ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  Eos Trans. AGU, Dordrecht, D. Reidel, vol. 85, no. 3, pp. 25 & 31
    Publication Date: 2004
    Keywords: science ; policy ; future ; emphasis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-04-10
    Description: Understanding the dynamics of the thermospheric mass density is of paramount importance for predicting drag on low altitude satellites, particularly during geomagnetic storms. Transient enhancements in ion velocities, which frequently occur as a result of storm-driven solar wind electric field fluctuations, cause increases in neutral density and temperature. Since the Earth's quasi-dipolar magnetic field is tilted and offset from the center of the planet, it is hypothesized that hemispheric asymmetries arise, altering the thermospheric response to energy input based upon the time of day. This study used the Global Ionosphere-Thermosphere Model (GITM) to investigate this phenomenon via a series of 22 idealized simulations, where the convective electric field was enhanced for one hour of the day. Two configurations of the Earth's magnetic field were considered, the International Geomagnetic Reference Field (IGRF) and a centered dipole. These runs were conducted at March equinox when the amount of sunlight falling on the two hemispheres was the same. Two additional sets of runs were conducted at the June and December solstices for comparison. It was found that the most geo-effective times were those times when the geomagnetic poles were pointed towards the sun. This orientation maximizes the photoionization co-located with the high-latitude potential pattern, leading to more in Joule heating.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: Abstract We simulated the effects of the 21 August 2017 total solar eclipse on the ionosphere‐thermosphere system with the Global Ionosphere Thermosphere Model (GITM). The simulations demonstrate that the horizontal neutral wind modifies the eclipse‐induced reduction in total electron content (TEC), spreading it equatorward and westward of the eclipse path. The neutral wind also affects the neutral temperature and mass density responses through advection and the vertical wind modifies them further through adiabatic heating/cooling and compositional changes. The neutral temperature response lags behind totality by about 35 min, indicating an imbalance between heating and cooling processes during the eclipse, while the ion and electron temperature responses have almost no lag, indicating they are in quasi steady state. Simulated ion temperature and vertical drift responses are weaker than observed by the Millstone Hill Incoherent Scatter Radar, while simulated reductions in electron density and temperature are stronger. The model misses the observed posteclipse enhancement in electron density, which could be due to the lack of a plasmasphere in GITM. The simulated TEC response appears too weak compared to Global Positioning System TEC measurements, but this might be because the model does not include electron content above 550‐km altitude. The simulated response in the neutral wind after the eclipse is too weak compared to Fabry Perot interferometer observations in Cariri, Brazil, which suggests that GITM recovers too quickly after the eclipse. This could be related to GITM heating processes being too strong and electron densities being too high at low latitudes.
    Print ISSN: 2169-9380
    Electronic ISSN: 2169-9402
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-07-02
    Description: The role of Universal Time (UT) dependence on storm-time development has remained an unresolved question in geospace research. This study presents new insight into storm progression in terms of the UT of the storm peak. We present a superposed epoch analysis of solar wind drivers and geomagnetic index responses during magnetic storms, categorized as a function of UT of the storm peak, to investigate the dependency of storm intensity on UT. Storms with Dst minimum less than - 100 nT were identified in the 1970 - 2012 era (305 events), covering four solar cycles. The storms were classified into 6 groups based on the UT of the minimum Dst (40 to 61 events per bin), then each grouping was superposed on a timeline that aligns the time of the minimum Dst. Fifteen different quantities were considered, seven solar wind parameters and eight activity indices derived from ground-based magnetometer data. Statistical analyses of the superposed means against each other (between the different UT groupings) were conducted to determine the mathematical significance of similarities and differences in the time series plots. It was found that the solar wind parameters have no significant difference between the UT groupings, as expected. The geomagnetic activity indices, however, all show statistically significant differences with UT during the main phase and/or early recovery phase. Specifically, the 02:00 UT groupings are stronger storms than those in the other UT bins. That is, storms are stronger when the Asian sector is on the nightside (American sector on the dayside) during the main phase.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-09-07
    Description: Abrupt transitions from slow to fast solar wind represent a concern for the space weather forecasting community. They may cause geomagnetic storms that can eventually affect systems in orbit and on the ground. Therefore, the Probability Distribution Function (PDF) model was improved to predict enhancements in the solar wind speed. New probability distribution functions allow for the prediction of the peak amplitude and the time to the peak while providing an interval of uncertainty on the prediction. It was found that 60% of the positive predictions were correct, while 91% of the negative predictions were correct, and 20% to 33% of the peaks in the speed were found by the model. This represents a considerable improvement upon the first version of the PDF model. A direct comparison with the Wang-Sheeley-Arge (WSA) model shows that the PDF model is quite similar, except that it leads to fewer false positive predictions and misses fewer events, especially when the peak reaches very high speeds.
