ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-09-27
    Description: The significant climate feedback of stratospheric water vapor (SWV) necessitates quantitative estimates of SWV budget changes. Model simulations driven by the newest European Centre for Medium‐Range Weather Forecast reanalysis ERA5, satellite observations from the Stratospheric Water and OzOne Satellite Homogenized data set, Microwave Limb Sounder, and in situ frost point hygrometer observations from Boulder all show substantial and persistent stratospheric moistening after a sharp drop in water vapor at the turn of the millennium. This moistening occurred mainly during 2000–2006 and SWV abundances then remained high over the last decade. We find strong positive trends in the Northern Hemisphere and weak negative trends over the South Pole, mainly during austral winter. Moistening of the tropical stratosphere after 2000 occurred during late boreal winter/spring, reached values of ∼0.2 ppm/decade, was well correlated with a warming of the cold point tropopause by ∼0.4 K/decade and can only be partially attributed to El Nino‐Southern Oscillation and volcanic eruptions.
    Description: Plain Language Summary: Water vapor is an effective greenhouse gas. Human‐induced climate change has led to warmer air in the troposphere, which consequently can hold more moisture, thus enhancing the greenhouse effect. The long‐term change in stratospheric water vapor (SWV) is less clear and currently under debate. Using satellite observations, balloon soundings and model simulations, we find an increase of SWV after 2000. This moistening occurred mainly during 2000–2006 and the stratospheric moisture content then remained high over the last decade. The increase of SWV is stronger in the Northern than in the Southern Hemisphere. Over the South Pole, a weak decrease was found. Moistening of the tropical stratosphere occurred mainly during late winter and spring, and was in line with warming of the tropical tropopause, the coldest region that separates the troposphere and stratosphere. Natural causes such as volcanic eruptions cannot completely explain this stratospheric moistening.
    Description: Key Points: Stratospheric moistening after 2000 is clearly detectable in ERA5‐driven simulations, satellite and in situ observations. Hemispheric asymmetry is found with strong positive trends in the Northern Hemisphere and weak negative trends over the South Pole. Moistening of the lower tropical stratosphere is only partially caused by El Nino‐Southern Oscillation and volcanic eruptions.
    Description: https://doi.org/10.5067/Aura/MLS/DATA2508
    Description: https://doi.org/10.5067/GLOSSAC-L3-V2.0
    Description: https://doi.org/10.5067/GLOSSAC-L3-V2.0
    Keywords: ddc:551.6
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-17
    Description: De-nitrification and excess re-nitrification was widely observed by ER-2 instruments in the Arctic vortex during SOLVE in winter/spring 2000. Analyses of these events requires a knowledge of the initial or pre-vortex state of the sampled air masses. The canonical relationship of NOy to the long-lived tracer N2O observed in the unperturbed stratosphere is generally used for this purpose. In this paper we will attempt to establish the current unperturbed NOy:N2O relationship (NOy* algorithm) using the ensemble of extra-vortex data from in situ instruments flying on the ER-2 and DC-8, and from the Mark IV remote measurements on the OMS balloon. Initial analysis indicates a change in the SOLVE NOy* from the values predicted by the 1994 Northern Hemisphere NOy* algorithm which was derived from the observations in the ASHOE/MAESA campaign.
    Keywords: Computer Programming and Software
    Type: SOLVE: Theseo Science Team Meeting; Sep 25, 2000 - Sep 29, 2000; Palermo; Italy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: In an effort to better constrain atmospheric water vapor mixing ratios and to understand the discrepancies between different measurements of water vapor in the stratosphere and troposphere, we have carefully examined data from the Harvard Lyman-alpha photofragment fluorescence hygrometer, which has flown on the NASA ER-2 aircraft from 1992 through 1998. The instrument is calibrated in the laboratory before and after each deployment, and the calibration is checked by direct absorption measurements in the troposphere. On certain flights, the ER-2 flew level tracks during which water vapor varied by up to 80 ppmv, under nearly constant atmospheric conditions. These flights provide a stringent test of our calibration via direct absorption and indicate agreement to within 3%. During the 1997 Photochemistry of Ozone Loss in the Arctic Region In Summer (POLARIS) mission, our Lyman-alpha instrument was compared with a new diode laser hygrometer from the Jet Propulsion Laboratory. Overall agreement was 5% during the June/July deployment and 1% for potential temperatures of 490 to 540 K. The accuracy of our instrument is shown to be +/-5 %, with an additional offset of at most 0.1 ppmv. Data from this instrument, combined with simultaneous measurements of CH4, and H2, are therefore ideal for studies of the hydrogen budget of the lower stratosphere.
