Nd-143 = +2.9+/-0.8) that is within error of the Rb-Sr age, and in agreement with other independent age determinations for LAP 02205 from Ar-Ar and U-Pb methods. The calculated Sm-147/Nd-144 source ratios for LAP 02205, various Apollo 12 and 15 basalts, and samples with strong affinities to KREEP (SaU 169, NWA 773, 15386) are uncorrelated with their crystallization ages. This finding does not support the involvement of a common KREEP component as a heat source for lunar melting events that occurred after crystallization of the lunar magma ocean.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2018-06-11
    Description: The Os-187/Os-188 for twenty-two ureilite whole rock samples, including monomict, augite-bearing, and polymict lithologies, were examined in order to constrain the provenance and subsequent magmatic processing of the ureilite parent body (or bodies). The Re/Os ratios of most ureilites show evidence for a recent disturbance, probably related to Re mobility during weathering, and no meaningful chronological information can be extracted from the present data set. The ureilite Os-187/Os-188 ratios span a range from 0.11739 to 0.13018, with an average of 0.1258+/-0.0023 (1(sigma)), similar to typical carbonaceous chondrites, and distinct from ordinary or enstatite chondrites. The similar mean of Os-187/Os-188 measured for the ureilites and carbonaceous chondrites suggests that the ureilite parent body probably formed within the same region of the solar nebula as carbonaceous chondrites. From the narrow range of the 187Os/188Os distribution in ureilite meteorites it is further concluded that Re was not significantly fractionated from Os during planetary differentiation and was not lost along with the missing ureilitic melt component. The lack of large Re/Os fractionations requires that Re/Os partitioning was controlled by a metal phase, and thus metal had to be stable throughout the interval of magmatic processing on the ureilite parent body.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2018-06-11
    Description: We wish to point out that a secular change in the Earth's atmospheric neutral density alters charged-particle lifetime in the inner trapped radiation belts, in addition to the changes recently reported as produced by greenhouse gases. Heretofore, changes in neutral density have been of interest primarily because of their effect on the orbital drag of satellites. We extend this to include the orbital lifetime of charged particles in the lower radiation belts. It is known that the charged-belt population is coupled to the neutral density of the atmosphere through changes induced by solar activity, an effect produced by multiple scattering off neutral and ionized atoms along with ionization loss in the thermosphere where charged and neutral populations interact. It will be shown here that trapped-belt flux J is bivariant in energy E and thermospheric neutral density , as J(E,rho). One can conclude that proton lifetimes in these belts are also directly affected by secular changes in the neutral species populating the Earth s thermosphere. This result is a consequence of an intrinsic property of charged-particle flux, that flux is not merely a function of E but is dependent upon density rho when a background of neutrals is present.
    Keywords: Space Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2018-06-11
    Description: SIMS U-Pb analyses show that zircons from breccias from Apollo 14 and Apollo 17 have essentially identical age distributions in the range 4350 to 4200 Ma but, whereas Apollo 14 zircons additionally show ages from 4200 to 3900 Ma, the Apollo 17 samples have no zircons with ages 〈4200 Ma. The zircon results also show an uneven distribution with distinct peaks of magmatic activity. In explaining these observations we propose that periodic episodes of KREEP magmatism were generated from a primary reservoir of KREEP magma, which contracted over time towards the centre of Procellarum KREEP terrane.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2018-06-11
    Description: A viewgraph describing the food system that NASA is developing for Manned Mars Missions is shown. The topics include: 1) The President's Vision for U.S. Space Exploration -January 14, 2004; 2) Introducing Orion (and Ares); 3) Mercury (1961-1963); 4) Gemini (1965-1966); 5) Apollo (1968-1972); 6) Skylab (1973-1974); 7) Shuttle/Mir (1995-1998); 8) Shuttle (1981-present) International Space Station (2000-present); 9) NASA Stored Food System; 10) Advanced Food Technology; 11) Orion Missions; 12) Orion Challenges; 13) Food Packaging; 14) Mars Mission Assumptions; 15) Planetary Food System Selected Crops; 16) Food Processing Equipment Constraints; 17) Crew Involvement Constraints; 18) Advanced Food Technology Integration; 19) Research Highlights Internal; and 20) Research Highlights External.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2018-06-11
    Description: The effects of laser, and shot peening on the residual stresses in Friction Stir Welds (FSW) has been investigated. The surface residual stresses were measured at five different locations across the weld in order to produce an adequate residual stress profile. The residual stresses before and after sectioning the coupon from the welded plate were also measured, and the effect of coupon size on the residual stress relaxation was determined and characterized. Measurements indicate that residual stresses were not uniform along the welded plate, and large variation in stress magnitude could be exhibited at various locations along the FSW plate. Sectioning resulted in significant residual stress relaxation in the longitudinal direction attributed to the large change in dimensions in this direction. Overall, Laser and shot peening resulted in a significant reduction in tensile residual stresses at the surface of the specimens.
