ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (25)
  • Biology  (24)
  • Economics  (1)
Collection
  • Articles  (25)
  • 1
    Publication Date: 2015-08-02
    Description: Article Climatic change is predicted to impact moisture-dependent ecosystems. Here Carroll et al . show that a combination of physical, biophysical and ecosystem processes determine the abundance and distribution of three bird species that feed on craneflies in blanket bogs. Nature Communications doi: 10.1038/ncomms8851 Authors: Matthew J. Carroll, Andreas Heinemeyer, James W. Pearce-Higgins, Peter Dennis, Chris West, Joseph Holden, Zoe E. Wallage, Chris D. Thomas
    Electronic ISSN: 2041-1723
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-07-14
    Description: Phenological sensitivity to climate across taxa and trophic levels Nature 535, 7611 (2016). doi:10.1038/nature18608 Authors: Stephen J. Thackeray, Peter A. Henrys, Deborah Hemming, James R. Bell, Marc S. Botham, Sarah Burthe, Pierre Helaouet, David G. Johns, Ian D. Jones, David I. Leech, Eleanor B. Mackay, Dario Massimino, Sian Atkinson, Philip J. Bacon, Tom M. Brereton, Laurence Carvalho, Tim H. Clutton-Brock, Callan Duck, Martin Edwards, J. Malcolm Elliott, Stephen J. G. Hall, Richard Harrington, James W. Pearce-Higgins, Toke T. Høye, Loeske E. B. Kruuk, Josephine M. Pemberton, Tim H. Sparks, Paul M. Thompson, Ian White, Ian J. Winfield & Sarah Wanless Differences in phenological responses to climate change among species can desynchronise ecological interactions and thereby threaten ecosystem function. To assess these threats, we must quantify the relative impact of climate change on species at different trophic levels. Here, we apply a Climate Sensitivity Profile approach
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-07-21
    Description: Article Whether conditions experienced on long-distance migrations affect breeding populations is not clear. Here, the authors tracked migrating Common Cuckoos from the UK to Africa and show that route choices affect mortality during migration, and population decline in this nocturnally migrating bird. Nature Communications doi: 10.1038/ncomms12296 Authors: Chris M. Hewson, Kasper Thorup, James W. Pearce-Higgins, Philip W. Atkinson
    Electronic ISSN: 2041-1723
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-06-11
    Description: Temperate forest tree species that span large geographical areas and climatic gradients often have high levels of genetic variation. Such species are ideal for testing how neutral demographic factors and climate-driven selection structure genetic variation within species, and how this genetic variation can affect ecological communities. Here, we quantified genetic variation in vegetative phenology and growth traits in narrowleaf cottonwood, Populus angustifolia , using three common gardens planted with genotypes originating from source populations spanning the species' range along the Rocky Mountains of North America ( ca . 1700 km). We present three main findings. First, we found strong evidence of divergent selection ( Q ST  〉  F ST ) on fall phenology (bud set) with adaptive consequences for frost avoidance. We also found evidence for selection on bud flush duration, tree height, and basal diameter, resulting in population differentiation. Second, we found strong associations with climate variables that were strongly correlated with latitude of origin. More strongly differentiated traits also showed stronger climate correlations, which emphasizes the role that climate has played in divergent selection throughout the range. We found population × garden interaction effects; for some traits, this accounted for more of the variance than either factor alone. Tree height was influenced by the difference in climate of the source and garden locations and declined with increasing transfer distance. Third, growth traits were correlated with dependent arthropod community diversity metrics. Synthesis . Overall, we conclude that climate has influenced genetic variation and structure in phenology and growth traits and leads to local adaptation in P. angustifolia , which can then impact dependent arthropod species. Importantly, relocation of genotypes far northward or southward often resulted in poor growth, likely due to a phenological mismatch with photoperiod, the proximate cue for fall growth cessation. Genotypes moved too far southward suffer from early growth cessation, whereas those moved too far northward are prone to fall frost and winter dieback. In the face of current and forecasted climate change, habitat restoration, forestry, and tree breeding efforts should utilize these findings to better match latitudinal and climatic source environments with management locations for optimal future outcomes. Using replicated common garden experiments, we found evidence of divergent selection and local adaptation driven by climate in a foundation forest tree species. Genetic differentiation among populations in response to altered climate has significant impacts on tree growth and performance. In turn, these differences impact dependent arthropod species.
