ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • wheat  (81)
  • Springer  (81)
  • 1995-1999  (23)
  • 1990-1994  (50)
  • 1980-1984  (8)
Collection
Publisher
  • Springer  (81)
Years
Year
  • 1
    ISSN: 1573-1561
    Keywords: Cover crops ; wheat ; Triticum aestivum ; soybean ; Glycine max ; soil extracts ; germination bioassays ; phenolic acids ; hydroxamic acids ; allelopathy ; slope analysis ; ivy-leaved morning glory ; Ipomoea hederacea ; crimson clover ; Trifolium incarnalum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract The primary objective of this research was to determine if soil extracts could be used directly in bioassays for the detection of allelopathic activity. Here we describe: (1) a way to estimate levels of allelopathic compounds in soil; (2) how pH, solute potential, and/or ion content of extracts may modify the action of allelopathic compounds on germination and radicle and hypocotyl length of crimson clover (Trifolium incarnatum L.) and ivyleaved morning glory (Ipomoea hederacea L. Jacquin.); and (3) how biological activity of soil extracts may be determined. A water-autoclave extraction procedure was chosen over the immediate-water and 5-hr EDTA extraction procedures, because the autoclave procedure was effective in extracting solution and reversibly bound ferulic acid as well as phenolic acids from wheat debris. The resulting soil extracts were used directly in germination bioassays. A mixture of phenolic acids similar to that obtained from wheat-no-till soils did not affect germination of clover or morning glory and radicle and hypocotyl length of morning glory. The mixture did, however, reduce radicle and hypocotyl length of clover. Individual phenolic acids also did not inhibit germination, but did reduce radicle and hypocotyl length of both species. 6-MBOA (6-methoxy-2,3-benzoxazolinone), a conversion product of 2-o-glucosyl-7-methoxy-1,4-benzoxazin-3-one, a hydroxamic acid in living wheat plants, inhibited germination and radicle and hypocotyl length of clover and morning glory. 6-MBOA, however, was not detected in wheat debris, stubble, or soil extracts. Total phenolic acids (FC) in extracts were determined with Folin and Ciocalteu's phenol reagent. Levels of FC in wheat-conventionaltill soil extracts were not related to germination or radicle and hypocotyl length of either species. Levels of FC in wheat-no-till soil extracts were also not related to germination of clover or morning glory, but were inversely related to radicle and hypocotyl length of clover and morning glory. FC values, solute potential, and acidity of wheat-no-till soil extracts appeared to be independent (additive) in action on clover radicle and hypocotyl length. Radicle and hypocotyl length of clover was inversely related to increasing FC and solute potential and directly related to decreasing acidity. Biological activity of extracts was determined best from slopes of radicle and hypocotyl length obtained from bioassays of extract dilutions. Thus, data derived from the water-autoclave extraction procedure, FC analysis, and slope analysis for extract activity in conjunction with data on extract pH and solute potential can be used to estimate allelopathic activity of wheat-no-till soils
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5036
    Keywords: aluminium ; electron microscope ; light microscope ; Triticum aestivum ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Root tips from aluminium (Al) tolerant (Waalt) and Al sensitive (Warigal) wheat (Triticum aestivum (L). Thell.) cultivars exposed to low concentrations of Al (10 μM) for 10, 24 and 72 hours were examined under the light and electron microscope. After fixing and embedding, longitudinal and transverse thin and ultrathin sections were cut. There was no evidence of Al damage to the root tips of the Al tolerant cultivar under both the light and electron microscope. For the Al sensitive cultivar, Al had no observable effect on the root tips 10 hours after Al addition when examined under the light microscope. When examined under an electron microscope, electron dense globular deposits were observed between the cell wall and cell membrane of the epidermal cells. There was not obvious damage to the cell cytoplasm. Two or 3 days after Al addition, light microscopy showed that the cells in the root tips had become swollen and extensively vacuolated. The tissues appeared disorganised and degenerate, particularly in the epidermis and outer cortical cells. The electron microscope also revealed a thickening of the cell wall. The cell wall was broken down, particularly in the epidermis in the region 4–6 mm from the root tip. The tissue in the meristematic area was largely intact.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5036
