ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    facet.materialart.
    Unknown
    Touch Oil and Gas
    In:  Exploration & Production - Oil and Gas Review, 8 (2).
    Publication Date: 2017-01-04
    Description: Rock Garden is a broad ridge system that sits atop the deforming accretionary wedge of the convergent Hikurangi Margin, where the Pacific Plate (on the east) is being subducted beneath the Australian Plate (on the west) (see Figure 1A). It is inferred that Rock Garden’s origin is owed to subduction of a seamount, where the topographic high on the down-going plate has caused localised uplift and flexural doming of the seafloor.1–3 Active deformation of the ridge is therefore likely to be extensional in nature, in response to the uplift and doming – an atypical deformation style for the regionally compressional tectonics of the subduction margin. The geology of the ridge is not well constrained, but dredge samples indicate that the ‘country rock’ probably consists of relatively well consolidated mudrocks with low primary porosity.4,5 Gas hydrates are inferred to be widespread beneath much of the Rock Garden ridge. This is based on the observation of numerous bottom simulating reflections (BSRs) in several seismic data sets.1,6,7 BSRs in gas hydrate provinces are usually attributed to gas hydrate overlying free gas.8 Therefore, such BSRs are seismic manifestations of the base of gas hydrate stability (BGHS), above which conditions are generally suited for gas hydrate formation and below which they are not. The region between the seafloor and the BGHS, which are sub-parallel to each other, is defined as the gas hydrate stability zone (GHSZ). The ridge has been a focus site for gas- and gas hydrate-related research since 1996, when Lewis and Marshall first documented methane seepage through the seafloor into the water column.9 In 2004, seismic images of BSRs and gas pockets beneath the ridge were presented and a link was made between sub-seafloor gas distribution and seafloor seepage.1 More recently, greater data coverage revealed gas migration pathways beneath several seep sites, requiring the migration of gas through the GHSZ.7 In addition to studies of gas seepage, a regional erosion mechanism associated with dynamics of the gas hydrate system has been hypothesised to explain the remarkably flat ridge-top profile that stands out amid the surrounding bathymetry of the subduction wedge (see Figure 1B).3,5,6,10 High-resolution seismic data sets have formed the basis for much of the research into Rock Garden’s gas hydrate system. The purpose of this article is to highlight some areas where focused flow of gas-charged fluids into the GHSZ is expected – a process that can benefit from, for example, localised structural deformation11 and relatively permeable sedimentary layering.12,13 From the perspective of gas hydrates as a potential alternative energy resource, these geological relationships are important because the enhanced fluid flow may lead to highly concentrated deposits as gas converts to hydrate.11,13 Recent three-phase modelling also predicts that high concentrations of hydrate are likely to form around regions of gas penetration through the GHSZ.14 Hence, we are mapping potential locations of highly concentrated gas hydrate.
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2016-11-15
    Description: Bottom-simulating reflections (BSRs) are probably the most commonly used indicators for gas hydrates in marine sediments. It is now widely accepted that BSRs are primarily caused by free gas beneath gas-hydrate-bearing sediments. However, our insight into BSR formation to date is mostly limited to theoretical studies. Two endmember processes have been suggested to supply free gas for BSR formation: (i) dissociation of gas hydrates and (ii) migration of methane from below. During a recent campaign of the German Research Vessel Sonne off the shore of Peru, we detected BSRs at locations undergoing both tectonic subsidence and non-sedimentation or seafloor erosion. Tectonic subsidence (and additionally perhaps seafloor erosion) causes the base of gas hydrate stability to migrate downward with respect to gas-hydrate-bearing sediments. This process rules out dissociation of gas hydrates as a source of free gas for BSRs at these locations. Instead, free gas at BSRs is predicted to be absorbed into the gas hydrate stability zone. BSRs appear to be confined to locations where the subsurface structure suggests focusing of fluid flow. We investigated the seafloor at one of these locations with a TV sled and observed fields of rounded boulders and slab-like rocks, which we interpreted as authigenic carbonates. Authigenic carbonates are precipitations typically found at cold vents with methane expulsion. We retrieved a small carbonate-cemented sediment sample from the seafloor above