ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-02-08
    Description: Highlights • Code comparisons build confidence in simulators to model interdependent processes. • International hydrate reservoir simulators are compared over five complex problems. • Geomechanical processes significantly impact response of gas hydrate reservoirs. • Simulators yielded comparable results, however many differences are noted. • Equivalent constitutive models are required to achieve agreement across simulators. Geologic reservoirs containing gas hydrate occur beneath permafrost environments and within marine continental slope sediments, representing a potentially vast natural gas source. Numerical simulators provide scientists and engineers with tools for understanding how production efficiency depends on the numerous, interdependent (coupled) processes associated with potential production strategies for these gas hydrate reservoirs. Confidence in the modeling and forecasting abilities of these gas hydrate reservoir simulators (GHRSs) grows with successful comparisons against laboratory and field test results, but such results are rare, particularly in natural settings. The hydrate community recognized another approach to building confidence in the GHRS: comparing simulation results between independently developed and executed computer codes on structured problems specifically tailored to the interdependent processes relevant for gas hydrate-bearing systems. The United States Department of Energy, National Energy Technology Laboratory, (DOE/NETL), sponsored the first international gas hydrate code comparison study, IGHCCS1, in the early 2000s. IGHCCS1 focused on coupled thermal and hydrologic processes associated with producing gas hydrates from geologic reservoirs via depressurization and thermal stimulation. Subsequently, GHRSs have advanced to model more complex production technologies and incorporate geomechanical processes into the existing framework of coupled thermal and hydrologic modeling. This paper contributes to the validation of these recent GHRS developments by providing results from a second GHRS code comparison study, IGHCCS2, also sponsored by DOE/NETL. IGHCCS2 includes participants from an international collection of universities, research institutes, industry, national laboratories, and national geologic surveys. Study participants developed a series of five benchmark problems principally involving gas hydrate processes with geomechanical components. The five problems range from simple geometries with analytical solutions to a representation of the world's first offshore production test of methane hydrates, which was conducted with the depressurization method off the coast of Japan. To identify strengths and limitations in the various GHRSs, study participants submitted solutions for the benchmark problems and discussed differing results via teleconferences. The GHRSs evolved over the course of IGHCCS2 as researchers modified their simulators to reflect new insights, lessons learned, and suggested performance enhancements. The five benchmark problems, final sample solutions, and lessons learned that are presented here document the study outcomes and serve as a reference guide for developing and testing gas hydrate reservoir simulators.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-08-08
    Description: Landslides associated with flank collapse are volumetrically the most significant sediment transport process around volcanic islands. Around Montserrat, in the Lesser Antilles, individual landslide deposits have volumes (1 to 20 km3) that are up to two orders of magnitude larger than recent volcanic dome collapses (up to 0.2 km3). The largest landslide deposits were emplaced in at least two stages, initiated by the emplacement of volcanic debris avalanches which then triggered larger-scale failure of seafloor sediment, with deformation propagating progressively downslope for up to 30 km on gradients of 〈 1°. An unusually detailed seismic, side-scan sonar and bathymetric dataset shows that the largest landslide off Montserrat (forming Deposit 8) incorporated ~ 70 m of in-situ sediment stratigraphy, and comprises ~ 80% seafloor sediment by volume. Well-preserved internal bedding and a lack of shortening at the frontally-confined toe of the landslide, shows that sediment failure involved only limited downslope transport. We discuss a range of models for progressively-driven failure of in-situ bedded seafloor sediment. For Deposit 8 and for comparable deposits elsewhere in the Lesser Antilles, we suggest that failure was driven by an over-running surface load that generated excess pore pressures in a weak and deforming undrained package of underlying stratigraphy. A propagating basal shear rupture may have also enhanced the downslope extent of sediment failure. Extensive seafloor-sediment failure may commonly follow debris avalanche emplacement around volcanic islands if the avalanche is emplaced onto a fine-grained parallel-bedded substrate. The timing of landslides off Montserrat is clustered, and associated with the deposition of thick submarine pyroclastic fans. These episodes of enhanced marine volcaniclastic input are separated by relatively quiescent periods of several 100 ka, and correspond to periods of volcanic edifice maturity when destructive processes dominate over constructive processes. Highlights: ► Marine volcanic debris avalanche emplacement can lead to much larger sediment failure. ► Failure is progressive, through in situ-strata, and frontally non-emergent. ► Sediment failure propagates on very low gradients, dominating final deposit volume. ► Process involves undrained loading and/or shear rupture, and may be repeated widely. ► Landslide timing reflects timescales of volcanic edifice growth and destruction
