ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-03-30
    Description: Selective estrogen receptor modulators (SERMs) mimic estrogen action in certain tissues while opposing it in others. The therapeutic effectiveness of SERMs such as tamoxifen and raloxifene in breast cancer depends on their antiestrogenic activity. In the uterus, however, tamoxifen is estrogenic. Here, we show that both tamoxifen and raloxifene induce the recruitment of corepressors to target gene promoters in mammary cells. In endometrial cells, tamoxifen, but not raloxifene, acts like estrogen by stimulating the recruitment of coactivators to a subset of genes. The estrogen-like activity of tamoxifen in the uterus requires a high level of steroid receptor coactivator 1 (SRC-1) expression. Thus cell type- and promoter-specific differences in coregulator recruitment determine the cellular response to SERMs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shang, Yongfeng -- Brown, Myles -- CA57374/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2002 Mar 29;295(5564):2465-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Adult Oncology, Dana-Farber Cancer Institute, 44 Binney Street, and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11923541" target="_blank"〉PubMed〈/a〉
    Keywords: Breast/*drug effects/metabolism ; Breast Neoplasms/genetics/metabolism ; Cell Cycle ; DNA-Binding Proteins/metabolism ; Endometrial Neoplasms/genetics/metabolism ; Endometrium/*drug effects/metabolism ; Estradiol/pharmacology ; Female ; Gene Expression Regulation/drug effects ; Gene Silencing ; Genes, myc ; Histone Acetyltransferases ; Histone Deacetylases/metabolism ; Humans ; Insulin-Like Growth Factor I/genetics ; Nuclear Receptor Coactivator 1 ; Organ Specificity ; Promoter Regions, Genetic ; Raloxifene Hydrochloride/metabolism/*pharmacology ; Receptors, Estrogen/chemistry/metabolism ; Repressor Proteins/metabolism ; Response Elements ; Selective Estrogen Receptor Modulators/metabolism/*pharmacology ; Tamoxifen/metabolism/*pharmacology ; Transcription Factors/genetics/*metabolism ; Transcription, Genetic ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-11-29
    Description: Cucurbitacins are triterpenoids that confer a bitter taste in cucurbits such as cucumber, melon, watermelon, squash, and pumpkin. These compounds discourage most pests on the plant and have also been shown to have antitumor properties. With genomics and biochemistry, we identified nine cucumber genes in the pathway for biosynthesis of cucurbitacin C and elucidated four catalytic steps. We discovered transcription factors Bl (Bitter leaf) and Bt (Bitter fruit) that regulate this pathway in leaves and fruits, respectively. Traces in genomic signatures indicated that selection imposed on Bt during domestication led to derivation of nonbitter cucurbits from their bitter ancestors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shang, Yi -- Ma, Yongshuo -- Zhou, Yuan -- