ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 1
    Digitale Medien
    Digitale Medien
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 74 (1993), S. 3150-3155 
    ISSN: 1089-7550
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: The diffusion of δ-function-shaped B- and Sb-dopant spikes in thin Si films grown by solid-phase-epitaxy [(SPE), growth of amorphous film by molecular-beam epitaxy (MBE) at room temperature and subsequent regrowth in situ] during annealing in vacuum is compared to diffusion in films grown by low-temperature (LT) MBE. Diffusion temperatures from 750 to 900 °C, and two-dimensional concentrations of 0.7–1.6×1014 cm−2 have been investigated. The diffusive behavior of dopants in SPE films is found to be qualitatively different from that in films grown by LTMBE. This is related to the vacancylike defects that are intrinsic to growth by SPE but not to growth by LTMBE. Dopant profiles widen significantly during SPE regrowth, making the achievement of δ-function dopant spikes impossible. After a vacuum anneal the diffusion coefficients for both n- and p-type dopants are lower in SPE films than the corresponding values in films grown by LTMBE by up to one order of magnitude. The diffused depth profile of the dopant in LTMBE films shows the characteristic deviation from a pure Gaussian that is expected due to the concentration dependence of diffusion, i.e., a flat top and steep shoulders. In contrast, dopant depth profiles of SPE-grown material show after diffusion a central spike and relatively flat shoulders. The width of the central spike is, after an initial transient that it was not possible to resolve, independent of diffusion time and temperature. This indicates that the SPE material is defective, with the defects acting as traps during diffusion.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 80 (1996), S. 4944-4947 
    ISSN: 1089-7550
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: The diffusion parameters of indium in silicon are investigated. Systematic diffusion experiments in dry oxidizing ambients at temperatures ranging from 800 to 1050 °C are conducted using silicon wafers implanted with indium. Secondary-ion-mass spectrometry (SIMS) is used to analyze the dopant distribution before and after heat treatment. The oxidation-enhanced diffusion parameter [R. B. Fair, in Semiconductor Materials and Process Technology Handbook, edited by G. E. McGuire (Noyes, Park Ridge, NJ, 1988); A. M. R. Lin, D. A. Antoniadis, and R. W. Dutton, J. Electrochem. Soc. Solid-State Sci. Technol. 128, 1131 (1981); D. A. Antoniadis and I. Moskowitz, J. Appl. Phys. 53, 9214 (1982)] and the segregation coefficient at the Si/SiO2 interface [R. B. Fair and J. C. C. Tsai, J. Electrochem. Soc. Solid-State Sci. Technol. 125, 2050 (1978)] (ratio of indium concentration in silicon to that in silicon dioxide) are extracted as a function of temperature using SIMS depth profiles and the silicon process simulator PROPHET [M. Pinto, D. M. Boulin, C. S. Rafferty, R. K. Smith, W. M. Coughran, I. C. Kizilyalli, and M. J. Thoma, in IEDM Technical Digest, 1992, p. 923]. It is observed that the segregation coefficient of indium at the Si/SiO2 interface is mIn(very-much-less-than)1, similar to boron; however, unlike boron, the segregation coefficient of indium at the Si/SiO2 interface decreases with increasing temperature. Extraction results are summarized in analytical forms suitable for incorporation into other silicon process simulators. Finally, the validity of the extracted parameters is verified by comparing the simulated and measured SIMS profiles for an indium implanted buried-channel p-channel metal–oxide–semiconductor field-effect-transistor [I. C. Kizilyalli, F. A. Stevie, and J. D. Bude, IEEE Electron Device Lett. (1996)] process that involves a gate oxidation and various other thermal processes. © 1996 American Institute of Physics.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    ISSN: 1089-7550
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: The effects of low-dose ion implants with Si+, Ne+, and F+ on the transient enhanced diffusion of B in silicon after annealing at 900 °C for 30 min have been investigated. Processing conditions such as implant dose (3.5×1013 cm−2) and energy (30–60 keV) were chosen to simulate the lightly doped drain implant in a 0.35 μm complementary metal-oxide-semiconductor technology. An epitaxially grown B-doping superlattice is used to extract directly depth profiles of average Si self-interstitial concentration after processing. For Si+ the transient enhanced diffusion of B increases with the energy of the implanted ion. Ne+ implanted with the same energy as Si+ causes more transient enhanced diffusion, while Ne+ implanted with the same range as Si+ causes slightly less. Implantation of F+ enhances the B diffusivity considerably less than Si or Ne implantation. These effects were modeled using simulations of defect diffusion in the presence of traps. A trap concentration of (2.4±0.5)×1016 cm−3 gave good agreement in all situations except F+ implantation, where (6.6±0.6)×1016 cm−3 traps were necessary. It is proposed that this is caused by additional traps for Si interstitials that are related to F+. © 1995 American Institute of Physics.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    ISSN: 1089-7550