    Keywords: Cu levels ; N sources ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A pot experiment was conducted, in a greenhouse, at Hisar, India, using a sandy soil deficient in nitrogen and copper, to study the effects of various levels of N and Cu on the dry matter yield and the N and Cu contents of wheat (Triticum aestivum L.). The sources of nitrogen used were Ca(NO3)2, NH4Cl and NH4NO3 applied in amounts necessary to establish 120 ppm of soil nitrogen and using a control (0 ppm N). Copper was applied, as copper chloride, to give soil Cu levels of 0, 5, 10 and 20 ppm. In general, dry matter yields, N and Cu concentrations in shoots and roots and available soil-N after harvest of the plants, followed the order Ca(NO3)〉NH4NO3〉NH4Cl. Up to a level of 5 ppm Cu, the dry matter yields of shoots and roots increased, but decreased at higher levels of Cu. Increasing Cu levels significantly decreased the available soil-nitrogen after harvest and also the concentration of N in the plants. At the same time the concentration of Cu in shoots and roots and available Cu in the soil was increased. Nitrogen and copper were found to have a mutually antagonistic effect on each other's concentration in the plants. The antagonism was greater with NH4 + sources than with NO3 − compounds.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5036
    Keywords: Gaeumannomyces graminis ; genotypes ; interaction ; manganese ; oxidation ; take-all ; Triticum aestivum ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Take-all is a world-wide root-rotting disease of cereals. The causal organism of take-all of wheat is the soil-borne fungus Gaeumannomyces graminis var tritici (Ggt). No resistance to take-all, worthy of inclusion in a plant breeding programme, has been discovered in wheat but the severity of take-all is increased in host plants whose tissues are deficient for manganese (Mn). Take-all of wheat will be decreased by all techniques which lift Mn concentrations in shoots and roots of Mn-deficient hosts to adequate levels. Wheat seedlings were grown in a Mn-deficient calcareous sand in small pots and inoculated with four field isolates of Ggt. Infection by three virulent isolates was increased under conditions which were Mn deficient for the wheat host but infection by a weakly virulent isolate, already low, was further decreased. Only the three virulent isolates caused visible oxidation of Mn in vitro. The sensitivity of Ggt isolates to manganous ions in vitro did not explain the extent of infection they caused on wheat hosts. In a similar experiment four Australian wheat genotypes were grown in the same Mn-deficient calcareous sand and inoculated with one virulent isolate of Ggt. Two genotypes were inefficient at taking up manganese and were very susceptible to take-all, one was very efficient at taking up manganese and was resistant to take-all, and the fourth genotype was intermediate for both characters. All genotypes were equally resistant under Mn-adequate conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-5036
    Keywords: aluminium ; aluminium tolerance ; calcium ; magnesium ; Triticum aestivum L. ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The activities of inorganic, monomeric aluminium (Al) species in the root environment are important in the toxicity of Al to plant roots, which may be ameliorated by increased activities of basic cations. Additionally, it has been suggested that electro-chemical processes in walls of root cells play a role in Al tolerance. Empirical models were proposed to accomodate genetic and calcium (Ca) and magnesium (Mg) ameliorative effects on Al toxicity. The models were tested using data from a solution culture study (with ionic strength 1.6 to 8.6 mM) in which wheat (Triticum aestivum L.) cvv. Warigal (Al-sensitive) and Waalt (Al-tolerant) were grown for 28 d at 0, 10 and 20 μM Al, in factorial combination with 200, 400, 800 and 1600 μM Ca and 100, 200, 400 and 800 μM Mg. There was a poor relationship between relative total dry mass (TDM) (calculated as a percentage of the average TDM of each cultivar in the absence of added Al) and the activity of Al3+ or the sum of the activities of the monomeric Al species in solution. A model based on the ratios of activities of cations in solution, taking valency into consideration, was more successful, accounting for ca 85% of the observed variation in relative TDM. There were no systematic variations between observed values and those estimated by the model.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-5036
    Keywords: aluminium ; genetics ; inheritance ; toxicity ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The effect of Al on the growth of plants derived from the F3 generation of a cross between Al tolerant (Waalt) and Al sensitive (Warigal) wheat cultivars, grown in low ionic strength nutrient solutions, were assessed by a number of methods viz; root length and haematoxylin stain after 3 days exposure to Al and plant top and root yields, and root length and visual assessment for Al damage after 4 weeks growth. Of these methods haematoxylin stain (3 days) and visual assessment at 4 weeks identified the same plants as being sensitive or tolerant to Al and clearly segregated the 2 populations. Consequently these 2 methods were used as ‘standard’ techniques to determine the ability of the other methods to distinguish between tolerant and sensitive plants. The ratio of plant top: root yields clearly segregated the 2 populations. The 2 populations could not be clearly distinguished based on plant top or root yields, or on root length either after 3 days or 4 weeks exposure to Al. Within the population of tolerant plants, root length was significantly correlated with root weight (r2=0.86) and top weight (r2=0.71). None of these relationships were significant for the population of sensitive plants. These techniques were applied in a number of separate experiments on the F2 and F3 populations from a Waalt × Warigal cross. The results indicate that Al tolerance in wheat is inherited by a single gene and that this gene has incomplete dominance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 155-156 (1993), S. 489-492 
