ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your search history is empty.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Electronic ISSN: 2041-1723
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1998-05-02
    Description: In the ribosome, the aminoacyl-transfer RNA (tRNA) analog 4-thio-dT-p-C-p-puromycin crosslinks photochemically with G2553 of 23S ribosomal RNA (rRNA). This covalently linked substrate reacts with a peptidyl-tRNA analog to form a peptide bond in a peptidyl transferase-catalyzed reaction. This result places the conserved 2555 loop of 23S rRNA at the peptidyl transferase A site and suggests that peptide bond formation can occur uncoupled from movement of the A-site tRNA. Crosslink formation depends on occupancy of the P site by a tRNA carrying an intact CCA acceptor end, indicating that peptidyl-tRNA, directly or indirectly, helps to create the peptidyl transferase A site.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Green, R -- Switzer, C -- Noller, H F -- New York, N.Y. -- Science. 1998 Apr 10;280(5361):286-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Molecular Biology of RNA, Sinsheimer Laboratories, University of California, Santa Cruz, CA 95064, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9535658" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-Bacterial Agents/pharmacology ; Binding Sites ; Catalysis ; Enzyme Inhibitors/pharmacology ; Escherichia coli ; Nucleic Acid Conformation ; Peptidyl Transferases/antagonists & inhibitors/*metabolism ; Puromycin/analogs & derivatives/chemical synthesis/chemistry/*metabolism ; RNA, Bacterial/chemistry/metabolism ; RNA, Ribosomal, 23S/chemistry/*metabolism ; RNA, Transfer, Amino Acyl/chemistry/*metabolism ; RNA, Transfer, Phe/chemistry/genetics/*metabolism ; Ribosomes/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1999-09-25
    Description: The 7.8 angstrom crystal structure of the 70S ribosome reveals a discrete double-helical bridge (B4) that projects from the 50S subunit, making contact with the 30S subunit. Preliminary modeling studies localized its contact site, near the bottom of the platform, to the binding site for ribosomal protein S15. Directed hydroxyl radical probing from iron(II) tethered to S15 specifically cleaved nucleotides in the 715 loop of domain II of 23S ribosomal RNA, one of the known sites in 23S ribosomal RNA that are footprinted by the 30S subunit. Reconstitution studies show that protection of the 715 loop, but none of the other 30S-dependent protections, is correlated with the presence of S15 in the 30S subunit. The 715 loop is specifically protected by binding free S15 to 50S subunits. Moreover, the previously determined structure of a homologous stem-loop from U2 small nuclear RNA fits closely to the electron density of the bridge.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Culver, G M -- Cate, J H -- Yusupova, G Z -- Yusupov, M M -- Noller, H F -- 1F32GM18065-01/GM/NIGMS NIH HHS/ -- GM-17129/GM/NIGMS NIH HHS/ -- GM-59140/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Sep 24;285(5436):2133-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Molecular Biology of RNA, Sinsheimer Laboratories, University of California, Santa Cruz, CA 95064, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10497132" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/chemistry/metabolism ; Binding Sites ; Crystallography, X-Ray ; Escherichia coli/chemistry ; Hydroxyl Radical ; Nucleic Acid Conformation ; Protein Conformation ; RNA, Bacterial/*chemistry/metabolism ; RNA, Ribosomal, 23S/*chemistry/metabolism ; RNA, Small Nuclear/chemistry/metabolism ; Ribosomal Proteins/chemistry/*metabolism ; Ribosomes/*chemistry/metabolism/ultrastructure ; Thermus thermophilus/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1999-09-25