    Print ISSN: 1539-4964
    Electronic ISSN: 1542-7390
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-10-15
    Description: Recent studies showed that, regardless of the orientation of the Interplanetary Magnetic Field (IMF), ULF wave activity in the solar wind can substantially enhance the convection in the high latitude ionosphere, suggesting that ULF fluctuations may also be an important contributor to the coupling of the solar wind to the magnetosphere-ionosphere system. We conduct a statistical study to understand the effect of ULF power in the IMF on the cross polar cap potential, primarily focusing on northward IMF. We have analyzed the Assimilative Mapping of Ionospheric Electrodynamics (AMIE) calculations of the polar cap potential, a IMF ULF index that is defined as the logarithm of Pc5 ULF power in IMF, and solar wind velocity and dynamic pressure for 249 days in 2003. We find that, separated from the effects of solar wind speed and dynamic pressure, the average cross polar cap potentials show a roughly linear dependence on the ULF index, with a partial correlation coefficient of 0.19. Highly structured convection flow patterns with a number of localized vortices are often observed under fluctuating northward IMF. For such a convection configuration, it is hard to estimate properly the cross polar cap potential drop, as the enhanced flows around the vortices that may be associated with IMF fluctuations do not necessarily yield a large potential drop. Thus, despite the relatively small correlation coefficient, the linear trend we found gives support to the significant role of IMF ULF fluctuations on the coupling of the solar wind to the magnetosphere-ionosphere system.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-03-03
    Description: The magnetospheric substorm is important not only because it involves many interesting physical processes but also because it plays a key role in the solar wind energy dissipation into the ionosphere. This paper focuses on a quantitative description of the Joule heating production rate generated during substorms by auroral electrojets that are composed of two aspects: convection electrojets and the substorm electrojet. First, the natural orthogonal component (NOC) method is carefully discussed by examining its methodology and by comparing with other mathematical techniques and ionospheric observations. It is concluded that the NOC method is a very helpful and unique method that sheds insight into the electric potential patterns in the high-latitude ionosphere. Then, using the AMIE electric potential and the NOC method, the sawtooth event on 18 April 2002 and an isolated substorm on 15 November 2001 are studied. Electric fields and Joule heating rates corresponding to the convection electrojets and the substorm electrojet, respectively, are obtained. It is found that the Joule heating associated with the substorm electrojet is only one fourth to one third of that associated with the convection electrojets during the sawtooth event. However, the former dominated the total Joule heating during the expansion phase of the isolated substorm, and the two types of the Joule heating are comparable in magnitude in the isolated substorm recovery phase.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-12-07
    Description: Winds in the thermosphere are highly important for transporting mass, momentum, and energy over the globe. In the high latitude region, observations show that ion and neutral motions are strongly coupled when the aurora is present, but the coupling is less evident when there is no aurora. In this study, we investigate the ability of the Global Ionosphere Thermosphere Model (GITM) to simulate the mesoscale wind structure over Alaska during a substorm. Thirteen distinct numerical simulations of a substorm event that occurred between 02:00 and 17:00 Universal Time on November 24, 2012 have been performed. Distinct drivers considered include the Weimer and SuperDARN potential patterns and the OVATION Prime and OVATION-SME auroral models. The effects of the boundary between the neutral wind dynamo calculation and the high-latitude imposed electric potential were also considered. Neutral wind velocities and thermospheric temperatures measured by the Scanning Doppler Imager instruments located at three locations in Alaska were compared to GITM simulation results, and electron densities within GITM were compared to data from the Poker Flat Incoherent Scatter Radar. It was found that the different drivers used between multiple simulations lead to various amounts of momentum coupling within the simulation, affecting the accuracy of the modeled neutral and ion flow patterns and the strength of electron precipitation at high latitudes. This affirms that better observations of auroral precipitation and electric fields are required to accurately understand and consistently reproduce the mesoscale neutral wind flow patterns and temperature structure in the high-latitude thermosphere.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2008-05-02