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: Si self-interstitial diffusivities can be extracted from the diffusive behavior of certain metals (e.g., Au) in an inert annealing ambient or from the diffusion of dopant markers (typically B) under oxidizing conditions. Each type of experiment yields fairly consistent results; however, interstitial diffusivities obtained in these two ways differ greatly. The marker layer experiments rely on the assumption that the presence of the dopant does not disturb the diffusion of the interstitials, and the validity of this assumption is explored. A model of interstitial diffusivity in the presence of B is developed, two extreme cases of the B-atom–interstitial interaction strength are considered, and the predictions of the model are compared with experiments of oxidation-enhanced diffusion in B doping-superlattices. From this comparison it is concluded that trapping of interstitials by B atoms in the markers cannot be responsible for the different values of the Si interstitial diffusivity reported in the literature. Further, it is shown that the presence of the dopant does not perturb the behavior of the Si self-interstitials in the doping-superlattices, i.e., the markers are "unobtrusive'' probes of interstitial behavior. © 1995 American Institute of Physics.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Digitale Medien
    Digitale Medien
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 69 (1996), S. 2113-2115 
    ISSN: 1077-3118
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: The short anneal time behavior of transient enhanced diffusion of dopants in silicon is investigated experimentally using a buried boron marker layer structure and varying Si implant doses and implant energies. The diffusion behavior of the marker layer shows that the diffusivity enhancements are, to the first order, independent of the implant conditions at short anneal times, while the overall transient motion increases with increasing implant conditions. The data are analyzed using an interstitial clustering model that includes both cluster evaporation and cluster growth terms. © 1996 American Institute of Physics.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Digitale Medien
    Digitale Medien
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 68 (1996), S. 2395-2397 
    ISSN: 1077-3118
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: The evaporation of {311} self-interstitial clusters has recently been linked to the phenomenon of transient enhanced diffusion in silicon. A theory of cluster evaporation is described, based on first-order kinetic equations. It is shown to give a good account of the data over a range of temperatures. The theory simultaneously explains several of the unexpected features of transient enhanced diffusion, including the apparently steady level of the enhancement during its duration, and the dependence of the duration on implant energy and dose. The binding energy used to match the theory to data is in good agreement with molecular dynamics calculations of cluster stability in silicon. © 1996 American Institute of Physics.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Digitale Medien
    Digitale Medien
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 54 (1989), S. 151-152 
    ISSN: 1077-3118
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: Oxide dilation in thin films is analyzed using a Voigt viscoelastic model. If stress-dependent viscosity is used to model the dilation, a logarithmic time evolution is predicted. The form of the solution is in agreement with the non-Maxwellian behavior seen in experimental data. The analysis provides an estimate of the critical stress and low-stress viscosity of dry SiO2 films.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Digitale Medien
    Digitale Medien
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 54 (1989), S. 1815-1817 
    ISSN: 1077-3118
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: A plastic flow model is used to calculate the stress generated during thermal oxidation of silicon cylinders. The analysis is used to estimate stress as a function of thickness, radius of curvature, and temperature. The oxidation stress is much lower than previous analyses.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Digitale Medien
    Digitale Medien
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 54 (1989), S. 1516-1518 
    ISSN: 1077-3118
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: Is silicon dioxide a viscous liquid or an elastic solid at silicon processing temperatures? Simple calculations using either assumption lead to gross discrepancies with experimental observations. This letter shows that a plastic flow model resolves these discrepancies. Flow develops much sooner than predicted by a linear viscoelastic model. Large deformations (〈5%) are accommodated almost entirely by plastic flow. Small deformations are accommodated either elastically or by plastic flow depending on temperature.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Digitale Medien
    Digitale Medien
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 63 (1993), S. 639-641 
    ISSN: 1077-3118
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: A special thin film structure has been grown by low temperature molecular beam epitaxy for an investigation of the properties of self-interstitials in Si. It consists of a doping superlattice made from B spikes separated from each other by 100 nm of Si. After dry oxidation, the width of each spike is directly proportional to the interstitial concentration at that depth. The superlattice as a whole thus gives a depth profile of the time-averaged interstitial concentration, allowing the direct determination of the diffusion coefficient of interstitials. The abrupt dopant concentration transitions possible in low-temperature molecular-beam-epitaxy-grown films allow this investigation in the temperature range 750–900 °C. At 800 °C we find a value of DI=(1.4±0.4)10−13 cm2/s. Performing the experiments as a function of temperature yields DI = D0eEa/kT with D0=102±2 cm2/s and Ea=(3.1±0.4) eV.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...