ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-06
    Description: Because microwave brightness temperatures emitted by snow covered surfaces are highly variable, snowfall above such surfaces is difficult to observe using window channels that occur at low frequencies (v less than 100 GHz). Furthermore, at frequencies v less than or equal to 37 GHz, sensitivity to liquid hydrometeors is dominant. These problems are mitigated at high frequencies (v greater than 100 GHz) where water vapor screens the surface emission and sensitivity to frozen hydrometeors is significant. However the scattering effect of snowfall in the atmosphere at those higher frequencies is also impacted by water vapor in the upper atmosphere. This work describes the methodology and results of physically-based retrievals of snow falling over land surfaces. The theory of scattering by randomly oriented dry snow particles at high microwave frequencies appears to be better described by regarding snow as a concatenation of equivalent ice spheres rather than as a sphere with the effective dielectric constant of an air-ice mixture. An equivalent sphere snow scattering model was validated against high frequency attenuation measurements. Satellite-based high frequency observations from an Advanced Microwave Sounding Unit (AMSU-B) instrument during the March 5-6, 2001 New England blizzard were used to retrieve snowfall over land. Vertical distributions of snow, temperature and relative humidity profiles were derived from the Pennsylvania State University-National Center for Atmospheric Research (PSU-NCAR) fifth-generation Mesoscale Model (MM5). Those data were applied and modified in a radiative transfer model that derived brightness temperatures consistent with the AMSU-B observations. The retrieved snowfall distribution was validated with radar reflectivity measurements obtained from the National Oceanic and Atmospheric Administration (NOAA) National Weather Service (NWS) ground-based radar network.
    Keywords: Meteorology and Climatology
    Type: IEEE TGARS
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-06
    Description: One of the grand challenges of the Global Precipitation Measurement (GPM) mission is to improve cold season precipitation measurements in middle and high latitudes through the use of high-frequency passive microwave radiometry. For this, the Weather Research and Forecasting (WRF) model with the Goddard microphysics scheme is coupled with a satellite data simulation unit (WRF-SDSU) that has been developed to facilitate over-land snowfall retrieval algorithms by providing a virtual cloud library and microwave brightness temperature (Tb) measurements consistent with the GPM Microwave Imager (GMI). This study tested the Goddard cloud microphysics scheme in WRF for two snowstorm events, a lake effect and a synoptic event, that occurred between 20 and 22 January 2007 over the Canadian CloudSAT/CALIPSO Validation Project (C3VP) site in Ontario, Canada. The 24h-accumulated snowfall predicted by the WRF model with the Goddard microphysics was comparable to the observed accumulated snowfall by the ground-based radar for both events. The model correctly predicted the onset and ending of both snow events at the CARE site. WRF simulations capture the basic cloud properties as seen by the ground-based radar and satellite (i.e., CloudSAT, AMSU-B) observations as well as the observed cloud streak organization in the lake event. This latter result reveals that WRF was able to capture the cloud macro-structure reasonably well.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-06
    Description: One of the grand challenges of the Global Precipitation Measurement (GPM) mission is to improve precipitation measurements in mid- and high-latitudes during cold seasons through the use of high-frequency passive microwave radiometry. Toward this end, the Weather Research and Forecasting (WRF) model with the Goddard microphysics scheme is coupled with a Satellite Data Simulation Unit (WRF-SDSU) that has been developed to facilitate over-land snowfall retrieval algorithms by providing a virtual cloud library and microwave brightness temperature (Tb) measurements consistent with the GPM Microwave Imager (GMI). This study tested the Goddard cloud microphysics scheme in WRF for snowstorm events (January 20-22, 2007) that took place over the Canadian CloudSAT/CALIPSO Validation Project (C3VP) ground site (Centre for Atmospheric Research Experiments - CARE) in Ontario, Canada. In this paper, the performance of the Goddard cloud microphysics scheme both with 2ice (ice and snow) and 3ice (ice, snow and graupel) as well as other WRF microphysics schemes will be presented. The results are compared with data from the Environment Canada (EC) King Radar, an operational C-band radar located near the CARE site. In addition, the WRF model output is used to drive the Goddard SDSU to calculate radiances and backscattering signals consistent with direct satellite observations for evaluating the model results.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-27
