ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2001-08-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cifuentes, L -- Borja-Aburto, V H -- Gouveia, N -- Thurston, G -- Davis, D L -- ES00260/ES/NIEHS NIH HHS/ -- New York, N.Y. -- Science. 2001 Aug 17;293(5533):1257-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Pontificia Universidad Catolica de Chile, Santiago, Chile.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11509711" target="_blank"〉PubMed〈/a〉
    Keywords: *Air Pollution/adverse effects/prevention & control ; Brazil ; Chile ; Developed Countries ; Developing Countries ; Forecasting ; Fossil Fuels ; *Greenhouse Effect ; Health Status ; Humans ; Mexico ; Mortality ; New York City ; Ozone/adverse effects ; *Public Health
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-06-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weston, C R -- Davis, R J -- New York, N.Y. -- Science. 2001 Jun 29;292(5526):2439-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Molecular Medicine and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11431552" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axin Protein ; Binding Sites ; Calcium-Calmodulin-Dependent Protein Kinases/antagonists & ; inhibitors/chemistry/genetics/*metabolism ; Cell Membrane/metabolism ; Cytoplasm/enzymology ; Cytoskeletal Proteins/metabolism ; Drug Design ; Glycogen Synthase/metabolism ; Glycogen Synthase Kinase 3 ; Humans ; Insulin/*metabolism ; Models, Biological ; Mutation ; Phosphorylation ; Phosphoserine/metabolism ; Protein Conformation ; *Protein-Serine-Threonine Kinases ; Proteins/metabolism ; Proto-Oncogene Proteins/*metabolism ; Proto-Oncogene Proteins c-akt ; *Repressor Proteins ; *Signal Transduction ; Substrate Specificity ; *Trans-Activators ; Wnt Proteins ; *Zebrafish Proteins ; beta Catenin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 1997-12-31
    Description: The nuclear factor of activated T cells (NFAT) group of transcription factors is retained in the cytoplasm of quiescent cells. NFAT activation is mediated in part by induced nuclear import. This process requires calcium-dependent dephosphorylation of NFAT caused by the phosphatase calcineurin. The c-Jun amino-terminal kinase (JNK) phosphorylates NFAT4 on two sites. Mutational removal of the JNK phosphorylation sites caused constitutive nuclear localization of NFAT4. In contrast, JNK activation in calcineurin-stimulated cells caused nuclear exclusion of NFAT4. These findings show that the nuclear accumulation of NFAT4 promoted by calcineurin is opposed by the JNK signal transduction pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chow, C W -- Rincon, M -- Cavanagh, J -- Dickens, M -- Davis, R J -- CA58396/CA/NCI NIH HHS/ -- CA65831/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1997 Nov 28;278(5343):1638-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9374467" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; COS Cells ; Calcineurin/metabolism ; Calcineurin Inhibitors ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Cell Line ; Cell Nucleus/*metabolism ; Cyclosporine/pharmacology ; Cytoplasm/metabolism ; DNA-Binding Proteins/genetics/*metabolism ; Humans ; JNK Mitogen-Activated Protein Kinases ; Jurkat Cells ; Mitogen-Activated Protein Kinase Kinases ; *Mitogen-Activated Protein Kinases ; Mutation ; NFATC Transcription Factors ; *Nuclear Proteins ; Phosphorylation ; Protein Kinases/metabolism ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; T-Lymphocytes/metabolism ; Transcription Factors/genetics/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 1997-07-04
    Description: Angiogenesis is thought to depend on a precise balance of positive and negative regulation. Angiopoietin-1 (Ang1) is an angiogenic factor that signals through the endothelial cell-specific Tie2 receptor tyrosine kinase. Like vascular endothelial growth factor, Ang1 is essential for normal vascular development in the mouse. An Ang1 relative, termed angiopoietin-2 (Ang2), was identified by homology screening and shown to be a naturally occurring antagonist for Ang1 and Tie2. Transgenic overexpression of Ang2 disrupts blood vessel formation in the mouse embryo. In adult mice and humans, Ang2 is expressed only at sites of vascular remodeling. Natural antagonists for vertebrate receptor tyrosine kinases are atypical; thus, the discovery of a negative regulator acting on Tie2 emphasizes the need for exquisite regulation of this angiogenic receptor system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maisonpierre, P C -- Suri, C -- Jones, P F -- Bartunkova, S -- Wiegand, S J -- Radziejewski, C -- Compton, D -- McClain, J -- Aldrich, T H -- Papadopoulos, N -- Daly, T J -- Davis, S -- Sato, T N -- Yancopoulos, G D -- New York, N.Y. -- Science. 