    Keywords: Geophysics
    Type: Paper-1998JD100110 , Journal of Geophysical Research (ISSN 0148-0227); 104; D7; 8183-8189
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-17
    Description: A prerequisite to study phenomena in the winter stratospheric polar vortex is the separation of measurements inside and outside the dynamical barrier of the vortex edge. We describe a technique to accurately determine the inner edge of the vortex boundary region from measurements of potential temperature and a trace gas, such as N2O, and apply it to in situ aircraft and balloon measurements from the SOLVE/THESE02000 Arctic campaign. The method may be used to refine the Nash algorithm, which, due to the inherently coarser resolution of potential vorticity on which it is dependent, may misidentify the inner edge by up to 466 km, and omit the identification of small, extra-vortex filaments within the vortex.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-17
    Description: A detailed analysis of available in situ and remotely sensed N2O and CH4 data measured in the 1999/2000 winter Arctic vortex has been performed in order to quantify the temporal evolution of vortex descent. Differences in potential temperature (theta) among balloon and aircraft vertical profiles (an average of 19-23 K on a given N2O or CH4 isopleth) indicated significant vortex inhomogeneity in late fall as compared with late winter profiles. A composite fall vortex profile was constructed for 26 November 1999, whose error bars encompassed the observed variability. High-latitude extravortex profiles measured in different years and seasons revealed substantial variability in N2O and CH4 on theta surfaces, but all were clearly distinguishable from the first vortex profiles measured in late fall 1999. From these extravortex-vortex differences we inferred descent prior to 26 November: as much as 397 plus or minus 15 K (lsigma) at 30 ppbv N2O and 640 ppbv CH4, and falling to 28 plus or minus 13 K above 200 ppbv N2O and 1280 ppbv CH4. Changes in theta were determined on five N2O and CH4 isopleths from 26 November through 12 March, and descent rates were calculated on each N2O isopleth for several time intervals. The maximum descent rates were seen between 26 November and 27 January: 0.82 plus or minus 0.20 K/day averaged over 50- 250 ppbv N2O. By late winter (26 February to 12 March), the average rate had decreased to 0.10 plus or minus 0.25 K/day. Descent rates also decreased with increasing N2O; the winter average (26 November to 5 March) descent rate varied from 0.75 plus or minus 0.10 K/day at 50 ppbv to 0.40 plus or minus 0.11 K/day at 250 ppbv. Comparison of these results with observations and models of descent in prior years showed very good overall agreement. Two models of the 1999/2000 vortex descent, SLIMCAT and REPROBUS, despite theta offsets with respect to observed profiles of up to 20 K on most tracer isopleths, produced descent rates that agreed very favorably with the inferred rates from observation.
    Keywords: Meteorology and Climatology
    Type: Journal of Geophysical Research (ISSN 0148-0227); 107; D20; 22-1 - 22-19
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: A prerequisite to studying phenomena in the winter stratospheric polar vortex is the separation of measurements inside and outside the dynamical barrier of the vortex edge. We describe a technique to accurately determine the inner edge of the vortex boundary region from measurements of potential temperature and a trace gas, such as N2O, and apply it to in situ aircraft and balloon measurements from the SOLVE/THESEO 2000 Arctic campaign. The method may be used to refine the Nash algorithm, which, due to the inherently coarser resolution of potential vorticity on which it is dependent, may misidentify the inner edge by more than 400 km and omit the identification of small, extravortex filaments within the vortex.