    ISSN: 1573-5036
    Keywords: aluminium ; analog ; boron ; copper ; gallium ; iron ; lanthanum ; manganese ; scandium ; tolerance ; Triticum aestivum ; toxicity ; wheat ; zinc
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The effects of aluminium (Al), manganese (Mn), zinc (Zn), copper (Cu), boron (B), iron (Fe), gallium (Ga), scandium (Sc) and lanthanum (La) on growth of an Al-tolerant and an Al-sensitive line of wheat (Triticum aestivum L.) were measured in solution culture. The concentrations of nutrients in the basal nutrient solution were (μM) 500 Ca, 100 Mg, 300 K, 600 N (150 NH4, 450 NO3), 600 SO4, 2.5 P, 3 B, 2.5 Fe, 0.5 Zn, 0.5 Mn, 0.1 Cu at a pH of 4.7. The major solution nutrient concentrations were maintained at the nominal concentration with monitoring, frequent additions and weekly renewal. Differentiation in yield between the Al-tolerant and Al-sensitive line only occurred in the presence of Al indicating that, in the long term, none of the other metals tested could be used as an analog for Al. The visual symptoms in the roots of Cu toxicity (in both lines) and Al toxicity (in the sensitive line) were similar. The solution concentration (μM) at which yield of the roots of the tolerant line was reduced by 50% was, in order of increasing tolerance, Cu 0.5, Sc 1.1, La 7.1, Ga 8.6, Al 15, Zn 19, Fe 84, B 490 and Mn 600.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 155-156 (1993), S. 529-532 
    ISSN: 1573-5036
    Keywords: chlorsulfuron ; mineral nutrition ; sulfonylurea ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Sulfonylurea herbicides have been found to decrease the uptake and utilization of some nutrients by wheat. This paper reviews the effects of sulfonylureas on nutrient uptake, proposes physiological mechanisms which might explain the effects; and examines the agronomic implications.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 79 (1990), S. 305-313 
    ISSN: 1432-2242
    Keywords: Peroxidase ; Isoelectric focusing ; Hexaploid ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Isoelectric focusing (IEF) of extracts from different tissues of hexaploid wheat cv “Chinese Spring” provided a method of distinguishing and identifying the four known, and one newly discovered, sets of genes encoding peroxidase isozyme production.Per-1, carried on the short arms of homoeologous group 1 chromosomes, shows a high degree of conservation and is active in coleoptile tissue.Per-2, carried on the short arms of group 2 chromosomes, shows some polymorphism and is most active in root tissue.Per-3, on the long arms of group 3 chromosomes, is highly variable and most active in embryo tissue.Per-4, carried on chromosome arms7AS,4AL, and7DS, is quite variable and most active in endosperm tissue. (The chromosome nomenclature used in this paper is that agreed to by the 7th International Wheat Genetics Symposium, where the previous designations of4A and4B were reversed.) Restriction fragment length polymorphism (RFLP)-based maps of the group 7 chromosomes were used to locatePer-A4 to a distal region of7AS. In addition, a further set of genes was identified as being active in root tissue. In wheat a single locus,Per-D5, was found on chromosome arm2DS.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 46 (1996), S. 225-234 
    ISSN: 1573-0867
    Keywords: long-term experiment ; maize ; wheat ; fertilizers ; farm yard manure ; weedicide application ; yield sustainability ; zinc deficiency ; nutrient uptake ; cropping sequence ; organic carbon build-up
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Long-term field experiments play an important role in understanding the complex interactions of plants, soils, climate and management and their effects on sustainable crop production. A long-term fertilizer experiment with maize-wheat-cowpea (fodder) is in progress since 1971 at Punjab Agricultural University farm Ludhiana, India. The experimental result for the first 21 years showed that application of N alone or in combination with P did not produce as much maize and wheat grains as the application of N, P and K together. Eight years after the start of the experiment, the optimal levels of N, P and K application (100% NPK) were unable to sustain the similar (maize) yield level as before because of Zn deficiency. Whereas in FYM amended plots the Zn deficiency did not appear and the higher crop yields could be sustained. The chemical control of weeds could not sustain the maize productivity at the same level as the manual removal of weeds. It was concluded that the high level of crop production can be sustained with the application of N, P and K under intensive cropping system provided deficiency of any of the micronutrient does not crop up. The deficiency of Zn is most likely to occur in semi-arid light textured alluvial soils under intensive cropping without the addition of farm yard manure/organic manures. In maize based cropping systems, manual control of weeds may be preferred to the chemical one. Addition of FYM in conjunction with 100% NPK is most beneficial both from bio-physical and economic point of view.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...