    Keywords: Metals and Metallic Materials
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2018-06-11
    Description: Systematic in-situ FTIR heating experiments of Tagish Lake meteorite grains have been performed in order to study thermal stability of chondritic organics. Some aliphatic model organic substances have also been used to elucidate effects of hydrous phyllosilicate minerals on the thermal stability of organics. The experimental results indicated that organic matter in the Tagish Lake meteorite might contain oxygenated aliphatic hydrocarbons which are thermally stable carbonyls such as ester and/or C=O in ring compounds. The presence of hydrous phyllosilicate minerals has a pronounced effect on the increase of the thermal stability of aliphatic and oxygenated functions. These oxygenated aliphatic organics in Tagish Lake can be formed during the aqueous alteration in the parent body and the formation temperature condition might be less than 200 C, based especially on the thermal stability of C-O components. The hydrous phyllosilicates might provide sites for organic globule formation and protected some organic decomposition
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2018-06-11
    Description: CR carbonaceous chondrites are of the major interest since they contain one of the most primitive organic matters. However, aqueous alteration has more or less overprinted their original features in a way that needed to be assessed. That was done in the present study by comparing the mineralogy of the most altered CR1 chondrite, GRO 95577, to a less altered CR2, Renazzo. Their modal analyses were achieved thanks to a new method, based on X-ray elemental maps acquired on electron microprobe, and on IDL image treatment. It allowed the collection of new data on the composition of Renazzo and confirmed the classification of GRO 95577 as a CR1. New alteration products for CRs, vermiculite and clinochlore, were observed. The homogeneity of the Fe-poor clays in the CR1 and the distinctive matrix composition in the two chondrites suggest a wide-range of aqueous alteration on CRs. The preservation of the outlines of the chondrules in GRO 95577 and the elemental transfers of Al, Fe and Ca throughout the chondrule and of Fe and S from the matrix to the chondrule favor the idea of an asteroidal location of the aqueous alteration. From their mineralogical descriptions and modal abundances, the element repartitions in Renazzo and GRO 95577 were computed. It indicates a possible relationship between these two chondrites via an isochemical alteration process. Knowing the chemical reactions that occurred during the alteration, it was thus possible to decipher the mineralogical modal abundances in the unaltered CR body.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Meteoritics and Planetary Science, projected release date Jan. 1, 2007
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2018-06-12
    Description: The lunar surface is covered with a thick layer of sub-micron/micron size dust grains formed by meteoritic impact over billions of years. The fine dust grains are levitated and transported on the lunar surface, as indicated by the transient dust clouds observed over the lunar horizon during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar ultraviolet (UV) radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon's surface with its observed adhesive characteristics has the potential of severe impact on human habitat and operations and lifetime of a variety of equipment, it is necessary to investigate the charging properties and the lunar dust phenomena in order to develop appropriate mitigating strategies. Photoelectric emission induced by the solar UV radiation with photon energies higher than the work function (WF) of the grain materials is recognized to be the dominant process for charging of the lunar dust, and requires measurements of the photoelectric yields to determine the charging and equilibrium potentials of individual dust grains. In this paper, we present the first laboratory measurements of the photoelectric efficiencies and yields of individual sub-micron/micron size dust grains selected from sample returns of Apollo 17 and Luna-24 missions as well as similar size dust grains from the JSC-1 simulants. The measurements were made on a laboratory facility based on an electrodynamic balance that permits a variety of experiments to be conducted on individual sub-micron/micron size dust grains in simulated space environments. The photoelectric emission measurements indicate grain size dependence with the yield increasing by an order of magnitude for grains of sub-micron to several micron size radii, at which it reaches asymptotic values. The yield for large size grains is found to be more than an order of magnitude higher than the bulk measurements on lunar fines reported in the literature.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Planetary and Space Science; Volume 55; No. 7-8; 953-965
