ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2009-01-01
    Description: On uncrevassed regions of polythermal glaciers, englacial conduits can form by incision of supraglacial stream channels followed by roof closure. The origin and evolution of examples in Longyearbreen, Svalbard, and Khumbu Glacier, Nepal, were determined by speleological survey. The development of perennial incised channels requires that incision is significantly faster than glacier surface ablation, and thus will be favoured by high meltwater discharges in combination with cool climatic conditions or thick debris cover. Incised canyons can become blocked by drifted winter snow, refrozen meltwater, ice rafting from non-local sources (allochthonous breccias) and roof collapses (autochthonous breccias). Conduit closure can also occur in response to ice creep, particularly at depth. Following isolation from the surface, englacial conduits continue to evolve by vadose incision down to local base level. In the case of Longyearbreen, incision allowed the channel to reach the glacier bed, but on Khumbu Glacier deep incision is prevented because an effectively impermeable terminal moraine provides a high base level for the glacier drainage system. During our period of observations, deeper parts of the Longyearbreen conduit became blocked by a combination of ice accumulation and creep, causing the stream course to be re-routed to higher levels. On that glacier, incision, blockage and upward re-routing are cyclic. We conclude that ‘cut and closure’ is the dominant mechanism of englacial conduit formation on uncrevassed regions of polythermal glaciers.
    Print ISSN: 0022-1430
    Electronic ISSN: 1727-5652
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2015-07-08
    Description: Tropical peatlands play an important role in the global carbon cycle due to their immense carbon storage capacity. However, pristine peat swamp forests are vanishing due to deforestation and peatland degradation, especially in Southeast Asia. CO2 emissions associated with this land use change might not only come from the peat soil directly, but also from peat-draining rivers. So far, though, this has been mere speculation, since there was no data from undisturbed reference sites. We present the first combined assessment of lateral organic carbon fluxes and CO2 outgassing from an undisturbed tropical peat-draining river. Two sampling campaigns were undertaken on the Maludam river in Sarawak, Malaysia. The river catchment is covered by protected peat swamp forest, offering a unique opportunity to study a peat-draining river in its natural state, without any influence from tributaries with different characteristics. The two campaigns yielded consistent results. Dissolved organic carbon (DOC) concentrations ranged between 3222 and 6218 μmol L−1 and accounted for more than 99 % of the total organic carbon (TOC). Radiocarbon dating revealed that the riverine DOC was of recent origin, suggesting that it derives from the top soil layers and surface runoff. We observed strong oxygen depletion, implying high rates of organic matter decomposition and consequently CO2 production. The measured median pCO2 was 7795 and 8400 μatm during the two campaigns, respectively. Overall, we found that only 26 ± 15 % of the carbon was exported by CO2 evasion, while the rest was exported by discharge. CO2 outgassing seemed to be moderated by the short water residence time. Since most Southeast Asian peatlands are located at the coast, this is probably an important limiting factor for CO2 outgassing from most of its peat-draining rivers.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2015-06-05
    Description: Coastal peatlands in Southeast Asia release large amounts of organic carbon to rivers, which transport it further to the adjacent estuaries. However, little is known about the fate of this terrestrial material in the coastal ocean. Although Southeast Asia is, by area, considered a hotspot of estuarine CO2 emissions, studies in this region are very scarce. We measured dissolved and particulate organic carbon, carbon dioxide (CO2) partial pressure and carbon monoxide (CO) concentrations in two tropical estuaries in Sarawak, Malaysia, whose coastal area is covered by peatlands. We surveyed the estuaries of the rivers Lupar and Saribas during the wet and dry season, respectively. The spatial distribution and the carbon-to-nitrogen ratios of dissolved organic matter (DOM) suggest that peat-draining rivers convey terrestrial organic carbon to the estuaries. We found evidence that a large fraction of this carbon is respired. The median pCO2 in the estuaries ranged between 618 and 5064 μatm with little seasonal