ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-11-28
    Description: Horizontal gravity wave (GW) refraction was observed around the Andes and Drake Passage during the SouthTRAC campaign. GWs interact with the background wind through refraction and dissipation. This interaction helps to drive midatmospheric circulations and slows down the polar vortex by taking GW momentum flux (GWMF) from one location to another. The SouthTRAC campaign was composed to gain improved understanding of the propagation and dissipation of GWs. This study uses observational data from this campaign collected by the German High Altitude Long Range research aircraft on 12 September 2019. During the campaign a minor sudden stratospheric warming in the southern hemisphere occurred, which heavily influenced GW propagation and refraction and thus also the location and amount of GWMF deposition. Observations include measurements from below the aircraft by Gimballed Limb Observer for Radiance Imaging of the Atmosphere and above the aircraft by Airborne Lidar for the Middle Atmosphere. Refraction is identified in two different GW packets as low as ≈4 km and as high as 58 km. One GW packet of orographic origin and one of nonorographic origin is used to investigate refraction. Observations are supplemented by the Gravity‐wave Regional Or Global Ray Tracer, a simplified mountain wave model, ERA5 data and high‐resolution (3 km) WRF data. Contrary to some previous studies we find that refraction makes a noteworthy contribution in the amount and the location of GWMF deposition. This case study highlights the importance of refraction and provides compelling arguments that models should account for this.
    Description: Plain Language Summary: Gravity waves (GWs) are very important for models to reproduce a midatmospheric circulations. But the fact is that models oversimplify the GW physics which results in GWs being underrepresented in models. GW refraction is one of the processes not captured by the physics in model parameterization schemes. This article uses high‐resolution observations from the SouthTRAC campaign to show how GWs refract and highlight the importance there‐of. This case study shows a 25% increase in the GWMF during propagation. The increase in momentum flux is linked to refraction which results in a shortening in the GW horizontal wavelength. This article shows that refraction is important for the amount as well as the location of GWMF deposition. This case study highlights the importance of refraction and provides compelling arguments that models should account for this.
    Description: Key Points: A case study reveals that refraction results in a 25% increase in gravity wave momentum flux (GWMF). Including refraction dynamics affects the location of GWMF deposition. Refraction is prominent in strong wind gradients (i.e., displaced vortex conditions).
    Description: ANPCYT PICT
    Description: DFG
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Instituto de Física de Buenos Aires
    Description: SNCAD MinCyT initiative
    Description: HALO‐SPP
    Description: ROMIC WASCLIM
    Description: https://doi.org/10.5281/zenodo.6997443
    Description: https://cds.climate.copernicus.eu/cdsapp%23%21/home
    Keywords: ddc:551.5 ; gravity wave ; mountain wave ; refraction ; Andes ; Drake Passage ; gravity wave momentum flux
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-07-21
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Gravity waves (GW) carry energy and momentum from the troposphere to the middle atmosphere and have a strong influence on the circulation there. Global atmospheric models cannot fully resolve GWs, and therefore rely on highly simplified GW parametrizations that, among other limitations, account for vertical wave propagation only and neglect refraction. This is a major source of uncertainty in models, and leads to well‐known problems, such as the late break‐up of polar vortex due to the “missing” GW drag around 60°S. To investigate these phenomena, GW observations over Southern Andes were performed during SouthTRAC aircraft campaign. This paper presents measurements from a SouthTRAC flight on 21 September 2019, including 3‐D tomographic temperature data of the infrared limb imager GLORIA (8–15 km altitude) and temperature profiles of the ALIMA lidar (20–80 km altitude). GLORIA observations revealed multiple overlapping waves of different wavelengths. 3‐D wave vectors were determined from the GLORIA data and used to initialize a GW ray‐tracer. The ray‐traced GW parameters were compared with ALIMA observations, showing good agreement between the instruments and direct evidence of oblique (partly meridional) GW propagation. ALIMA data analysis confirmed that most waves at 25–40 km altitudes were indeed orographic GWs, including waves seemingly upstream of the Andes. We directly observed horizontal GW refraction, which has not been achieved before SouthTRAC. Refraction and oblique propagation caused significant meridional transport of horizontal momentum as well as horizontal momentum exchange between waves and the background flow all along the wave paths, not just in wave excitation and breaking regions.〈/p〉
    Description: Plain Language Summary: Gravity waves (GW) are temperature and wind disturbances in the atmosphere that carry energy and momentum from troposphere to the middle atmosphere and have a strong influence on the circulation there. Global atmospheric models currently cannot adequately represent GW propagation: the facts that GWs can change wavefront orientation (refraction) and travel horizontally (and not just vertically) are typically neglected. This leads to important known model inaccuracies, for example, too low temperatures in southern polar regions. SouthTRAC aircraft measurement campaign observed GWs exited by wind flow over the Southern Andes in September–November 2019. Temperature measurements were conducted with the IR spectrometer GLORIA (provided 3‐D data) and the ALIMA lidar instrument. GLORIA data revealed many overlapping waves of different wavelengths, their propagation further up was investigated using ray‐tracing. Most waves seen by GLORIA were ray‐traced to ALIMA observations where their parameters were confirmed, thus validating our ray‐tracing technique and the two instruments against each other. We directly observed wave propagation in both vertical and horizontal directions and change in horizontal wave orientation (the latter was not seen before SouthTRAC). Due to these phenomena, many GWs carried momentum that had different directions and was deposited in a different location than most models typically predict.〈/p〉