    Description: Structures of 70S ribosome complexes containing messenger RNA and transfer RNA (tRNA), or tRNA analogs, have been solved by x-ray crystallography at up to 7.8 angstrom resolution. Many details of the interactions between tRNA and the ribosome, and of the packing arrangements of ribosomal RNA (rRNA) helices in and between the ribosomal subunits, can be seen. Numerous contacts are made between the 30S subunit and the P-tRNA anticodon stem-loop; in contrast, the anticodon region of A-tRNA is much more exposed. A complex network of molecular interactions suggestive of a functional relay is centered around the long penultimate stem of 16S rRNA at the subunit interface, including interactions involving the "switch" helix and decoding site of 16S rRNA, and RNA bridges from the 50S subunit.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cate, J H -- Yusupov, M M -- Yusupova, G Z -- Earnest, T N -- Noller, H F -- GM-17129/GM/NIGMS NIH HHS/ -- GM-59140/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Sep 24;285(5436):2095-104.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Molecular Biology of RNA, Sinsheimer Laboratories, University of California, Santa Cruz, CA 95064, USA. cate@wi.mit.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10497122" target="_blank"〉PubMed〈/a〉
    Keywords: Anticodon/metabolism ; Bacterial Proteins/chemistry/metabolism ; Base Pairing ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; Fourier Analysis ; Models, Molecular ; Nucleic Acid Conformation ; Peptide Elongation Factors/metabolism ; Protein Biosynthesis ; Protein Conformation ; RNA, Bacterial/chemistry/metabolism ; RNA, Messenger/chemistry/metabolism ; RNA, Ribosomal/*chemistry/metabolism ; RNA, Ribosomal, 16S/chemistry ; RNA, Ribosomal, 23S/chemistry ; RNA, Transfer/*chemistry/metabolism ; Ribosomal Proteins/chemistry/metabolism ; Ribosomes/*chemistry/*physiology/ultrastructure ; Thermus thermophilus/*chemistry/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2001-04-03
    Description: We describe the crystal structure of the complete Thermus thermophilus 70S ribosome containing bound messenger RNA and transfer RNAs (tRNAs) at 5.5 angstrom resolution. All of the 16S, 23S, and 5S ribosomal RNA (rRNA) chains, the A-, P-, and E-site tRNAs, and most of the ribosomal proteins can be fitted to the electron density map. The core of the interface between the 30S small subunit and the 50S large subunit, where the tRNA substrates are bound, is dominated by RNA, with proteins located mainly at the periphery, consistent with ribosomal function being based on rRNA. In each of the three tRNA binding sites, the ribosome contacts all of the major elements of tRNA, providing an explanation for the conservation of tRNA structure. The tRNAs are closely juxtaposed with the intersubunit bridges, in a way that suggests coupling of the 20 to 50 angstrom movements associated with tRNA translocation with intersubunit movement.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yusupov, M M -- Yusupova, G Z -- Baucom, A -- Lieberman, K -- Earnest, T N -- Cate, J H -- Noller, H F -- New York, N.Y. -- Science. 2001 May 4;292(5518):883-96. Epub 2001 Mar 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Molecular Biology of RNA, Sinsheimer Laboratories, University of California at Santa Cruz, Santa Cruz, CA 95064, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11283358" target="_blank"〉PubMed〈/a〉
    Keywords: Anticodon ; Bacterial Proteins/chemistry/metabolism ; Base Sequence ; Binding Sites ; Crystallography, X-Ray ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Protein Biosynthesis ; Protein Conformation ; RNA, Bacterial/chemistry/metabolism ; RNA, Messenger/*chemistry/metabolism ; RNA, Ribosomal/*chemistry/metabolism ; RNA, Transfer/*chemistry/metabolism ; RNA, Transfer, Amino Acid-Specific/*chemistry/metabolism ; Ribosomal Proteins/*chemistry/metabolism ; Ribosomes/*chemistry/metabolism/*ultrastructure ; Thermus thermophilus/chemistry/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2008-03-11