1997 Jul 4;277(5322):55-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9204896" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Angiopoietin-1 ; Angiopoietin-2 ; Animals ; Blood Vessels/embryology/*metabolism ; Cells, Cultured ; Cloning, Molecular ; Embryo, Mammalian/metabolism ; Endothelial Growth Factors/genetics/metabolism ; Endothelium, Vascular/*cytology/metabolism ; Female ; Humans ; Ligands ; Lymphokines/genetics/metabolism ; Membrane Glycoproteins/antagonists & inhibitors/metabolism ; Mice ; Mice, Transgenic ; Molecular Sequence Data ; *Neovascularization, Physiologic ; Phosphorylation ; Proteins/chemistry/*metabolism ; Rats ; Rats, Sprague-Dawley ; Receptor Protein-Tyrosine Kinases/*antagonists & inhibitors/metabolism ; Receptor, TIE-2 ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Vascular Endothelial Growth Factor A ; Vascular Endothelial Growth Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 1997-06-13
    Description: Two families of small peptides that bind to the human thrombopoietin receptor and compete with the binding of the natural ligand thrombopoietin (TPO) were identified from recombinant peptide libraries. The sequences of these peptides were not found in the primary sequence of TPO. Screening libraries of variants of one of these families under affinity-selective conditions yielded a 14-amino acid peptide (Ile-Glu-Gly-Pro-Thr-Leu-Arg-Gln-Trp-Leu-Ala-Ala-Arg-Ala) with high affinity (dissociation constant approximately 2 nanomolar) that stimulates the proliferation of a TPO-responsive Ba/F3 cell line with a median effective concentration (EC50) of 400 nanomolar. Dimerization of this peptide by a carboxyl-terminal linkage to a lysine branch produced a compound with an EC50 of 100 picomolar, which was equipotent to the 332-amino acid natural cytokine in cell-based assays. The peptide dimer also stimulated the in vitro proliferation and maturation of megakaryocytes from human bone marrow cells and promoted an increase in platelet count when administered to normal mice.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cwirla, S E -- Balasubramanian, P -- Duffin, D J -- Wagstrom, C R -- Gates, C M -- Singer, S C -- Davis, A M -- Tansik, R L -- Mattheakis, L C -- Boytos, C M -- Schatz, P J -- Baccanari, D P -- Wrighton, N C -- Barrett, R W -- Dower, W J -- New York, N.Y. -- Science. 1997 Jun 13;276(5319):1696-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Affymax Research Institute, 4001 Miranda Avenue, Palo Alto, CA 94304, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9180079" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding, Competitive ; Blood Platelets/cytology ; Cell Division ; Cell Line ; Cells, Cultured ; Consensus Sequence ; Dimerization ; Erythropoietin/pharmacology ; Hematopoiesis/drug effects ; Humans ; Megakaryocytes/cytology ; Mice ; Molecular Sequence Data ; *Neoplasm Proteins ; Oligopeptides/*metabolism/*pharmacology ; Peptide Library ; Peptides/metabolism/pharmacology ; Platelet Count ; Proto-Oncogene Proteins/*agonists/metabolism ; *Receptors, Cytokine ; Receptors, Thrombopoietin ; Recombinant Proteins/metabolism/pharmacology ; Thrombopoietin/*metabolism/pharmacology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-06-17
    Description: Unequal crossing-over within a head-to-tail tandem array of the homologous red and green visual pigment genes has been proposed to explain the observed variation in green-pigment gene number among individuals and the prevalence of red-green fusion genes among color-blind subjects. This model was tested by probing the structure of the red and green pigment loci with long-range physical mapping techniques. The loci were found to constitute a gene array with an approximately 39-kilobase repeat length. The position of the red pigment gene at the 5' edge of the array explains its lack of variation in copy number. Restriction maps of the array in four individuals who differ in gene number are consistent with a head-to-tail configuration of the genes. These results provide physical evidence in support of the model and help to explain the high incidence of color blindness in the human population.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vollrath, D -- Nathans, J -- Davis, R W -- GM21891/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1988 Jun 17;240(4859):1669-72.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Stanford University School of Medicine, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2837827" target="_blank"〉PubMed〈/a〉
