ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-06-01
    Description: The accuracy of retrieving the two drop size distribution (DSD) parameters, median volume diameter (D0), and normalized intercept parameter (NW), as well as rain rate (R), from polarimetric C-band radar data obtained during a cool-season, long-duration precipitation event in Huntsville, Alabama, is examined. The radar was operated in a special “near-dwelling” mode over two video disdrometers (2DVD) located 15 km away. The polarimetric radar–based retrieval algorithms for the DSD parameters and rain rate were obtained from simulations using the 2DVD measurements of the DSD. A unique feature of this paper is the radar-based estimation of the spatial correlation functions of the two DSD parameters and rain rate that are used to estimate the “point-to-area” variance. A detailed error variance separation is performed, including the aforementioned point-to-area variance, along with variance components due to the retrieval algorithm error, radar measurement error, and disdrometer sampling error. The spatial decorrelation distance was found to be smallest for the R (4.5 km) and largest for D0 (8.24 km). For log10(NW), it was 7.22 km. The proportion of the variance of the difference between radar-based estimates and 2DVD measurements that could be explained by the aforementioned errors was 100%, 57%, and 73% for D0, log10(NW), and R, respectively. The overall accuracy of the radar-based retrievals for the particular precipitation event quantified in terms of the fractional standard deviation were estimated to be 6.8%, 6%, and 21% for D0, log10(NW), and R, respectively. The normalized bias was
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-11-01
    Description: Two rain events are analyzed using two collocated 2D-video disdrometers (2DVD) and a C-band polarimetric radar at 15-km distance. Both events had moderate-to-intense rainfall rates, but the second event had an embedded convective line. For the first event, the fall speed distribution for a given drop diameter interval showed a narrow and symmetric distribution with a mode at the expected value; the second event produced a wider distribution with a significant skewness toward lower fall speeds. The “slower” drops in the second event were detected while the convective line was directly over the 2DVD site. Drop shape information from the two 2DVD instruments showed that, during the passage of the convection line, around 30%–40% of the drops did not have an axis of rotational symmetry, whereas for event 1, it was only 5%. The implications are that for event 1 the dominant mode of drop oscillation is the axisymmetric mode, and that within the convective line of event 2 other fundamental modes were frequent. The radar data for the second event were analyzed in terms of the self-consistency among the radar-measured quantities. The Kdp/Zh versus Zdr variations within the line convection were not consistent with the corresponding variation determined from the scattering calculations using the measured 1-min drop size distributions and using the “reference” drop shapes. Also found were low ρhv regions within the line convection that were considerably lower than the scattering calculations. These findings are consistent with the asymmetric oscillation modes inferred from the 2DVD measurements for event 2 (probably collision induced) within the convective line.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-02-17
    Description: A multi-sensor analysis of convective precipitation events that occurred in central Italy in autumn 2012 during the HyMeX (Hydrological cycle in the Mediterranean experiment) Special Observation Period (SOP) 1.1 is presented. Various microphysical properties of liquid and solid hydrometeors are examined to assess their relationship with lightning activity. The instrumentation used consisted of a C-band dual-polarization weather radar, a 2-D video disdrometer, and the LINET lightning network. Results of T-matrix simulation for graupel were used to (i) tune a fuzzy logic hydrometeor classification algorithm based on Liu and Chandrasekar (2000) for the detection of graupel from C-band dual-polarization radar measurements and (ii) to retrieve graupel ice water content. Graupel mass from radar measurements was related to lightning activity. Three significant case studies were analyzed and linear relations between the total mass of graupel and number of LINET strokes were found with different slopes depending on the nature of the convective event (such as updraft strength and freezing level height) and the radar observational geometry. A high coefficient of determination (R2 = 0.856) and a slope in agreement with satellite measurements and model results for one of the case studies (15 October 2012) were found. Results confirm that one of the key features in the electrical charging of convective clouds is the ice content, although it is not the only one. Parameters of the gamma raindrop size distribution measured by a 2-D video disdrometer revealed the transition from a convective to a stratiform regime. The raindrop size spectra measured by a 2-D video disdrometer were used to partition rain into stratiform and convective classes. These results are further analyzed in relation to radar measurements and to the number of strokes. Lightning activity was not always recorded when the precipitation regime was classified as convective rain. High statistical scores were found for relationships relating lightning activity to graupel aloft.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-05-09
    Description: Measurements from a 2-D video disdrometer (2DVD) have been used for drop size distribution (DSD) comparisons with co-located Parsivel measurements in Huntsville, Alabama. The comparisons were made in terms of the mass-weighted mean diameter, Dm, the standard deviation of the mass-spectrum, σm, and the rainfall rate, R, all based on 1-min DSD from the two instruments. Time series comparisons show close agreement in all three parameters for cases where R was less than 20 mm h−1. In four cases, discrepancies in all three parameters were seen for "heavy" events, with the Parsivel showing higher Dm, σm and R, when R reached high values (particularly above 30 mm h−1). Possible causes for the discrepancies include the presence of a small percentage of non-fully melted hydrometers, with higher than expected fall velocity and with very different axis ratios as compared with rain, indicating small hail or ice pellets or graupel. We also present here Parsivel-to-Parsivel comparisons as well as comparisons between two 2DVD instruments, namely a low-profile unit and the latest generation, "compact unit" which was installed at the same site in November 2009. The comparisons are included to assess the variability between the same types of instrument. Correlation coefficients and the fractional standard errors are compared.