    Description: We have followed individual ribosomes as they translate single messenger RNA hairpins tethered by the ends to optical tweezers. Here we reveal that translation occurs through successive translocation--and-pause cycles. The distribution of pause lengths, with a median of 2.8 s, indicates that at least two rate-determining processes control each pause. Each translocation step measures three bases--one codon-and occurs in less than 0.1 s. Analysis of the times required for translocation reveals, surprisingly, that there are three substeps in each step. Pause lengths, and thus the overall rate of translation, depend on the secondary structure of the mRNA; the applied force destabilizes secondary structure and decreases pause durations, but does not affect translocation times. Translocation and RNA unwinding are strictly coupled ribosomal functions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2556548/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2556548/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wen, Jin-Der -- Lancaster, Laura -- Hodges, Courtney -- Zeri, Ana-Carolina -- Yoshimura, Shige H -- Noller, Harry F -- Bustamante, Carlos -- Tinoco, Ignacio -- R01 GM010840/GM/NIGMS NIH HHS/ -- R01 GM010840-49/GM/NIGMS NIH HHS/ -- R01 GM010840-50/GM/NIGMS NIH HHS/ -- England -- Nature. 2008 Apr 3;452(7187):598-603. doi: 10.1038/nature06716. Epub 2008 Mar 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of California, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18327250" target="_blank"〉PubMed〈/a〉
    Keywords: Aminoacylation ; Base Pairing ; Codon/*genetics ; Kinetics ; *Optical Tweezers ; Protein Biosynthesis/*physiology ; RNA, Messenger/chemistry/genetics/metabolism ; RNA, Transfer/genetics/metabolism ; Ribosomes/*metabolism ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2008-07-11
    Description: Structured RNAs embedded in the untranslated regions (UTRs) of messenger RNAs can regulate gene expression. In bacteria, control of a metabolite gene is mediated by the self-cleaving activity of a ribozyme embedded in its 5' UTR. This discovery has raised the question of whether gene-regulating ribozymes also exist in eukaryotic mRNAs. Here we show that highly active hammerhead ribozymes are present in the 3' UTRs of rodent C-type lectin type II (Clec2) genes. Using a hammerhead RNA motif search with relaxed delimitation of the non-conserved regions, we detected ribozyme sequences in which the invariant regions, in contrast to the previously identified continuous hammerheads, occur as two fragments separated by hundreds of nucleotides. Notably, a fragment pair can assemble to form an active hammerhead ribozyme structure between the translation termination and the polyadenylation signals within the 3' UTR. We demonstrate that this hammerhead structure can self-cleave both in vitro and in vivo, and is able to reduce protein expression in mouse cells. These results indicate that an unrecognized mechanism of post-transcriptional gene regulation involving association of discontinuous ribozyme sequences within an mRNA may be modulating the expression of several CLEC2 proteins that function in bone remodelling and the immune response of several mammals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2612532/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2612532/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Martick, Monika -- Horan, Lucas H -- Noller, Harry F -- Scott, William G -- R01 AI043393/AI/NIAID NIH HHS/ -- R01 AI043393-09/AI/NIAID NIH HHS/ -- R01 GM087721/GM/NIGMS NIH HHS/ -- R01043393/PHS HHS/ -- England -- Nature. 2008 Aug 14;454(7206):899-902. doi: 10.1038/nature07117. Epub 2008 Jul 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA. mmartick@yahoo.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18615019" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions/genetics ; Animals ; Down-Regulation ; Lectins, C-Type/genetics/metabolism ; Mice ; Models, Molecular ; NIH 3T3 Cells ; Nucleic Acid Conformation ; RNA, Catalytic/chemistry/*genetics/metabolism ; RNA, Messenger/chemistry/*genetics/metabolism ; Rats ; Reverse Transcriptase Polymerase Chain Reaction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2008-07-04