    Keywords: Color Vision Defects/*genetics ; Crossing Over, Genetic ; DNA/genetics ; DNA Restriction Enzymes ; Electrophoresis, Agar Gel ; Exons ; Female ; Genetic Variation ; Humans ; Male ; Nucleic Acid Hybridization ; Recombination, Genetic ; Repetitive Sequences, Nucleic Acid ; Retinal Pigments/*genetics ; *X Chromosome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 1989-01-13
    Description: In the polymerase chain reaction (PCR), two specific oligonucleotide primers are used to amplify the sequences between them. However, this technique is not suitable for amplifying genes that encode molecules where the 5' portion of the sequences of interest is not known, such as the T cell receptor (TCR) or immunoglobulins. Because of this limitation, a novel technique, anchored polymerase chain reaction (A-PCR), was devised that requires sequence specificity only on the 3' end of the target fragment. It was used to analyze TCR delta chain mRNA's from human peripheral blood gamma delta T cells. Most of these cells had a V delta gene segment not previously described (V delta 3), and the delta chain junctional sequences formed a discrete subpopulation compared with those previously reported.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Loh, E Y -- Elliott, J F -- Cwirla, S -- Lanier, L L -- Davis, M M -- New York, N.Y. -- Science. 1989 Jan 13;243(4888):217-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Medicine and Microbiology and Immunology, Stanford University School of Medicine, CA 94305-5402.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2463672" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Cell Line ; Gene Amplification ; *Genes ; Humans ; Macromolecular Substances ; Molecular Sequence Data ; Oligonucleotide Probes ; RNA, Messenger/genetics ; RNA-Directed DNA Polymerase ; Receptors, Antigen, T-Cell/*genetics ; T-Lymphocytes/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2010-01-30
    Description: Humans have engaged in endurance running for millions of years, but the modern running shoe was not invented until the 1970s. For most of human evolutionary history, runners were either barefoot or wore minimal footwear such as sandals or moccasins with smaller heels and little cushioning relative to modern running shoes. We wondered how runners coped with the impact caused by the foot colliding with the ground before the invention of the modern shoe. Here we show that habitually barefoot endurance runners often land on the fore-foot (fore-foot strike) before bringing down the heel, but they sometimes land with a flat foot (mid-foot strike) or, less often, on the heel (rear-foot strike). In contrast, habitually shod runners mostly rear-foot strike, facilitated by the elevated and cushioned heel of the modern running shoe. Kinematic and kinetic analyses show that even on hard surfaces, barefoot runners who fore-foot strike generate smaller collision forces than shod rear-foot strikers. This difference results primarily from a more plantarflexed foot at landing and more ankle compliance during impact, decreasing the effective mass of the body that collides with the ground. Fore-foot- and mid-foot-strike gaits were probably more common when humans ran barefoot or in minimal shoes, and may protect the feet and lower limbs from some of the impact-related injuries now experienced by a high percentage of runners.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lieberman, Daniel E -- Venkadesan, Madhusudhan -- Werbel, William A -- Daoud, Adam I -- D'Andrea, Susan -- Davis, Irene S -- Mang'eni, Robert Ojiambo -- Pitsiladis, Yannis -- England -- Nature. 2010 Jan 28;463(7280):531-5. doi: 10.1038/nature08723.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Human Evolutionary Biology, 11 Divinity Avenue, Harvard University, Cambridge, Massachusetts 02138, USA. danlieb@fas.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20111000" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; Biomechanical Phenomena ; Child ; Female ; Foot/*physiology ; Forefoot, Human/physiology ; Gait/physiology ; Humans ; Kenya ; Male ; Running/*physiology ; *Shoes/standards ; *Stress, Mechanical ; United States ; Weight-Bearing/physiology ; Young Adult