a BSR about 20 km away. This supported our interpretation that the observed slabs and boulders were carbonates. All these observations suggest that BSRs in Lima Basin are maintained predominantly by gas that is supplied from below, demonstrating that this endmember process for BSR formation exists in nature. Results from Ocean Drilling Program Leg 112 showed that methane for gas hydrate formation on the Peru lower slope and the methane in hydrocarbon gases on the upper slope is mostly of biogenic origin. The δ13C composition of the recovered carbonate cement was consistent with biologic methane production below the seafloor (although possibly above the BSR). We speculate that the gas for BSR formation in Lima Basin also is mainly biogenic methane. This would suggest the biologic productivity beneath the gas hydrate zone in Lima Basin to be relatively high in order to supply enough methane to maintain BSRs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2016-08-02
    Description: We present an integrated 2D model of thermal and microbial generation of methane, migration into the gas hydrate stability zone (HSZ), and formation of methane hydrates. The model reconstructs the shallow (0e20 km) thermal structure of the subduction interface between the Australian plate and the subducting Pacific plate, and the trench basin (Pegasus Basin). Modelled temperatures of less than 110 °C within Pegasus Basin constrain the generation of oil and gas. Whilst a cool thermal regime is predicted to limit thermogenic generation of gas to a burial depth of 〉10 km, it extends the interval where prolific microbial gas generation occurs. The modelled rate of microbial generation of methane increases beneath the HSZ and peaks at ~1600 m below seafloor. Diffusive upward migration of microbially generated methane is interpreted to lead to widespread methane hydrate formation and the presence of a semicontinuous bottom simulating reflector (BSR). Predicted average hydrate saturation within the HSZ is 0.9% for a modelled sedimentary organic matter content of 0.5% and 1.6% for 1% organic matter in finegrained Pegasus Basin sediments. Considerably higher concentrations of methane hydrate of up to 20 e70% are predicted to occur where gas migration is focussed within the frontal anticline and proto-thrust zone southeast of the modern accretionary wedge and in channel and basin floor sandstones related to the Hikurangi Channel. The Hikurangi Channel sedimentary system transported coarse clastic sediments eroded from the rising Southern Alps along the eastern margin of the Pegasus Basin since the Miocene. It provides carrier beds specifically for transport of thermogenic gas generated close to the subduction interface. A buried Mesozoic accretionary wedge originating from subduction of the Pacific Plate beneath Gondwana further focusses the migration of gas. Focussed migration of thermogenic gas leads to the highest predicted hydrate concentrations in potential channel sand reservoirs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    American Institute of Physics
    In:  The Leading Edge, 21 (7). pp. 686-689.
    Publication Date: 2016-07-13
    Description: As offshore petroleum exploration and development move into deeper water, industry must contend increasingly with gas hydrate, a solid compound that binds water and a low-molecular-weight gas (usually methane). Gas hydrate has been long studied in industry from an engineering viewpoint, due to its tendency to clog gas pipelines. However, hydrate also occurs naturally wherever there are high pressures, low temperatures, and sufficient concentrations of gas and water. These conditions prevail in two natural environments, both of which are sites of active exploration: permafrost regions and marine sediments on continental slopes. In this article we discuss seismic detection of gas hydrate in marine sediments. Gas hydrate in deepwater sediments poses both new opportunities and new hazards. An enormous quantity of natural gas, likely far exceeding the global inventory of conventional fossil fuels, is locked up worldwide in hydrates. Ex-traction of this unconventional resource presents unique exploration, engineering, and economic challenges, and several countries, including the United States, Japan, Canada, India, and Korea, have initiated joint industry-academic-governmental programs to begin studying those challenges. Hydrates also constitute a potential drilling hazard. Because hydrates are only stable in a restricted range of pressure and temperature, any activity that sufficiently raises temperature or lowers pressure could destabilize them, releasing potentially large volumes of gas and decreasing the shear strength of the host sediments. Assessment of the opportunities and hazards associated with hydrates requires reliable methods of detecting hydrate and accurate maps of their distribution and concentration. Hydrate may occur only within the upper few hundred meters of deepwater sediment, at any depth between the seafloor and the base of the stability zone, which is controlled by local pressure and temperature. Hydrate is occasionally exposed at the seafloor, where it can be detected either visually or acoustically by strong seismic reflection amplitudes or high backscatter …