    Description: Key Points: High‐resolution multi‐instrument measurements of orographic gravity waves (GWs) over the Andes were carried out. Oblique GW propagation and strong horizontal refraction were observed and analyzed using ray‐tracing. Significant redistribution of horizontal momentum due to horizontal refraction was observed all along the path of wave propagation.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: German Ministry for Education and Research
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: https://www.ecmwf.int/en/forecasts/datasets
    Description: https://doi.org/10.5281/zenodo.7155729
    Keywords: ddc:551.5 ; gravity waves ; refraction ; remote sensing ; lidar ; ray‐tracing
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-01-24
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Jet streams are important sources of non‐orographic internal gravity waves and clear air turbulence (CAT). We analyze non‐orographic gravity waves and CAT during a merger of the polar front jet stream (PFJ) with the subtropical jet stream (STJ) above the southern Atlantic. Thereby, we use a novel combination of airborne observations covering the meso‐scale and turbulent scale in combination with high‐resolution deterministic short‐term forecasts. Coherent phase lines of temperature perturbations by gravity waves stretching along a highly sheared tropopause fold are simulated by the ECMWF IFS (integrated forecast system) forecasts. During the merging event, the PFJ reverses its direction from approximately antiparallel to parallel with respect to the STJ, going along with strong wind shear and horizontal deformation. Temperature perturbations in limb‐imaging and lidar observations onboard the research aircraft HALO during the SouthTRAC campaign show remarkable agreement with the IFS data. Ten hours earlier, the IFS data show an “X‐shaped” pattern in the temperature perturbations emanating from the sheared tropopause fold. Tendencies of the IFS wind components show that these gravity waves are excited by spontaneous emission adjusting the strongly divergent flow when the PFJ impinges the STJ. In situ observations of temperature and wind components at 100 Hz confirm upward propagation of the probed portion of the gravity waves. They furthermore reveal embedded episodes of light‐to‐moderate CAT, Kelvin Helmholtz waves, and indications for partial wave reflection. Patches of low Richardson numbers in the IFS data coincide with the CAT observations, suggesting that this event was accessible to turbulence forecasting.〈/p〉
    Description: Plain Language Summary: Gravity waves play an in important role in vertical and horizontal energy transport in the atmosphere and are significant factors in wheather forecasting and climate projections. Among other processes, tropospheric jet streams are known to be sources of gravity waves. They furthermore can be accompanied by tropopause folds (i.e., local tropopause depressions, where stratospheric air can reach deeply into the troposphere) and turbulence, which is relevant for aviation safety. Using a novel combination of airborne observations and data by a state‐of‐the‐art forecasting system, we analyze gravity waves and turbulence during a merger of tropospheric jet streams above the southern Atlantic. The observations show a high degree of agreement with the forecast data from the troposphere to the stratosphere. Ten hours earlier, the forcast data show an “X‐shaped” gravity wave structure that emerges from a highly sheared tropopause fold between the merging jet streams. Fast in situ observations at the flight level provide information on the characteristics of the observed waves and show light‐to‐moderate turbulence, small‐scale waves and indications for partial wave reflection. The observed turbulence events are consistently located in regions where the forecast data suggest potential for turbulence.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉Non‐orographic internal gravity waves and clear air turbulence are observed in merging jet streams〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉State‐of‐the art high resolution forecast agrees with novel combination of airborne sensors〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉“X‐shaped” gravity wave feature resulting from merging jet streams at a highly sheared tropopause fold〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: https://doi.org/10.5445/IR/1000151856
    Description: https://www.ecmwf.int/en/forecasts
    Description: https://www.ready.noaa.gov/
    Keywords: ddc:551.5 ; gravity waves ; jet streams ; clear air turbulence ; remote sensing ; in situ observations ; field campaigns
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-23
    Description: Seven days of global high resolution middle atmosphere ozone profiles have been measured by the CRyogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) in November 1994. Measurements cover the altitude range from 10 to 80 km and latitudes from 59 deg S to 64 deg N. An example of a global ozone map is presented and demonstrates the ability of the instrument to detect medium and even small scale structures. Comparisons with ECC- and Brewer Mast balloon-sonde underflights are discussed. Reasonable agreement between CRISTA and balloon-sondes is found especially in the altitude interval between about 19 km and 27 km.