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2008-10-25
    Description: BAX is a pro-apoptotic protein of the BCL-2 family that is stationed in the cytosol until activated by a diversity of stress stimuli to induce cell death. Anti-apoptotic proteins such as BCL-2 counteract BAX-mediated cell death. Although an interaction site that confers survival functionality has been defined for anti-apoptotic proteins, an activation site has not been identified for BAX, rendering its explicit trigger mechanism unknown. We previously developed stabilized alpha-helix of BCL-2 domains (SAHBs) that directly initiate BAX-mediated mitochondrial apoptosis. Here we demonstrate by NMR analysis that BIM SAHB binds BAX at an interaction site that is distinct from the canonical binding groove characterized for anti-apoptotic proteins. The specificity of the human BIM-SAHB-BAX interaction is highlighted by point mutagenesis that disrupts functional activity, confirming that BAX activation is initiated at this novel structural location. Thus, we have now defined a BAX interaction site for direct activation, establishing a new target for therapeutic modulation of apoptosis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597110/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597110/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gavathiotis, Evripidis -- Suzuki, Motoshi -- Davis, Marguerite L -- Pitter, Kenneth -- Bird, Gregory H -- Katz, Samuel G -- Tu, Ho-Chou -- Kim, Hyungjin -- Cheng, Emily H-Y -- Tjandra, Nico -- Walensky, Loren D -- 5P01CA92625/CA/NCI NIH HHS/ -- 5R01CA125562/CA/NCI NIH HHS/ -- 5R01CA50239/CA/NCI NIH HHS/ -- K99 HL095929/HL/NHLBI NIH HHS/ -- K99 HL095929-01A1/HL/NHLBI NIH HHS/ -- K99 HL095929-02/HL/NHLBI NIH HHS/ -- R00 HL095929/HL/NHLBI NIH HHS/ -- R01 CA050239/CA/NCI NIH HHS/ -- R01 CA125562/CA/NCI NIH HHS/ -- R01 CA125562-02/CA/NCI NIH HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2008 Oct 23;455(7216):1076-81. doi: 10.1038/nature07396.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pediatric Oncology and the Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18948948" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Apoptosis ; Apoptosis Regulatory Proteins/chemistry/metabolism ; BH3 Interacting Domain Death Agonist Protein/metabolism ; Cell Line ; *Gene Expression Regulation ; Humans ; Membrane Proteins/chemistry/metabolism ; Mice ; Mutagenesis, Site-Directed ; Mutation/genetics ; Nuclear Magnetic Resonance, Biomolecular ; Protein Binding ; Proto-Oncogene Proteins/chemistry/metabolism ; Sequence Alignment ; bcl-2-Associated X Protein/chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2008-03-26
    Description: Tribolium castaneum is a member of the most species-rich eukaryotic order, a powerful model organism for the study of generalized insect development, and an important pest of stored agricultural products. We describe its genome sequence here. This omnivorous beetle has evolved the ability to interact with a diverse chemical environment, as shown by large expansions in odorant and gustatory receptors, as well as P450 and other detoxification enzymes. Development in Tribolium is more representative of other insects than is Drosophila, a fact reflected in gene content and function. For example, Tribolium has retained more ancestral genes involved in cell-cell communication than Drosophila, some being expressed in the growth zone crucial for axial elongation in short-germ development. Systemic RNA interference in T. castaneum functions differently from that in Caenorhabditis elegans, but nevertheless offers similar power for the elucidation of gene function and identification of targets for selective insect control.