ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-11-15
    Description: Bottom-simulating reflections (BSRs) are probably the most commonly used indicators for gas hydrates in marine sediments. It is now widely accepted that BSRs are primarily caused by free gas beneath gas-hydrate-bearing sediments. However, our insight into BSR formation to date is mostly limited to theoretical studies. Two endmember processes have been suggested to supply free gas for BSR formation: (i) dissociation of gas hydrates and (ii) migration of methane from below. During a recent campaign of the German Research Vessel Sonne off the shore of Peru, we detected BSRs at locations undergoing both tectonic subsidence and non-sedimentation or seafloor erosion. Tectonic subsidence (and additionally perhaps seafloor erosion) causes the base of gas hydrate stability to migrate downward with respect to gas-hydrate-bearing sediments. This process rules out dissociation of gas hydrates as a source of free gas for BSRs at these locations. Instead, free gas at BSRs is predicted to be absorbed into the gas hydrate stability zone. BSRs appear to be confined to locations where the subsurface structure suggests focusing of fluid flow. We investigated the seafloor at one of these locations with a TV sled and observed fields of rounded boulders and slab-like rocks, which we interpreted as authigenic carbonates. Authigenic carbonates are precipitations typically found at cold vents with methane expulsion. We retrieved a small carbonate-cemented sediment sample from the seafloor above a BSR about 20 km away. This supported our interpretation that the observed slabs and boulders were carbonates. All these observations suggest that BSRs in Lima Basin are maintained predominantly by gas that is supplied from below, demonstrating that this endmember process for BSR formation exists in nature. Results from Ocean Drilling Program Leg 112 showed that methane for gas hydrate formation on the Peru lower slope and the methane in hydrocarbon gases on the upper slope is mostly of biogenic origin. The δ13C composition of the recovered carbonate cement was consistent with biologic methane production below the seafloor (although possibly above the BSR). We speculate that the gas for BSR formation in Lima Basin also is mainly biogenic methane. This would suggest the biologic productivity beneath the gas hydrate zone in Lima Basin to be relatively high in order to supply enough methane to maintain BSRs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-08-02
    Description: We present an integrated 2D model of thermal and microbial generation of methane, migration into the gas hydrate stability zone (HSZ), and formation of methane hydrates. The model reconstructs the shallow (0e20 km) thermal structure of the subduction interface between the Australian plate and the subducting Pacific plate, and the trench basin (Pegasus Basin). Modelled temperatures of less than 110 °C within Pegasus Basin constrain the generation of oil and gas. Whilst a cool thermal regime is predicted to limit thermogenic generation of gas to a burial depth of 〉10 km, it extends the interval where prolific microbial gas generation occurs. The modelled rate of microbial generation of methane increases beneath the HSZ and peaks at ~1600 m below seafloor. Diffusive upward migration of microbially generated methane is interpreted to lead to widespread methane hydrate formation and the presence of a semicontinuous bottom simulating reflector (BSR). Predicted average hydrate saturation within the HSZ is 0.9% for a modelled sedimentary organic matter content of 0.5% and 1.6% for 1% organic matter in finegrained Pegasus Basin sediments. Considerably higher concentrations of methane hydrate of up to 20 e70% are predicted to occur where gas migration is focussed within the frontal anticline and proto-thrust zone southeast of the modern accretionary wedge and in channel and basin floor sandstones related to the Hikurangi Channel. The Hikurangi Channel sedimentary system transported coarse clastic sediments eroded from the rising Southern Alps along the eastern margin of the Pegasus Basin since the Miocene. It provides carrier beds specifically for transport of thermogenic gas generated close to the subduction interface. A buried Mesozoic accretionary wedge originating from subduction of the Pacific Plate beneath Gondwana further focusses the migration of gas. Focussed migration of thermogenic gas leads to the highest predicted hydrate concentrations in potential channel sand reservoirs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-08
    Description: Highlights • Seismic depth imaging gives insight into the southern Hikurangi subduction zone. • Velocities reveal regional variations in compaction and drainage of input sediments. • Dewatering of subducted sediments might influence décollement strength. • Thrusts at the leading edge of deformation are upper-plate dewatering pathways. • Stratigraphic host of the décollement changes at the southern end of the margin. Abstract The southern end of New Zealand's Hikurangi subduction margin accommodates highly oblique convergence between the Pacific and Australian plates. We carry out two-dimensional (2D) seismic reflection tomography and pre-stack depth migrations on two seismic lines to gain insight into the nature of subducted sediments and upper plate faulting and dewatering at the toe of the wedge. We also investigate the NE to SW evolution of emergent upper plate thrust faulting using 47 seismic lines spanning an along-strike distance of ∼270 km. The upper sequence of sediments that ultimately gets subducted (the MES sequence) has an anomalously-low seismic velocity character. At the southwestern end of the margin, ∼150 km east of Kaikōura, the MES sequence has experienced greater compaction (for an equivalent effective vertical stress) than it has some 200 km further to the northeast. This difference is likely attributable to greater horizontal compression in the southwest caused by impingement of the Chatham Rise on the deformation front. Relationships between velocity and effective vertical stress suggest that the MES sequence is well-drained in the vicinity of frontal thrusts, corroborated by evidence for upper plate dewatering along those thrusts. Effective drainage of the MES sequence likely promotes interplate coupling on the southern Hikurangi margin. The décollement is generally hosted near a seismic reflector known as “Reflector 7”. East of Kaikōura, however, Reflector 7 becomes accreted, indicating that subduction slip at the southwestern end of the margin is no longer hosted at (or above) this reflector. Instead, the décollement steps down to a deeper stratigraphic level further inboard. Further to the SW, approximately in line with the lower Kaikōura Canyon, the offshore manifestation of subduction-driven compression ceases.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: We analyse reflection seismic profiles across the outer accretionary wedge at the convergent New Zealand Hikurangi margin. We identify several, in some case stacked, bottom simulating reflections (BSRs). We interpret these multiple BSRs to record changes in gas hydrate stability. With the aid of gas hydrate systems modelling, we identify two geological drivers that affect gas hydrate stability: (1.) rapid sedimentation in trough basins and (2.) uplift and erosion of thrust ridges. Rapid sedimentation in trough basins buries gas hydrates that formed above the former base of gas hydrate stability (BGHS). Locally, we observe a remnant BSR from this process, likely due to residual gas and possibly gas hydrate. The combined effects of uplift and erosion, in contrast, result in the preservation of a remnant BSR within the gas hydrate stability zone, whilst a new BSR forms locally at the present-day BGHS. However, the limited occurrence of double BSRs in seismic data and the model both suggest that the formation of a deeper BSR is limited by gas supply. Formation of significant gas hydrate at this deeper level only occurs in areas of focused gas migration. This slow formation of gas hydrate also has implications for the response to glacio-eustatic sea-level rise: gas hydrates are more likely to accumulate above the BGHS corresponding to the last glacial maximum, whereas only small amounts formed above the deeper present-day BGHS. Hence, future bottom water warming will, at least initially, not lead to significant methane release from dissociating gas hydrates in deep water.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...