    Keywords: Environment Pollution
    Type: Laboratory for Hydrospheric Processes Research Publications; 109-110
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: During shuttle missions STS-66 (November, 1994) and STS-85 (August, 1997) the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) acquired temperature data with very high spatial resolution. These are analyzed for gravity waves (GW). The altitude range spans the whole middle atmosphere from the tropopause up to the mesopause. In the upper mesosphere tidal amplitudes exceed values of 10 K. Modulation of GW activity by the tides is observed and analyzed using CRISTA temperatures and tidal predictions of the Global Scale Wave Model (GSWM). The modulation process is identified as a tidally-induced change of the background buoyancy frequency. The findings agree well with the expectations for saturated GW and are the first global scale observations of this process.
    Keywords: Geophysics
    Type: AD-A529139 , Advances in Space Research (ISSN 0273-1177); 27; 10; 1773-1778
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-26
    Description: In two separate orbital campaigns (November, 1994 and August, 1997), the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) instrument acquired global stratospheric data of high accuracy and high spatial resolution. The standard limb-scanned CRISTA measurements resolved atmospheric spatial structures with vertical dimensions greater than or equal to 1.5 - 2 km and horizontal dimensions is greater than or equal to 100 - 200 km. A fluctuation analysis of horizontal temperature distributions derived from these data is presented. This method is somewhat complementary to conventional power-spectral analysis techniques.
    Keywords: Geophysics
    Type: AD-A526976 , Advances in Space Research; 27; 10; 1641-1646
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Atmospheric Measurement Techniques, 2 (1). pp. 287-298.
    Publication Date: 2015-04-10
    Description: Advances in detector technology enable a new generation of infrared limb sounders to measure 2-D images of the atmosphere. A proposed limb cloud imager (LCI) mode will detect clouds with a spatial resolution unprecedented for limb sounding. For the inference of temperature and trace gas distributions, detector pixels of the LCI have to be combined into super-pixels which provide the required signal-to-noise and information content for the retrievals. This study examines the extent to which tropospheric coverage can be improved in comparison to limb sounding using a fixed field of view with the size of the super-pixels, as in conventional limb sounders. The study is based on cloud topographies derived from (a) IR brightness temperatures (BT) of geostationary weather satellites in conjunction with ECMWF temperature profiles and (b) ice and liquid water content data of the Consortium for Small-scale Modeling-Europe (COSMO-EU) of the German Weather Service. Limb cloud images are simulated by matching the cloud topography with the limb sounding line of sight (LOS). The analysis of the BT data shows that the reduction of the spatial sampling along the track has hardly any effect on the gain in information. The comparison between BT and COSMO-EU data identifies the strength of both data sets, which are the representation of the horizontal cloud extent for the BT data and the reproduction of the cloud amount for the COSMO-EU data. The results of the analysis of both data sets show the great advantage of the cloud imager. However, because both cloud data sets do not present the complete fine structure of the real cloud fields in the atmosphere it is assumed that the results tend to underestimate the increase in information. In conclusion, real measurements by such an instrument may result in an even higher benefit for tropospheric limb retrievals.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...