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tribolium Genome Sequencing Consortium -- Richards, Stephen -- Gibbs, Richard A -- Weinstock, George M -- Brown, Susan J -- Denell, Robin -- Beeman, Richard W -- Gibbs, Richard -- Bucher, Gregor -- Friedrich, Markus -- Grimmelikhuijzen, Cornelis J P -- Klingler, Martin -- Lorenzen, Marce -- Roth, Siegfried -- Schroder, Reinhard -- Tautz, Diethard -- Zdobnov, Evgeny M -- Muzny, Donna -- Attaway, Tony -- Bell, Stephanie -- Buhay, Christian J -- Chandrabose, Mimi N -- Chavez, Dean -- Clerk-Blankenburg, Kerstin P -- Cree, Andrew -- Dao, Marvin -- Davis, Clay -- Chacko, Joseph -- Dinh, Huyen -- Dugan-Rocha, Shannon -- Fowler, Gerald -- Garner, Toni T -- Garnes, Jeffrey -- Gnirke, Andreas -- Hawes, Alica -- Hernandez, Judith -- Hines, Sandra -- Holder, Michael -- Hume, Jennifer -- Jhangiani, Shalini N -- Joshi, Vandita -- Khan, Ziad Mohid -- Jackson, LaRonda -- Kovar, Christie -- Kowis, Andrea -- Lee, Sandra -- Lewis, Lora R -- Margolis, Jon -- Morgan, Margaret -- Nazareth, Lynne V -- Nguyen, Ngoc -- Okwuonu, Geoffrey -- Parker, David -- Ruiz, San-Juana -- Santibanez, Jireh -- Savard, Joel -- Scherer, Steven E -- Schneider, Brian -- Sodergren, Erica -- Vattahil, Selina -- Villasana, Donna -- White, Courtney S -- Wright, Rita -- Park, Yoonseong -- Lord, Jeff -- Oppert, Brenda -- Brown, Susan -- Wang, Liangjiang -- Weinstock, George -- Liu, Yue -- Worley, Kim -- Elsik, Christine G -- Reese, Justin T -- Elhaik, Eran -- Landan, Giddy -- Graur, Dan -- Arensburger, Peter -- Atkinson, Peter -- Beidler, Jim -- Demuth, Jeffery P -- Drury, Douglas W -- Du, Yu-Zhou -- Fujiwara, Haruhiko -- Maselli, Vincenza -- Osanai, Mizuko -- Robertson, Hugh M -- Tu, Zhijian -- Wang, Jian-jun -- Wang, Suzhi -- Song, Henry -- Zhang, Lan -- Werner, Doreen -- Stanke, Mario -- Morgenstern, Burkhard -- Solovyev, Victor -- Kosarev, Peter -- Brown, Garth -- Chen, Hsiu-Chuan -- Ermolaeva, Olga -- Hlavina, Wratko -- Kapustin, Yuri -- Kiryutin, Boris -- Kitts, Paul -- Maglott, Donna -- Pruitt, Kim -- Sapojnikov, Victor -- Souvorov, Alexandre -- Mackey, Aaron J -- Waterhouse, Robert M -- Wyder, Stefan -- Kriventseva, Evgenia V -- Kadowaki, Tatsuhiko -- Bork, Peer -- Aranda, Manuel -- Bao, Riyue -- Beermann, Anke -- Berns, Nicola -- Bolognesi, Renata -- Bonneton, Francois -- Bopp, Daniel -- Butts, Thomas -- Chaumot, Arnaud -- Denell, Robin E -- Ferrier, David E K -- Gordon, Cassondra M -- Jindra, Marek -- Lan, Que -- Lattorff, H Michael G -- Laudet, Vincent -- von Levetsow, Cornelia -- Liu, Zhenyi -- Lutz, Rebekka -- Lynch, Jeremy A -- da Fonseca, Rodrigo Nunes -- Posnien, Nico -- Reuter, Rolf -- Schinko, Johannes B -- Schmitt, Christian -- Schoppmeier, Michael -- Shippy, Teresa D -- Simonnet, Franck -- Marques-Souza, Henrique -- Tomoyasu, Yoshinori -- Trauner, Jochen -- Van der Zee, Maurijn -- Vervoort, Michel -- Wittkopp, Nadine -- Wimmer, Ernst A -- Yang, Xiaoyun -- Jones, Andrew K -- Sattelle, David B -- Ebert, Paul R -- Nelson, David -- Scott, Jeffrey G -- Muthukrishnan, Subbaratnam -- Kramer, Karl J -- Arakane, Yasuyuki -- Zhu, Qingsong -- Hogenkamp, David -- Dixit, Radhika -- Jiang, Haobo -- Zou, Zhen -- Marshall, Jeremy -- Elpidina, Elena -- Vinokurov, Konstantin -- Oppert, Cris -- Evans, Jay -- Lu, Zhiqiang -- Zhao, Picheng -- Sumathipala, Niranji -- Altincicek, Boran -- Vilcinskas, Andreas -- Williams, Michael -- Hultmark, Dan -- Hetru, Charles -- Hauser, Frank -- Cazzamali, Giuseppe -- Williamson, Michael -- Li, Bin -- Tanaka, Yoshiaki -- Predel, Reinhard -- Neupert, Susanne -- Schachtner, Joachim -- Verleyen, Peter -- Raible, Florian -- Walden, Kimberly K O -- Angeli, Sergio -- Foret, Sylvain -- Schuetz, Stefan -- Maleszka, Ryszard -- Miller, Sherry C -- Grossmann, Daniela -- BBS/B/12067/Biotechnology and Biological Sciences Research Council/United Kingdom -- BBS/B/12067/2/Biotechnology and Biological Sciences Research Council/United Kingdom -- R01 GM058634/GM/NIGMS NIH HHS/ -- R01 HD029594/HD/NICHD NIH HHS/ -- R01 HD029594-16/HD/NICHD NIH HHS/ -- U54 HG003273/HG/NHGRI NIH HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2008 Apr 24;452(7190):949-55. doi: 10.1038/nature06784. Epub 2008 Mar 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA. stephenr@bcm.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18362917" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Composition ; Body Patterning/genetics ; Cytochrome P-450 Enzyme System/genetics ; DNA Transposable Elements/genetics ; Genes, Insect/*genetics ; Genome, Insect/*genetics ; Growth and Development/genetics ; Humans ; Insecticides/pharmacology ; Neurotransmitter Agents/genetics ; Oogenesis/genetics ; Phylogeny ; Proteome/genetics ; RNA Interference ; Receptors, G-Protein-Coupled/genetics ; Receptors, Odorant/genetics ; Repetitive Sequences, Nucleic Acid/genetics ; Taste/genetics ; Telomere/genetics ; Tribolium/classification/embryology/*genetics/physiology ; Vision, Ocular/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...