    Description: At termination of protein synthesis, type I release factors promote hydrolysis of the peptidyl-transfer RNA linkage in response to recognition of a stop codon. Here we describe the crystal structure of the Thermus thermophilus 70S ribosome in complex with the release factor RF1, tRNA and a messenger RNA containing a UAA stop codon, at 3.2 A resolution. The stop codon is recognized in a pocket formed by conserved elements of RF1, including its PxT recognition motif, and 16S ribosomal RNA. The codon and the 30S subunit A site undergo an induced fit that results in stabilization of a conformation of RF1 that promotes its interaction with the peptidyl transferase centre. Unexpectedly, the main-chain amide group of Gln 230 in the universally conserved GGQ motif of the factor is positioned to contribute directly to peptidyl-tRNA hydrolysis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Laurberg, Martin -- Asahara, Haruichi -- Korostelev, Andrei -- Zhu, Jianyu -- Trakhanov, Sergei -- Noller, Harry F -- England -- Nature. 2008 Aug 14;454(7206):852-7. doi: 10.1038/nature07115. Epub 2008 Jul 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular, Cell and Developmental Biology and Center for Molecular Biology of RNA, University of California at Santa Cruz, Santa Cruz, California 95064, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18596689" target="_blank"〉PubMed〈/a〉
    Keywords: Codon, Terminator/genetics/metabolism ; Crystallography, X-Ray ; Models, Molecular ; *Peptide Chain Termination, Translational ; Peptide Termination Factors/chemistry/metabolism ; Peptidyl Transferases/chemistry/metabolism ; Protein Binding ; Protein Structure, Tertiary ; RNA, Bacterial/metabolism ; RNA, Ribosomal, 23S/chemistry ; RNA, Transfer/chemistry/genetics/metabolism ; Ribosomes/*chemistry/*metabolism ; Thermus thermophilus/*chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1989-05-19
    Description: Chemical probing methods have been used to "footprint" 16S ribosomal RNA (rRNA) at each step during the in vitro assembly of twenty 30S subunit ribosomal proteins. These experiments yield information about the location of each protein relative to the structure of 16S rRNA and provide the basis for derivation of a detailed model for the three-dimensional folding of 16S rRNA. Several lines of evidence suggest that protein-dependent conformational changes in 16S rRNA play an important part in the cooperativity of ribosome assembly and in fine-tuning of the conformation and dynamics of 16S rRNA in the 30S subunit.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stern, S -- Powers, T -- Changchien, L M -- Noller, H F -- GM-17129/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1989 May 19;244(4906):783-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Thimann Laboratories, University of California, Santa Cruz 95064.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2658053" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Escherichia coli ; Models, Molecular ; Molecular Sequence Data ; Molecular Structure ; Nucleic Acid Conformation ; RNA, Ribosomal/*metabolism ; RNA, Ribosomal, 16S/*metabolism ; Ribosomal Proteins/*metabolism ; Ribosomes/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1992-06-05
    Description: Several classes of ribozymes (catalytic RNA's) catalyze reactions at phosphorus centers, but apparently no reaction at a carbon center has been demonstrated. The active site of the Tetrahymena ribozyme was engineered to bind an oligonucleotide derived from the 3' end of N-formyl-methionyl-tRNA(fMet). This ribozyme catalyzes the hydrolysis of the aminoacyl ester bond to a modest extent, 5 to 15 times greater than the uncatalyzed rate. Catalysis involves binding of the oligonucleotide to the internal guide sequence of the ribozyme and requires Mg2+ and sequence elements of the catalytic core. The ability of RNA to catalyze reactions with aminoacyl esters expands the catalytic versatility of RNA and suggests that the first aminoacyl tRNA synthetase could have been an RNA molecule.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Piccirilli, J A -- McConnell, T S -- Zaug, A J -- Noller, H F -- Cech, T R -- New York, N.Y. -- Science. 1992 Jun 5;256(5062):1420-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1604316" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Binding Sites ; Carboxylic Ester Hydrolases/*metabolism ; Kinetics ; Models, Structural ; Molecular Sequence Data ; Nucleic Acid Conformation ; Oligoribonucleotides ; RNA, Catalytic/genetics/*metabolism ; RNA, Transfer, Amino Acyl/metabolism ; *RNA, Transfer, Met ; Substrate Specificity ; Tetrahymena/*enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...