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-06
    Description: Iron formations (IF) represent an iron-rich rock type that typifies many Archaean and Proterozoic supracrustal successions and are chemical archives of Precambrian seawater chemistry and post-depositional iron cycling. Given that IF accumulated on the seafloor for over two billion years of Earth's early history, changes in their chemical, mineralogical, and isotopic compositions offer a unique glimpse into environmental changes that took place on the evolving Earth. Perhaps one of the most significant events was the transition from an anoxic planet to one where oxygen was persistently present within the marine water column and atmosphere. Linked to this progressive global oxygenation was the evolution of aerobic microbial metabolisms that fundamentally influenced continental weathering processes, the supply of nutrients to the oceans, and, ultimately, diversification of the biosphere and complex life forms. Many of the key recent innovations in understanding IF genesis are linked to geobiology, since biologically assisted Fe(II) oxidation, either directly through photoferrotrophy, or indirectly through oxygenic photosynthesis, provides a process for IF deposition from mineral precursors. The abundance and isotope composition of Fe(II)-bearing minerals in IF additionally suggests microbial Fe(III) reduction, a metabolism that is deeply rooted in the Archaea and Bacteria. Linkages among geobiology, hydrothermal systems, and deposition of IF have been traditionally overlooked, but now form a coherent model for this unique rock type. This paper reviews the defining features of IF and their distribution through the Neoarchaean and Palaeoproterozoic. This paper is an update of previous reviews by Bekker et al. (2010, 2014) that will improve the quantitative framework we use to interpret IF deposition. In this work, we also discuss how recent discoveries have provided new insights into the processes underpinning the global rise in atmospheric oxygen and the geochemical evolution of the oceans.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-01-11
    Description: Recent seafloor mapping around volcanic islands shows that submarine landslide deposits are common and widespread. Such landslides may cause devastating tsunamis, but accurate assessment of tsunami hazard relies on understanding failure processes and sources. Here we use high-resolution geophysical data offshore from Montserrat, in the Lesser Antilles, to show that landslides around volcanic islands may involve two fundamentally different sources of sediment (island-flank and larger seafloor-sediment failures), and can occur in multiple stages. A combination of these processes produces elongate deposits, with a blocky centre (associated with island-flank collapse), surrounded by a smoother-surfaced deposit that is dominated by failed seafloor sediment. The failure of seafloor sediment is associated with little marginal accumulation, and involves only limited downslope motion. Submarine landslide deposits with similar blocky and smooth-surfaced associations are observed in several locations worldwide, but the complex emplacement processes implied by this morphological relationship can only be revealed by high-resolution geophysical data. Such complexity shows that the volume of landslide deposits offshore of volcanic islands cannot simply be used in tsunami models to reflect a single-stage collapse of primary volcanic material. By applying predictive equations for tsunami amplitude to investigate general scenarios of volcanic island landslide generation, we show that the tsunami hazard associated with volcanic island collapse remains highly significant. Volcanic flank failures, even if relatively small, may generate large local tsunamis, but associated seafloor sediment failures, even if they have a much greater volume, have a substantially lower potential for tsunami generation.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-01-07
    Description: Pathogenic bacteria use Quorum sensing (QS) to regulate the expression of virulence factors involved in plant tissue infection. Some of these factors are the production of biofilm, hydrolytic enzymes, toxins, and plasmids; therefore, the interruption of this system could be a useful tool to control plant tissue infections. This review analyzes the potential treatments to interrupt QS and control the infection of plant tissues.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: Evaluation of seismic reflection data has identified the presence of fluid escape structures cross-cutting overburden stratigraphy within sedimentary basins globally. Seismically-imaged chimneys/pipes are considered to be possible pathways for fluid flow, which may hydraulically connect deeper strata to the seabed. These fluid migration pathways through the overburden must be constrained to enable secure, long-term subsurface carbon dioxide (CO2) storage. We have investigated a site of natural active fluid escape in the North Sea, the Scanner Pockmark Complex, to determine the physical characteristics of focused fluid conduits, and how they control fluid flow. Here we show that a multi-scale, multi disciplinary experimental approach is required for complete characterisation of fluid escape structures. Geophysical techniques are necessary to resolve fracture geometry and subsurface structure (e.g., multifrequency seismics) and physical parameters of sediments (e.g., controlled source electromagnetics) across length scales (m to km). At smaller (mm to cm) scales, sediment cores were sampled directly and their physical and chemical properties assessed using laboratory-based methods. Numerical modelling approaches bridge the resolution gap, though their validity is dependent on calibration and constraint from field and laboratory experimental data. Further, time-lapse seismic and acoustic methods capable of resolving temporal changes are key for determining fluid flux. Future optimisation of experiment resource use may be facilitated by the installation of permanent seabed infrastructure, and replacement of manual data processing with automated workflows. This study can be used to inform measurement, monitoring and verification workflows that will assist policymaking, regulation, and best practice for CO2 subsurface storage operations.