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2016-04-07
    Description: The concept of introducing a no-frills airline to the wealthy Arab region presented its risks. This independent study sought to position the new airline in the marketplace. After three focus groups and 400 self-administered surveys, safety (#1) and price (#2) are low-fare carrier considerations whereas safety (#1), punctuality (#2) and price (#3) apply for full-fare airlines. Recommended ways for the no-frills carrier to reach the market include newspaper ads, travel agent sales, online bookings, and call centers. Additionally, respondents appeared to evaluate this low-fare carrier as if it is a full-service airline.
    Keywords: Air Transportation and Safety
    Type: Journal of Air Transportation, Volume 12, No. 1; 53-66; LC-HE9761.1.J68
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2016-04-07
    Description: In a previous study, multiple regression techniques were applied to Flight Operations Quality Assurance-derived data to develop parsimonious model(s) for fuel consumption on the Boeing 757 airplane. The present study examined several data mining algorithms, including neural networks, on the fuel consumption problem and compared them to the multiple regression results obtained earlier. Using regression methods, parsimonious models were obtained that explained approximately 85% of the variation in fuel flow. In general data mining methods were more effective in predicting fuel consumption. Classification and Regression Tree methods reported correlation coefficients of .91 to .92, and General Linear Models and Multilayer Perceptron neural networks reported correlation coefficients of about .99. These data mining models show great promise for use in further examining large FOQA databases for operational and safety improvements.
    Keywords: Air Transportation and Safety
    Type: Journal of Air Transportation, Volume 12, No. 1; 6-24; LC-HE9761.1.J68
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2018-06-12
    Description: There is a continuous demand for larger, lighter, and higher quality telescopes from both the astronomical and global surveillance communities one looking up and the other down. Enabling technologies must be developed and implemented that will allow this goal to be financially and technically feasible. The optical systems needed far high spatial resolution surveillance and astronomical applications require large optical, apertures with mention of future systems up to 150 meter in diameter. With traditional optical manufacturing technologies, large optical aperture means high mass and long fabrication lead times with associated high costs. Completely new approaches to optical fabrication must be developed to enable the fabrication of such optical systems. The cost and lead time associated with the fabrication of lightweight, high quality optical systems limits the feasible size of the optics. A primary factor in the launch cost of space optical systems is volume and mass. To minimize the mass of the high quality optics, optical fabricators implement materials with high specific stiffness and use honeycomb, or other structural minimization patterns, to support the optical surface; however, the structure must still be designed to survive launch loads. This sigmficantly adds to the fabrication difficulty and dramatically increases launch costs. One approach to minimizing launch volume and negating the need for the design to survive launch loads is to send the manufacturing facility and raw materials into space and perform the fabrication in-situ. We, are currently performing feasibility studies of initial concepts for inspace manufacturing of optical systems. By utilizing the micro-gravity and vacuum environment of space while eliminating the constraints defined by high launch forces and limited volume of the launch vehicle, the development of large, high quality glass membrane mirrors may be feasible. Several concepts were investigated to address the manufacturing of both optical surfaces and telescope structure. We will describe one of the primary approaches to utilize the space environment for optical manufacturing and describe initial results.