    Electronic ISSN: 2045-7758
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-03-02
    Description: The capacity of peatlands in the northern hemisphere to provide carbon storage, maintain water quality and support northern biodiversity is threatened by a combination of climate change and inappropriate land management. Historical drainage and increasing temperatures threaten the maintenance of the high water tables required for effective peatland functioning, and there is an urgent need to develop appropriate adaptation strategies. Here we use a large-scale replicated experimental design to test the effects of artificial drainage and drain blocking upon soil moisture and cranefly (Diptera: Tipulidae) abundance. Craneflies constitute a key component of peatland biological communities; they are important herbivores and a major prey item for breeding birds. However, they are also susceptible to drought, so are at risk from future climate change. We found that cranefly abundance increased with soil moisture, in a wedge-shaped relationship; high soil moisture is a necessary condition for high cranefly abundance. Blocking drains increased both soil moisture (by 0.06 m 3  m −3 in 2009 and 0.23 m 3  m −3 in 2010) and cranefly abundance (1.3-fold in 2009, 4.5-fold in 2010), but the strength and significance of the effects varied between years. The benefits of restoring ecosystem moisture levels are likely to be greatest during dry years and at dry sites. This study provides some of the first evidence that adaptation management can potentially reduce some of the negative effects of climate change on vulnerable peatland systems. Management to maintain or increase soil moisture in peatlands can therefore be expected to increase populations of craneflies and their avian predators (which are of conservation and economic interest), but also increase the resilience of the ecosystem to future warming and increasingly frequent droughts, and improve carbon storage and water quality.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-03-29
    Description: Shifts in species' distribution and abundance in response to climate change have been well documented, but the underpinning processes are still poorly understood. We present the results of a systematic literature review and meta-analysis investigating the frequency and importance of different mechanisms by which climate has impacted natural populations. Most studies were from temperate latitudes of North America and Europe; almost half investigated bird populations. We found significantly greater support for indirect, biotic mechanisms than direct, abiotic mechanisms as mediators of the impact of climate on populations. In addition, biotic effects tended to have greater support than abiotic factors in studies of species from higher trophic levels. For primary consumers, the impact of climate was equally mediated by biotic and abiotic mechanisms, whereas for higher level consumers the mechanisms were most frequently biotic, such as predation or food availability. Biotic mechanisms were more frequently supported in studies that reported a directional trend in climate than in studies with no such climatic change, although sample sizes for this comparison were small. We call for more mechanistic studies of climate change impacts on populations, particularly in tropical systems.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2002-07-20
    Description: Class IA phosphoinositide 3-kinases (PI3Ks) are a family of p85/p110 heterodimeric lipid kinases that generate second messenger signals downstream of tyrosine kinases, thereby controlling cell metabolism, growth, proliferation, differentiation, motility, and survival. Mammals express three class IA catalytic subunits: p110alpha, p110beta, and p110delta. It is unclear to what extent these p110 isoforms have overlapping or distinct biological roles. Mice expressing a catalytically inactive form of p110delta (p110delta(D910A)) were generated by gene targeting. Antigen receptor signaling in B and T cells was impaired and immune responses in vivo were attenuated in p110delta mutant mice. They also developed inflammatory bowel disease. These results reveal a selective role for p110delta in immunity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Okkenhaug, Klaus -- Bilancio, Antonio -- Farjot, Geraldine -- Priddle, Helen -- Sancho, Sara -- Peskett, Emma -- Pearce, Wayne -- Meek, Stephen E -- Salpekar, Ashreena -- Waterfield, Michael D -- Smith, Andrew J H -- Vanhaesebroeck, Bart -- New York, N.Y. -- Science. 2002 Aug 9;297(5583):1031-4. Epub 2002 Jul 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ludwig Institute for Cancer Research, 91 Riding House Street, London W1W 7BS, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12130661" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens/immunology ; B-Lymphocytes/enzymology/*immunology ; Bone Marrow Cells/cytology ; Catalytic Domain ; Cell Differentiation ; Cell Division ; Female ; Gene Targeting ; Hematopoietic Stem Cells/cytology ; Immunoglobulins/blood ; Inflammatory Bowel Diseases/immunology/pathology ; Interleukin-2/biosynthesis ; Intestinal Mucosa/pathology ; Lymph Nodes/cytology/pathology ; Lymphocyte Activation ; Male ; Mice ; Mice, Inbred C57BL ; Phosphatidylinositol 3-Kinases/genetics/*metabolism ; Point Mutation ; *Protein-Serine-Threonine Kinases ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-akt ; Receptors, Antigen, B-Cell/*metabolism ; Receptors, Antigen, T-Cell/*metabolism ; Signal Transduction ; Spleen/cytology/pathology ; T-Lymphocytes/enzymology/*immunology ; Thymus Gland/cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2008-05-02