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2013-10-16
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2013-06-27
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2013-11-05
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-09-23
    Description: Slow slip events (SSEs) at the northern Hikurangi subduction margin, New Zealand, are among the best-documented shallow SSEs on Earth. International Ocean Discovery Program Expeditions 372 and 375 were undertaken to investigate the processes and in situ conditions that underlie subduction zone SSEs at the northern Hikurangi Trough. We accomplished this goal by (1) coring and geophysical logging at four sites, including penetration of an active thrust fault (the Pāpaku fault) near the deformation front, the upper plate above the SSE source region, and the incoming sedimentary succession in the Hikurangi Trough and atop the Tūranganui Knoll seamount; and (2) installing borehole observatories in the Pāpaku fault and in the upper plate overlying the slow slip source region. Logging-while-drilling (LWD) data for this project were acquired as part of Expedition 372, and coring, wireline logging, and observatory installations were conducted during Expedition 375. Northern Hikurangi subduction margin SSEs recur every 1–2 y and thus provide an ideal opportunity to monitor deformation and associated changes in chemical and physical properties throughout the slow slip cycle. In situ measurements and sampling of material from the sedimentary section and oceanic basement of the subducting plate reveal the rock properties, composition, lithology, and structural character of material that is transported downdip into the SSE source region. A recent seafloor geodetic experiment raises the possibility that SSEs at northern Hikurangi may propagate to the trench, indicating that the shallow thrust fault (the Pāpaku fault) targeted during Expeditions 372 and 375 may also lie in the SSE rupture area and host a portion of the slip in these events. Hence, sampling and logging at this location provides insights into the composition, physical properties, and architecture of a shallow fault that may host slow slip. Expeditions 372 and 375 were designed to address three fundamental scientific objectives: Characterize the state and composition of the incoming plate and shallow fault near the trench, which comprise the protolith and initial conditions for fault zone rock at greater depth and which may itself host shallow slow slip; Characterize material properties, thermal regime, and stress conditions in the upper plate directly above the SSE source region; and Install observatories in the Pāpaku fault near the deformation front and in the upper plate above the SSE source to measure temporal variations in deformation, temperature, and fluid flow. The observatories will monitor volumetric strain (via pore pressure as a proxy) and the evolution of physical, hydrological, and chemical properties throughout the SSE cycle. Together, the coring, logging, and observatory data will test a suite of hypotheses about the fundamental mechanics and behavior of SSEs and their relationship to great earthquakes along the subduction interface.
    Type: Article , NonPeerReviewed
    Format: archive
    Format: archive
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    Texas A&M Univ.
    In:  In: Creeping Gas Hydrate Slides. Proceedings of the International Ocean Discovery Program, 372A . Texas A&M Univ., College Station, TX, pp. 1-40.
    Publication Date: 2021-08-17
    Description: International Ocean Discovery Program (IODP) Site U1517(proposed Site TLC-04B) is located at 38°49.772ʹS, 178°28.557ʹE inthe extensional, creeping part of the Tuaheni Landslide Complex(TLC) (Figure F1; see Figure F2 in the Expedition 372A summarychapter [Barnes et al., 2019a]) (Mountjoy et al., 2014b). HoleU1517A was drilled in a water depth of 725 meters below sea level(mbsl); Holes U1517B and U1517C lie at 720 mbsl. The primarydrilling objective was to log and sample through the landslide massand the gas hydrate stability zone to understand the mechanismsbehind creeping. Therefore, we planned to log the sediment columnto 205 meters below seafloor (mbsf ) using logging-while-drilling(LWD) tools, followed by advanced piston corer (APC) coring, pres-sure coring, and temperature dual pressure probe (T2P) deploy-ments.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...