variation. CO2 fluxes were determined with a floating chamber and estimated to amount to 14–272 mol m−2 yr−1, which is high compared to other studies from tropical and subtropical sites. In contrast, CO concentrations and fluxes were relatively moderate (0.3–1.4 nmol L−1 and 0.8–1.9 mmol m−2 yr−1) if compared to published data for oceanic or upwelling systems. We attributed this to the large amounts of suspended matter (4–5004 mg L−1), limiting the light penetration depth. However, the diurnal variation of CO suggests that it is photochemically produced, implying that photodegradation might play a role for the removal of DOM from the estuary as well. We concluded that unlike smaller peat-draining tributaries, which tend to transport most carbon downstream, estuaries in this region function as an efficient filter for organic carbon and release large amounts of CO2 to the atmosphere. The Lupar and Saribas mid-estuaries release 0.4 ± 0.2 Tg C yr−1, which corresponds to approximately 80% of the emissions from the aquatic systems in these two catchments.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2015-01-14
    Description: We report on the first Raman lidar measurements of stratospheric aerosol layers in the upper troposphere and lower stratosphere over Korea. The data were taken with the multiwavelength aerosol Raman lidar at Gwangju (35.10° N, 126.53° E), Korea. The volcanic ash particles and gases were released around 12 June 2011 during the eruption of the Nabro volcano (13.37° N, 41.7° E) in Eritrea, east Africa. Forward trajectory computations show that the volcanic aerosols were advected from North Africa to East Asia. The first observation of the stratospheric aerosol layers over Korea was on 19 June 2011. The stratospheric aerosol layers appeared between 15 and 17 km height a.s.l. The aerosol layers' maximum value of the backscatter coefficient and the linear particle depolarization ratio at 532 nm were 1.5 ± 0.3 Mm−1 sr−1 and 2.2%, respectively. We found these values at 16.4 km height a.s.l. 44 days after this first observation, we observed the stratospheric aerosol layer again. We continuously probed the upper troposphere and lower stratosphere for this aerosol layer during the following 5 months, until December 2011. The aerosol layers typically occurred between 10 and 20 km height a.s.l. The stratospheric aerosol optical depth and the maximum backscatter coefficient at 532 nm decreased during these 5 months.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2015-12-15
    Description: Optical and microphysical properties of different aerosol types over South Africa measured with a multi-wavelength polarization Raman lidar are presented. This study could assist in bridging existing gaps relating to aerosol properties over South Africa, since limited long-term data of this type is available for this region. The observations were performed under the framework of the EUCAARI campaign in Elandsfontein. The multi-wavelength PollyXT Raman lidar system was used to determine vertical profiles of the aerosol optical properties, i.e. extinction and backscatter coefficients, Ångström exponents, lidar ratio and depolarization ratio. The mean microphysical aerosol proper ties, i.e. effective radius and single scattering, albedo were retrieved with an advanced inversion algorithm. Clear differences were observed for the intensive optical properties of atmospheric layers of biomass burning and urban/industrial aerosols. Our results reveal a wide range of optical and microphysical parameters for biomass burning aerosols. This indicates probable mixing of biomass burning aerosols with desert dust particles, as well as the possible continuous influence of urban/industrial aerosol load in the region. The lidar ratio at 355 nm, the linear particle depolarization ratio at 355 nm and the extinction-related Ångström exponent from 355 to 532 nm were 52 ± 7 sr; 0.9 ± 0.4 % and 2.3 ± 0.5, respectively for urban/industrial aerosols, while these values were 92 ± 10 sr; 3.2 ± 1.3 %; 2.0 ± 0.4 respectively for biomass burning aerosols layers. Biomass burning particles are larger and slightly less absorbing compared to urban/industrial aerosols. The particle effective radius were found to be 0.10 ± 0.03, 0.17 ± 0.04 and 0.13 ± 0.03 μm for urban/industrial, biomass burning, and mixed biomass burning and desert dust aerosols, respectively, while the single scattering albedo at 532 nm were 0.87 ± 0.06, 0.90 ± 0.06, and 0.88 ± 0.07 (at 532 nm), respectively for these three types of aerosols. Our results were within the same range of previously reported values.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2015-02-06