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Elsevier
    In:  Advances in Geophysics, ed.: Renata Dmowska, Heidelberg, Elsevier, vol. 47, no. 8, pp. 1-64, pp. 1516, (ISBN: 0-12-018847-3)
    Publication Date: 2005
    Keywords: Crustal deformation (cf. Earthquake precursor: deformation or strain) ; Subduction zone ; USA
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Elsevier
    In:  Amsterdam, Elsevier, vol. 47, no. 22, pp. 65-70, (ISBN 3-7643-0253-4)
    Publication Date: 1998
    Keywords: Modelling ; Finite Element Method ; Elasticity ; Error analysis ; Acoustics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-02-06
    Description: Incipient warming of peatlands at high latitudes is expected to modify soil drainage and hence the redox conditions, which has implications for Fe export from soils. This study uses Fe isotopes to assess the processes controlling Fe export in a range of Icelandic soils including peat soils derived from the same parent basalt, where Fe isotope variations principally reflect differences in weathering and drainage. In poorly weathered, well-drained soils (non-peat soils), the limited Fe isotope fractionation in soil solutions relative to the bulk soil (Δ57Fesolution-soil = -0.11 ± 0.12 ‰) is attributed to proton-promoted mineral dissolution. In the more weathered poorly drained soils (peat soils), the soil solutions are usually lighter than the bulk soil (Δ57Fesolution-soil = -0.41 ± 0.32 ‰), which indicates that Fe has been mobilised by reductive mineral dissolution and/or ligand-controlled dissolution. The results highlight the presence of Fe-organic complexes in solution in anoxic conditions. An additional constraint on soil weathering is provided by Si isotopes. The Si isotope composition of the soil solutions relative to the soil (Δ30Sisolution-soil = 0.92 ± 0.26 ‰) generally reflects the incorporation of light Si isotopes in secondary aluminosilicates. Under anoxic conditions in peat soils, the largest Si isotope fractionation in soil solutions relative to the bulk soil is observed (Δ30Sisolution-soil = 1.63 ± 0.40 ‰) and attributed to the cumulative contribution of secondary clay minerals and amorphous silica precipitation. Si supersaturation in solution with respect to amorphous silica is reached upon freezing when Al availability to form aluminosilicates is limited by the affinity of Al for metal-organic complexes. Therefore, the precipitation of amorphous silica in peat soils indirectly supports the formation of metal-organic complexes in poorly drained soils. These observations highlight that in a scenario of decreasing soil drainage with warming high latitude peatlands, Fe export from soils as Fe-organic complexes will increase, which in turn has implications for Fe transport in rivers, and ultimately the delivery of Fe to the oceans.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-02-24
    Description: The spatio-temporal pattern of peak Holocene warmth (Holocene thermal maximum, HTM) is traced over 140 sites across the Western Hemisphere of the Arctic (0–180°W; north of ∼60°N). Paleoclimate inferences based on a wide variety of proxy indicators provide clear evidence for warmer-than-present conditions at 120 of these sites. At the 16 terrestrial sites where quantitative estimates have been obtained, local HTM temperatures (primarily summer estimates) were on average 1.6±0.8°C higher than present (approximate average of the 20th century), but the warming was time-transgressive across the western Arctic. As the precession-driven summer insolation anomaly peaked 12–10 ka (thousands of calendar years ago), warming was concentrated in northwest North America, while cool conditions lingered in the northeast. Alaska and northwest Canada experienced the HTM between ca 11 and 9 ka, about 4000 yr prior to the HTM in northeast Canada. The delayed warming in Quebec and Labrador was linked to the residual Laurentide Ice Sheet, which chilled the region through its impact on surface energy balance and ocean circulation. The lingering ice also attests to the inherent asymmetry of atmospheric and oceanic circulation that predisposes the region to glaciation and modulates the pattern of climatic change. The spatial asymmetry of warming during the HTM resembles the pattern of warming observed in the Arctic over the last several decades. Although the two warmings are described at different temporal scales, and the HTM was additionally affected by the residual Laurentide ice, the similarities suggest there might be a preferred mode of variability in the atmospheric circulation that generates a recurrent pattern of warming under positive radiative forcing. Unlike the HTM, however, future warming will not be counterbalanced by the cooling effect of a residual North American ice sheet.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...