ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (3)
Collection
Years
  • 1
    Publication Date: 2018-06-06
    Description: The spring 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) experiment was one of major intensive field campaigns of the International Polar Year aimed at detailed characterization of atmospheric physical and chemical processes in the Arctic region. A part of this campaign was a unique snow bidirectional reflectance experiment on the NASA P-3B aircraft conducted on 7 and 15 April by the Cloud Absorption Radiometer (CAR) jointly with airborne Ames Airborne Tracking Sunphotometer (AATS) and ground-based Aerosol Robotic Network (AERONET) sunphotometers. The CAR data were atmospherically corrected to derive snow bidirectional reflectance at high 1 degree angular resolution in view zenith and azimuthal angles along with surface albedo. The derived albedo was generally in good agreement with ground albedo measurements collected on 15 April. The CAR snow bidirectional reflectance factor (BRF) was used to study the accuracy of analytical Ross-Thick Li-Sparse (RTLS), Modified Rahman-Pinty-Verstraete (MRPV) and Asymptotic Analytical Radiative Transfer (AART) BRF models. Except for the glint region (azimuthal angles phi less than 40 degrees), the best fit MRPV and RTLS models fit snow BRF to within 0.05. The plane-parallel radiative transfer (PPRT) solution was also analyzed with the models of spheres, spheroids, randomly oriented fractal crystals, and with a synthetic phase function. The latter merged the model of spheroids for the forward scattering angles with the fractal model in the backscattering direction. The PPRT solution with synthetic phase function provided the best fit to measured BRF in the full range of angles. Regardless of the snow grain shape, the PPRT model significantly over-/underestimated snow BRF in the glint/backscattering regions, respectively, which agrees with other studies. To improve agreement with experiment, we introduced a model of macroscopic snow surface roughness by averaging the PPRT solution over the slope distribution function and by adding a simple model of shadows. With macroscopic roughness described by two parameters, the AART model achieved an accuracy of about plus or minus 0.05 with a possible bias of plus or minus 0.03 in the spectral range 0.4-2.2 micrometers. This high accuracy holds at view zenith angles below 55-60 degrees covering the practically important range for remote sensing applications, and includes both glint and backscattering directions.
    Keywords: Meteorology and Climatology
    Type: Atmospheric Chemistry and Physics; Volume 10; 4359-4375
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Description: JPL has been producing images of planetary bodies for over 30 years. The results of an effort to implement device-independent color on three types of devices are described. The goal is to produce near the same eye-brain response when the observer views the image produced by each device under the correct lighting conditions. The procedure used to calibrate and obtain each device profile is described.
    Type: IS&T/International Society for Optical Engineering (SPIE)'s Symposium on Electronic Imaging Science and Technology; San Jose, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-17
    Description: A 10-kw transmitter operating at 960 to 961 Mc was used at the eastern terminus of the Project Echo communications experiment. This transmitter is located on Crawford's Hill near Holmdel, New Jersey. The 10-kw output feeds into a waveguide line leading to a 60-foot dish antenna. Exciter-driver units are available to drive the power amplifier with various modulations, such as wide-deviation FM, low-index phase modulation, single-sideband or double-sideband modulation with or without carrier, 960.05 or 961.05 Mc constant-frequency CW, and radar on-off pulses at 961.05 Mc. The main output amplifier consists primarily of a four-stage, externally-tuned-cavity, water-cooled klystron, operating at a beam voltage of 16 to 18 kv. The transmitter has been operated during many Moonbounce, tropospheric scatter, and Echo I tests with very satisfactory results. This paper describes its use before March 1, 1961.
    Keywords: Communications and Radar
    Type: NASA-TN-D-1129
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...