    Description: We use five years (2009–2013) of multiwavelength Raman lidar measurements at Gwangju, Korea (35.10° N, 126.53° E) for the identification of changes of optical properties of East Asian dust in dependence of its transport path over China. Profiles of backscatter and extinction coefficients, lidar ratios, and backscatter-related Ångström exponents (wavelength pair 355/532 nm) were measured at Gwangju. Linear particle depolarization ratios were used to identify East Asian dust layers. We used backward trajectory modelling to identify the pathway and the vertical position of dust-laden air masses over China during long-range transport. Most cases of Asian dust events can be described by the emission of dust in desert areas and subsequent transport over highly polluted regions of China. The Asian dust plumes could be categorized into two classes according to the height above ground in which these plumes were transported: (I) the dust layers passed over China at high altitude levels until arrival over Gwangju, and (II) the Asian dust layers were transported near the surface and the lower troposphere over industrialized areas before they arrived over Gwangju. We find that the optical characteristics of these mixed Asian dust layers over Gwangju differ in dependence of their vertical position above ground over China and the change of height above ground during transport. The mean linear particle depolarization ratio was 0.21 ± 0.06 (at 532 nm), the mean lidar ratios were 52 ± 7 sr at 355 nm and 53 ± 8 sr at 532 nm, and the mean Ångström exponent was 0.74 ± 0.31 in case I. In contrast, plumes transported at lower altitudes (case II) showed low depolarization ratios, and higher lidar ratio and Ångström exponents. The mean linear particle depolarization ratio was 0.13 ± 0.04, the mean lidar ratios were 63 ± 9 sr at 355 nm and 62 ± 8 sr at 532 nm, respectively, and the mean Ångström exponent was 0.98 ± 0.51. These numbers show that the optical characteristics of mixed Asian plumes are more similar to optical characteristics of urban pollution. We find a decrease of the linear depolarization ratio of the mixed dust/pollution plume in dependence of transport time if the pollution layer travelled over China at low heights, i.e., below approximately 3 km above ground. In contrast we do not find such a trend if the dust plumes travelled at heights above 4 km over China. We need a longer time series of lidar measurements in order to determine the change of optical properties of dust with transport time in a quantitative way.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2015-09-04
    Description: Stream networks were recently discovered as major but poorly constrained natural greenhouse gas (GHG) sources. A fundamental problem is that several measurement approaches have been used without cross comparisons. Flux chambers represent a potentially powerful methodological approach if robust and reliable ways to use chambers on running water can be defined. Here we compare the use of anchored and freely drifting chambers on various streams having different flow velocities. The study clearly shows that (1) drifting chambers have a very small impact on the water turbulence under the chamber and thus generate more reliable fluxes, (2) anchored chambers enhance turbulence under the chambers and thus elevate fluxes, (3) the bias of the anchored chambers greatly depends on chamber design and sampling conditions, and (4) there is a promising method to reduce the bias from anchored chambers by using a flexible plastic foil seal to the water surface rather than having rigid chamber walls penetrating into the water. Altogether, these results provide novel guidance on how to apply flux chambers in running water, which will have important consequences for measurements to constrain the global GHG balances.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2016-01-18
    Description: Estuaries are sources of nitrous oxide (N2O) and methane (CH4) to the atmosphere. However, our present knowledge of N2O and CH4 emissions from estuaries in the tropics is very limited because data is scarce. In this study, we present first measurements of dissolved N2O and CH4 from two estuaries in a peat-dominated region of north-western Borneo. Two campaigns (during the dry seaso n in June 2013 and during the wet season in March 2014) were conducted in the estuaries of the rivers Lupar and Saribas. Median N2O concentrations ranged between 7.2 and 12.3 nmol L-1and were higher in the marine end-member (13.0 ± 7.0 nmol L-1). CH4 concentrations were low in the coastal ocean (3.6 ± 0.2 nmol L-1) and higher in the estuaries (medians between 12.2 and 64.0 nmol L-1). The respiration of abundant organic matter