    Description: Continuous parameter tracking system for measuring human performance in compensatory control system
    Keywords: BIOTECHNOLOGY
    Type: NASA-CR-910
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-27
    Description: Investigating techniques for measuring random patterns in photomicrographs by studying nature of coherent light diffracted by spatial pattern
    Keywords: COMPUTERS
    Type: NASA-CR-115806 , TR-70-7-VOL-3
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-17
    Description: During the TRMM-LBA (Tropical Rainfall Measuring Mission - Large-Scale Biosphere-Atmosphere Experiment in Amazonia) field campaign of January - February 1999, EDOP (ER-2 Doppler Radar), AMPR (Advanced Microwave Precipitation Radiometer), and MIR (Millimeter-wave Imaging Radiometer) on board the NASA ER-2 aircraft made a number of flights over the same Amazon area for studies of precipitation signatures. It is generally perceived that AMPR, with measurements at the frequencies of 10.7, 19.35, 37.0, and 85 GHz, is not sensitive to precipitation over land; a possible exception is detection through electromagnetic wave scattering at 85 GHz by frozen hydrometeors aloft above the freezing level. Analysis of the combined data sets from these instruments shows that, in the Amazon highly forested areas where the surface emissivity is high and uniform, direct detection of rain by a radiometer at frequencies less than or equal to 37 GHz is possible. The detection of rain is reflected by a depression in brightness temperature, which amounts to as much as 20 K at 19.35 GHz. Measurements at higher frequencies by the MIR help delineate the regions of scattering signatures above the freezing level. Implications of the combined wideband measurements from AMPR and MIR will be discussed.
    Keywords: Meteorology and Climatology
    Type: Dec 15, 2000 - Dec 19, 2000; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-17
    Description: A rich dataset was obtained with observations from the MIR (Millimeter-wave Imaging Radiometer, 89, 150, 183.3$\pm$1, 183.3$\pm$3,183.3$\pm$7, and 220 apprx.GHz), the AMPR (Advanced Microwave Precipitation Radiometer, 10.7, 19.35, 37, and 85 approx. GHz), and the EDOP (ER-2 Doppler Radar, 9.6 approx. GHz) on board the ER-2 aircraft during the CAMEX-3/TEFLUN-B (Convection and Moisture Experiment/Texas and Florida Underflights) TRMM (Tropical Rainfall Measuring Mission) field campaign. Measurements over the ocean from these three instruments on 26 August 1998 were used in our iterative retrieval algorithm to estimate hydrometeor drop size profiles, The algorithm attempts to minimize the difference between the observations and forward radiometer and radar calculations based on the estimated profile. The high frequency MIR observations provide detailed information about the high altitude ice microphysics, while the AMPR is mostly used to define liquid hydrometeor characteristics. The EDOP provides an initial estimate of the profile and as a consistency check throughout the iterative cycle. The retrieval algorithm, specific results for convective and anvil cases, and general implications of this work will be presented.
    Keywords: Earth Resources and Remote Sensing
    Type: Dec 15, 2000 - Dec 19, 2000; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Meteorology and Climatology; Earth Resources and Remote Sensing
    Type: MSFC-E-DAA-TN37899 , AGU Fall Meeting; Dec 12, 2016 - Dec 16, 2016; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-27
    Description: Tracking system for gain and time delay parameter measurements of compensatory control crossover model
    Keywords: BIOTECHNOLOGY
    Type: ; 39 (
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-27
    Description: Two hybrid computer identification techniques for use in manual control research
    Keywords: BIOTECHNOLOGY
    Type: NASA-CR-116514 , TR-70-6
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...