    Keywords: Astronautics (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2018-06-11
    Description: Data illustrating the radiation response of emerging high gain, low noise detectors are presented. Ionizing dose testing of silicon internal discrete avalanche photodiodes, and 51-MeV proton testing of InGaAs/InAlAs avalanche photodiodes operated in Geiger mode are discussed.
    Keywords: Electronics and Electrical Engineering
    Type: IEEE Transactions On Nuclear Science (ISSN 0018-9499); Volume 54; No. 4; 1129-1135
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2018-06-11
    Description: In this paper, we present a space invariant architecture to enable the Independent Component Analysis (ICA) to solve chemical detection from two unknown mixing chemical sources. The two sets of unknown paired mixture sources are collected via JPL 16-ENose sensor array in the unknown environment with, at most, 12 samples data collected. Our space invariant architecture along with the maximum entropy information technique by Bell and Sejnowski and natural gradient descent by Amari has demonstrated that it is effective to separate the two mixing unknown chemical sources with unknown mixing levels to the array of two original sources under insufficient sampled data. From separated sources, they can be identified by projecting them on the 11 known chemical sources to find the best match for detection. We also present the results of our simulations. These simulations have shown that 100% correct detection could be achieved under the two cases: a) under-completed case where the number of input (mixtures) is larger than number of original chemical sources; and b) regular case where the number of input is as the same as the number of sources while the time invariant architecture approach may face the obstacles: overcomplete case, insufficient data and cumbersome architecture.
    Keywords: Man/System Technology and Life Support
    Type: Journal of Advanced Computational Intelligence and Intelligent Informatics; Volume 11; No. 10; 1197-1203
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2018-06-11
    Description: We solve the problem of propagation and dissipation of Alfvenic turbulence in a model solar atmosphere consisting of a static photosphere and chromosphere, transition region, and open corona and solar wind using a phenomenological model for the turbulent dissipation based on wave reflection. We show that most of the dissipation for a given wave frequency spectrum occurs in the lower corona, and the overall rms amplitude of the fluctuations evolves in a way consistent with observations. The frequency spectrum for a Kolmogorov-like slope is not found to change dramatically from the photosphere to the solar wind; however, it does preserve signatures of transmission throughout the lower atmospheric layers, namely, oscillations in the spectrum at high frequencies reminiscent of the resonances found in the linear case. These may disappear once more realistic couplings for the nonlinear terms are introduced or if time-dependent variability of the lower atmospheric layer is introduced.