and presumably anthropogenic input caused a slight eutrophication, which did not lead to hypoxia or enhanced N2O concentrations, however. Generally, N2O concentrations were not related to dissolved inorganic nitrogen concentrations. Thus, the use of an emission factor for the calculation of N2O emissions from the inorganic nitrogen load leads to an overestimation of the flux from the Lupar and Saribas estuaries. N2O was negatively correlated with salinity during the dry season, which suggests a riverine source. In contrast, N2O concentrations during the wet season were not correlated with salinity but locally enhanced within the estuaries, implying that there were additional estuarine sources during the wet (i.e. monsoon) season. Estuarine CH4 distributions were not driven by freshwater input but rather by tidal variations. Both N2O and CH4 concentrations were more variable during the wet season. We infer that the wet season dominates the variability of the N2O and CH4 concentrations and subsequent emissions from tropical estuaries. Thus, we speculate that any changes the Southeast Asian monsoon system will lead to changes in the N2O and CH4 emissions from these systems. We also suggest that the ongoing cultivation of peat soil in Borneo is likely to increase N2O emissions from these estuaries, while the effect on CH4 remains uncertain.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2015-10-21
    Description: Tropical peatlands play an important role in the global carbon cycle due to their immense carbon storage capacity. However, pristine peat swamp forests are vanishing due to deforestation and peatland degradation, especially in Southeast Asia. CO2 emissions associated with this land use change might not only come from the peat soil directly but also from peat-draining rivers. So far, though, this has been mere speculation, since there has been no data from undisturbed reference sites. We present the first combined assessment of lateral organic carbon fluxes and CO2 outgassing from an undisturbed tropical peat-draining river. Two sampling campaigns were undertaken on the Maludam River in Sarawak, Malaysia. The river catchment is covered by protected peat swamp forest, offering a unique opportunity to study a peat-draining river in its natural state, without any influence from tributaries with different characteristics. The two campaigns yielded consistent results. Dissolved organic carbon (DOC) concentrations ranged between 3222 and 6218 μmol L−1 and accounted for more than 99 % of the total organic carbon (TOC). Radiocarbon dating revealed that the riverine DOC was of recent origin, suggesting that it derives from the top soil layers and surface runoff. We observed strong oxygen depletion, implying high rates of organic matter decomposition and consequently CO2 production. The measured median pCO2 was 7795 and 8400 μatm during the first and second campaign, respectively. Overall, we found that only 32 ± 19 % of the carbon was exported by CO2 evasion, while the rest was exported by discharge. CO2 outgassing seemed to be moderated by the short water residence time. Since most Southeast Asian peatlands are located at the coast, this is probably an important limiting factor for CO2 outgassing from most of its peat-draining rivers.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2014-09-24
    Description: Retrievals of aerosol microphysical properties (effective radius, volume and surface-area concentrations) and aerosol optical properties (complex index of refraction and single-scattering albedo) were obtained from a hybrid multiwavelength lidar data set for the first time. In July 2011, in the Baltimore–Washington DC region, synergistic profiling of optical and microphysical properties of aerosols with both airborne (in situ and remote sensing) and ground-based remote sensing systems was performed during the first deployment of DISCOVER-AQ. The hybrid multiwavelength lidar data set combines ground-based elastic backscatter lidar measurements at 355 nm with airborne High-Spectral-Resolution Lidar (HSRL) measurements at 532 nm and elastic backscatter lidar measurements at 1064 nm that were obtained less than 5 km apart from each other. This was the first study in which optical and microphysical retrievals from lidar were obtained during the day and directly compared to AERONET and in situ measurements for 11 cases. Good agreement was observed between lidar and AERONET retrievals. Larger discrepancies were observed between lidar retrievals and in situ measurements obtained by the aircraft and aerosol hygroscopic effects are believed to be the main factor in such discrepancies.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...