    Print ISSN: 1680-7340
    Electronic ISSN: 1680-7359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-09-07
    Description: A multi-sensor analysis of convective precipitation events that occurred in central Italy, in autumn 2012 during the HyMeX (Hydrological cycle in the Mediterranean eXperiment) Special Observation Period (SOP) 1.1 is presented. Various microphysical properties of liquid and solid hydrometeors were examined to assess their relationship with lightning activity. The instrumentation used consisted of a C-band dual-polarization weather radar, a 2-D video disdrometer, and a lightning network. A fuzzy logic based hydrometeor classification algorithm was tuned and optimized for the detection of graupel from C-band dual-polarization radar measurements. Graupel ice water content was then retrieved and related to lightning activity. A linear correlation was found between the total mass of graupel above the 0° isothermal and the number of strokes detected by the lightning network in agreement with model outputs, which confirms the importance of ice in the electrical charging of convective clouds, although differences were noticed among events. Parameters of the gamma raindrop size distribution measured by a 2-D video disdrometer, revealed the transition from convective to stratiform regime during the event and where related. However, lightning activity was not always recorded when the precipitation regime was classified as convective. More robust relationships were found relating lightning activity to graupel.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
  • 7
    Publication Date: 2016-03-01
    Print ISSN: 0169-8095
    Electronic ISSN: 1873-2895
    Topics: Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-18
    Description: On the afternoon and evening of 10 November 2002, the Midwest and Deep South were struck by a major outbreak of severe storms that produced some 80 tornadoes. In terms of number of tornadoes, this was the largest outbreak in the United States since November 1992. Some 32 of the tornadoes occurred in Tennessee, Mississippi, Alabama and Georgia, including several long-track killers. We use the North Alabama Lightning Mapping Array (LMA) and other data sources to perform a comprehensive analysis of the structure and evolution of the outbreak. Most of the Southern tornadoes occurred in isolated, fast-moving supercell storms that formed in warm, moist air ahead of a major cold front. Storms tended to form in lines parallel to storm cell motion, resulting in many communities being hit multiple times by severe storms that evening. Supercells in Tennessee produced numerous strong tornadoes with short to medium-length track paths, while the supercells further south produced several very long-track tornadoes. Radar data indicate that the Tennessee storms tended to split frequently, apparently limiting their ability to sustain long-lived tornadoes, while storms further south split at most one time. The differences between these storms appear to be related to the presence of stronger jetstream winds in Tennessee relative to those present in Mississippi, Alabama and Georgia. LMA-derived flash rates associated with most of the supercell storm cores were about 1-2 flashes per second. Rapid increases in lightning rates (or "jumps") occurred prior to tornado touchdown in many instances. Lightning "holes" (lightning-free regions associated with the echo-free vault) occurred in two of the Tennessee supercells. The complexity of the relationship between lightning and storm severity is revealed by the behavior of one Alabama supercell, which produced a peak flash rate of nearly 14 flashes per second, well after the end of its long-track tornado, while interacting and ultimately merging with a daughter supercell on its southwest flank. Close examination of this powerful storm indicates that its prodigious flash rate was the result of strong flash activity over an unusually large area, rather than a concentrated core of extremely high flash rate activity.
    Keywords: Meteorology and Climatology
    Type: American Meteorological Society 22nd Conference on Severe Local Storms; Oct 05, 2004 - Oct 08, 2004; Hyannis, MA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Meteorology and Climatology; Earth Resources and Remote Sensing
    Type: MSFC-E-DAA-TN37899 , AGU Fall Meeting; Dec 12, 2016 - Dec 16, 2016; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Rainfall retrievals from polarimetric radar measurements require the knowledge of four fundamental rain microstructure parameters, namely, drop size distribution, drop shape distribution, canting angles and drop fall velocities. Some recent measurements of all four parameters in natural rain are summarized in [1]. In this paper, we perform an in-depth analysis of two events, using two co-located 2D video disdrometers (2DVD; see [2]) both with high calibration accuracy, and a C-band polarimetric radar [3], located 15 km away. The two events, which occurred 7 days apart (on the 18th and the 25th of Dec 2009), had moderate-to-intense rainfall rates, but the second event had an embedded convection line within the storm. The line had passed over the 2DVD site, thus enabling the shapes and fall velocities to be determined as the line crossed the site. The first event was also captured in a similar manner by both the 2DVDs as well as the C-band radar. Drop fall velocity measurements for, say, the 3 mm drops show noticeable differences between the two events. Whereas for the first event, the velocity distribution showed a narrow and symmetric distribution, with a mode at the expected value (7.95 m/s, as given by the formula in [4]), the second event produced a wider distribution with a significant skewness towards lower velocities (although its mode too was close to the expected value). Moreover, the slower 3 mm drops in the second event occurred when the convection line was directly over the 2DVD site (03:35-03:45 utc), and not before nor after. A similar trend was observed in terms of the horizontal dimensions of the 3 mm drops, i.e. large fluctuations during the same time period, but not outside the period. Vertical dimensions of the drops also fluctuated but not to the same extent. Interestingly, the horizontal dimensions tended towards larger values during the 10-minute period, implying an increase in drop oblateness, which in turn indicates the possibility of the horizontal mode oscillation, one of the three fundamental modes of drop oscillations [5], albeit the most difficult one to excite.
    Keywords: Meteorology and Climatology
    Type: M11-0908 , M11-0493 , 35th Conference on Radar Meteorology; Sep 26, 2011 - Sep 30, 2011; Pittsburgh, PA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...