    Keywords: Solar Physics
    Type: The Astrophysical Journal; Volume 662; 669-676
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2018-06-11
    Description: In situ probing of a very few cometary comae has shown that dust particles present a low albedo and a low density, and that they consist of both rocky material and refractory organics. Remote observations of solar light scattered by cometary dust provide information on the properties of dust particles in the coma of a larger set of comets. The observations of the linear polarization in the coma indicate that the dust particles are irregular, with a size greater (on the average) than about one micron. Besides, they suggest, through numerical and experimental simulations, that both compact grains and fluffy aggregates (with a power law of the size distribution in the -2.6 to -3 range), and both rather transparent silicates and absorbing organics are present in the coma. Recent analysis of the cometary dust samples collected by the Stardust mission provide a unique ground truth and confirm, for comet 81P/Wild 2, the results from remote sensing observations. Future space missions to comets should, in the next decade, lead to a more precise characterization of the structure and composition of cometary dust particles.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2018-06-11
    Description: The engineering tools of choice for the computation of practical engineering flows have begun to migrate from those based on the traditional Reynolds-averaged Navier-Stokes approach to methodologies capable, in theory if not in practice, of accurately predicting some instantaneous scales of motion in the flow. The migration has largely been driven by both the success of Reynolds-averaged methods over a wide variety of flows as well as the inherent limitations of the method itself. Practitioners, emboldened by their ability to predict a wide-variety of statistically steady, equilibrium turbulent flows, have now turned their attention to flow control and non-equilibrium flows, that is, separation control. This review gives some current priorities in traditional Reynolds-averaged modeling research as well as some methodologies being applied to a new class of turbulent flow control problems.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2018-06-11
    Description: Ships produce vortices and air-wakes while either underway or stationary in a wind. These flow fields can be detrimental to the conduction of air operations in that they can adversely impact the air vehicles and flight crews. There are potential solutions to these problems for both frigates/destroyers and carriers through the use of novel vortex flow or flow control devices. This appendix highlights several devices which may have application and points out that traditional wind-tunnel testing using smoke, laser-vapor screen, and Particle Image Velocimetry can be useful in sorting out the effectiveness of different devices.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2018-06-11
    Description: The toxicological assessments of 2 grab sample canisters (GSCs) and one pair of formaldehyde badges from the Shuttle are reported. Analytical methods have not changed from earlier reports. The recoveries of the 3 surrogates (C-13-acetone, fluorobenzene, and chlorobenzene) from the 2 GSCs averaged 120, 117, and 122 %, respectively. Three formaldehyde controls averaged 98% recovery. The Shuttle atmosphere was acceptable for human respiration. The toxicological assessment of 8 GSCs and 6 pairs of formaldehyde badges from the ISS is shown. The recoveries of the 3 standards (as listed above) from the GSCs averaged 99, 99 and 99%, respectively. Three formaldehyde control badges averaged 98% recovery. Based on these limited samples, the ISS atmosphere is acceptable for human respiration. The alcohol levels were well controlled throughout the period of sampling.
    Keywords: Space Transportation and Safety
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2018-06-11
    Description: The candidate crops for planetary food systems include: wheat, white and sweet potatoes, soybean, peanut, strawberry, dry bean including le ntil and pinto, radish, rice, lettuce, carrot, green onion, tomato, p eppers, spinach, and cabbage. Crops such as wheat, potatoes, soybean, peanut, dry bean, and rice can only be utilized after processing, while others are classified as ready-to-eat. To process foods in space, the food processing subsystem must be capable of producing a variety of nutritious, acceptable, and safe edible ingredients and food produ cts from pre-packaged and resupply foods as well as salad crops grown on the transit vehicle or other crops grown on planetary surfaces. D esigning, building, developing, and maintaining such a subsystem is b ound to many constraints and restrictions. The limited power supply, storage locations, variety of crops, crew time, need to minimize waste , and other equivalent system mass (ESM) parameters must be considere d in the selection of processing equipment and techniques.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2018-06-11
    Description: The NASA Study of Cataract in Astronauts (NASCA) is a five-year, multi-centered, investigation of lens opacification in populations of U.S. astronauts, military pilots, and ground-based (nonaviator) comparison participants. For astronauts, the explanatory variable of most interest is radiation exposure during space flight, however to properly evaluate its effect, the secondary effects of age, nutrition, general health, solar ocular exposure, and other confounding variables encountered in non-space flight must also be considered. NASCA contains an initial baseline, cross-sectional objective assessment of the severity of cortical (C), nuclear (N), and posterior subcapsular (PSC) lens opacification, and annual follow-on assessments of severity and progression of these opacities in the population of astronauts and in participants sampled from populations of military pilots and ground-based exposure controls. From these data, NASCA will estimate the degree to which space radiation affects lens opacification for astronauts and how the overall risks of each cataract type for astronauts compared with those of the other exposure control groups after adjusting for differences in age and other explanatory variables.
    Keywords: Aerospace Medicine
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...