    Description: Phosphoinositide 3-kinases (PI3Ks) signal downstream of multiple cell-surface receptor types. Class IA PI3K isoforms couple to tyrosine kinases and consist of a p110 catalytic subunit (p110alpha, p110beta or p110delta), constitutively bound to one of five distinct p85 regulatory subunits. PI3Ks have been implicated in angiogenesis, but little is known about potential selectivity among the PI3K isoforms and their mechanism of action in endothelial cells during angiogenesis in vivo. Here we show that only p110alpha activity is essential for vascular development. Ubiquitous or endothelial cell-specific inactivation of p110alpha led to embryonic lethality at mid-gestation because of severe defects in angiogenic sprouting and vascular remodelling. p110alpha exerts this critical endothelial cell-autonomous function by regulating endothelial cell migration through the small GTPase RhoA. p110alpha activity is particularly high in endothelial cells and preferentially induced by tyrosine kinase ligands (such as vascular endothelial growth factor (VEGF)-A). In contrast, p110beta in endothelial cells signals downstream of G-protein-coupled receptor (GPCR) ligands such as SDF-1alpha, whereas p110delta is expressed at low level and contributes only minimally to PI3K activity in endothelial cells. These results provide the first in vivo evidence for p110-isoform selectivity in endothelial PI3K signalling during angiogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Graupera, Mariona -- Guillermet-Guibert, Julie -- Foukas, Lazaros C -- Phng, Li-Kun -- Cain, Robert J -- Salpekar, Ashreena -- Pearce, Wayne -- Meek, Stephen -- Millan, Jaime -- Cutillas, Pedro R -- Smith, Andrew J H -- Ridley, Anne J -- Ruhrberg, Christiana -- Gerhardt, Holger -- Vanhaesebroeck, Bart -- BB/C505659/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/C505659/2/Biotechnology and Biological Sciences Research Council/United Kingdom -- G0601093/Medical Research Council/United Kingdom -- G0601093(79633)/Medical Research Council/United Kingdom -- G0700711/Medical Research Council/United Kingdom -- Cancer Research UK/United Kingdom -- England -- Nature. 2008 May 29;453(7195):662-6. doi: 10.1038/nature06892. Epub 2008 Apr 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Cell Signalling, Institute of Cancer, Queen Mary, University of London, Charterhouse Square, London EC1M 6BQ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18449193" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Movement ; Cells, Cultured ; Class I Phosphatidylinositol 3-Kinases ; Endothelial Cells/*cytology/*enzymology ; Female ; Humans ; Mice ; *Neovascularization, Physiologic ; Phosphatidylinositol 3-Kinases/genetics/*metabolism ; RNA Interference ; Rats ; Signal Transduction/drug effects ; Vascular Endothelial Growth Factor A/pharmacology ; Wounds and Injuries ; rho GTP-Binding Proteins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-09-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pearce-Higgins, James W -- England -- Nature. 2015 Sep 24;525(7570):455. doi: 10.1038/525455b.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉British Trust for Ornithology, Thetford, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26399822" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Birds ; *Conflict of Interest ; Cost-Benefit Analysis ; Data Collection ; Great Britain ; *Hobbies ; Motivation ; *Research Design ; Science/*manpower ; *Volunteers/psychology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019
    Description: Abstract Global warming has advanced the timing of biological events, potentially leading to disruption across trophic levels. The potential importance of phenological change as a driver of population trends has been suggested. To fully understand possible impacts, there is a need to quantify the scale of these changes spatially and according to habitat type. We studied the relationship between phenological trends, space and habitat type between 1965 to 2012 using an extensive UK dataset comprising 269 aphid, bird, butterfly and moth species. We modelled phenologies using generalized additive mixed models that included covariates for geographical (latitude, longitude, altitude), temporal (year, season) and habitat terms (woodland, scrub, grassland). Model selection showed that a baseline model with geographical and temporal components explained the variation in phenologies better than either a model in which space and time interacted or a habitat model without spatial terms. This baseline model showed strongly that phenologies shifted progressively earlier over time, that increasing altitude produced later phenologies and that a strong spatial component determined phenological timings, particularly latitude. The seasonal timing of a phenological event, in terms of whether it fell in the first or second half of the year, did not result in substantially different trends for butterflies. For moths, early season phenologies advanced more rapidly than those recorded later. Whilst temporal trends across all habitats resulted in earlier phenologies over time, agricultural habitats produced significantly later phenologies than most other habitats studied, probably because of non‐climatic drivers. A model with a significant habitat‐time interaction was the best‐fitting model for birds, moths and butterflies, emphasising that the rates of phenological advance also differ among habitats for these groups. Our results suggest the presence of strong spatial gradients in mean seasonal timing, and non‐linear trends towards earlier seasonal timing that varies in form and rate among habitat types. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...