    Keywords: Meteorology and Climatology
    Type: Journal of Geophysical Research (ISSN 0148-0227); 107; D20; 10-1 - 10-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Balloon sonde measurements of tropical water vapor using the Cryogenic Frostpoint Hygrometer were initiated in Costa Rica in July 2005 and have continued to the present day. Over the nine years through July 2014, the Ticosonde program has launched 174 CFH payloads, representing the longest-running and most extensive single-site balloon dataset for tropical water vapor. In this presentation we present a seasonal climatology for water vapor and ozone at Costa Rica and examine the frequency of upper tropospheric supersaturation with comparisons to cloud fraction and cloud ice water content observations from the Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) on the CALIPSO mission. We then make a critical comparison of these data to water vapor measurements from the MLS instrument on board Aura in light of recently published work for other sites. Finally, we examine time series of 2-km altitude averages in the upper troposphere-lower stratosphere at Costa Rica in light of anomalies and trends seen in various large-scale indices of tropical water vapor.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN18545 , Aura Science Team Meeting; Sep 15, 2014 - Sep 18, 2014; College Park, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-10
    Description: A detailed analysis of available in situ and remotely sensed N2O and CH4 data measured in the 1999-2000 winter Arctic vortex has been performed in order to quantify the temporal evolution of vortex descent. Differences in potential temperature (theta) among balloon and aircraft vertical profiles (an average of 19-23 K on a given N2O or CH4 isopleth) indicated significant vortex inhomogeneity in late fall as compared with late winter profiles. A composite fall vortex profile was constructed for November 26, 1999, whose error bars encompassed the observed variability. High-latitude, extravortex profiles measured in different years and seasons revealed substantial variability in N2O and CH4 on theta surfaces, but all were clearly distinguishable from the first vortex profiles measured in late fall 1999. From these extravortex-vortex differences, we inferred descent prior to November 26: 397+/-15 K (1sigma) at 30 ppbv N2O and 640 ppbv CH4, and 28+/-13 K above 200 ppbv N2O and 1280 ppbv CH4. Changes in theta were determined on five N2O and CH4 isopleths from November 26 through March 12, and descent rates were calculated on each N2O isopleth for several time intervals. The maximum descent rates were seen between November 26 and January 27: 0.82+/-0.20 K/day averaged over 50-250 ppbv N2O. By late winter (February 26-March 12), the average rate had decreased to 0.10+/-0.25 K/day. Descent rates also decreased with increasing N2O; the winter average (November 26-March 5) descent rate varied from 0.75+/-0.10 K/day at 50 ppbv to 0.40+/-0.11 K/day at 250 ppbv. Comparison of these results with observations and models of descent in prior years showed very good overall agreement. Two models of the 1999-2000 vortex descent, SLIMCAT and REPROBUS, despite theta offsets with respect to observed profiles of up to 20 K on most tracer isopleths, produced descent rates that agreed very favorably with the inferred rates from observation.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-12
    Description: The concentration distributions of several nonmethane hydrocarbons (NMHIC) in the Arctic and Subarctic regions of Alaska are discussed using data obtained during July and August of 1988 as part of the Arctic Boundary Layer Expedition (ABLE 3A). Plume enhancement of some or all of the measured NMHIC were observed on more than half of the 33 missions flown during the project. The usual summer vertical profile of reactive hydrocarbons at these high latitudes has elevated concentrations at high altitudes, with mixing ratio variations largely controlled by hydroxyl radical reactions. Wildfires were established as a significant source of various NMHIC. Biomass burning emission ratios relative to ethane were established for ethyne (0.38 +/- 0.04) and propane (0.08 +/- 0.03). Activities associated with oil drilling are a probable source of enhanced levels of alkanes observed as much as 300 km northeast of Prudhoe Bay.
    Keywords: ENVIRONMENT POLLUTION
    Type: Journal of Geophysical Research (ISSN 0148-0227); 97; D15; p. 16,559-16,588.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...