    Description: Phosphoinositide 3-kinases (PI3Ks) signal downstream of multiple cell-surface receptor types. Class IA PI3K isoforms couple to tyrosine kinases and consist of a p110 catalytic subunit (p110alpha, p110beta or p110delta), constitutively bound to one of five distinct p85 regulatory subunits. PI3Ks have been implicated in angiogenesis, but little is known about potential selectivity among the PI3K isoforms and their mechanism of action in endothelial cells during angiogenesis in vivo. Here we show that only p110alpha activity is essential for vascular development. Ubiquitous or endothelial cell-specific inactivation of p110alpha led to embryonic lethality at mid-gestation because of severe defects in angiogenic sprouting and vascular remodelling. p110alpha exerts this critical endothelial cell-autonomous function by regulating endothelial cell migration through the small GTPase RhoA. p110alpha activity is particularly high in endothelial cells and preferentially induced by tyrosine kinase ligands (such as vascular endothelial growth factor (VEGF)-A). In contrast, p110beta in endothelial cells signals downstream of G-protein-coupled receptor (GPCR) ligands such as SDF-1alpha, whereas p110delta is expressed at low level and contributes only minimally to PI3K activity in endothelial cells. These results provide the first in vivo evidence for p110-isoform selectivity in endothelial PI3K signalling during angiogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Graupera, Mariona -- Guillermet-Guibert, Julie -- Foukas, Lazaros C -- Phng, Li-Kun -- Cain, Robert J -- Salpekar, Ashreena -- Pearce, Wayne -- Meek, Stephen -- Millan, Jaime -- Cutillas, Pedro R -- Smith, Andrew J H -- Ridley, Anne J -- Ruhrberg, Christiana -- Gerhardt, Holger -- Vanhaesebroeck, Bart -- BB/C505659/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/C505659/2/Biotechnology and Biological Sciences Research Council/United Kingdom -- G0601093/Medical Research Council/United Kingdom -- G0601093(79633)/Medical Research Council/United Kingdom -- G0700711/Medical Research Council/United Kingdom -- Cancer Research UK/United Kingdom -- England -- Nature. 2008 May 29;453(7195):662-6. doi: 10.1038/nature06892. Epub 2008 Apr 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Cell Signalling, Institute of Cancer, Queen Mary, University of London, Charterhouse Square, London EC1M 6BQ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18449193" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Movement ; Cells, Cultured ; Class I Phosphatidylinositol 3-Kinases ; Endothelial Cells/*cytology/*enzymology ; Female ; Humans ; Mice ; *Neovascularization, Physiologic ; Phosphatidylinositol 3-Kinases/genetics/*metabolism ; RNA Interference ; Rats ; Signal Transduction/drug effects ; Vascular Endothelial Growth Factor A/pharmacology ; Wounds and Injuries ; rho GTP-Binding Proteins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019
    Description: Abstract Accurate determination of thermospheric neutral density holds crucial importance for satellite drag calculations. The problem is twofold and involves the correct estimation of the quiet time climatology and storm time variations. In this work, neutral density estimations from two empirical and three physics‐based models of the ionosphere‐thermosphere are compared with the neutral densities along the Challenging Micro‐Satellite Payload satellite track for six geomagnetic storms. Storm time variations are extracted from neutral density by (1) subtracting the mean difference between model and observation (bias), (2) setting climatological variations to zero, and (3) multiplying model data with the quiet time ratio between the model and observation. Several metrics are employed to evaluate the model performances. We find that the removal of bias or climatology reveals actual performance of the model in simulating the storm time variations. When bias is removed, depending on event and model, storm time errors in neutral density can decrease by an amount of 113% or can increase by an amount of 12% with respect to error in models with quiet time bias. It is shown that using only average and maximum values of neutral density to determine the model performances can be misleading since a model can estimate the averages fairly well but may not capture the maximum value or vice versa. Since each of the metrics used for determining model performances provides different aspects of the error, among these, we suggest employing mean absolute error, prediction efficiency, and normalized root mean square error together as a standard set of metrics for the neutral density.
    Print ISSN: 1539-4964
    Electronic ISSN: 1542-7390
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...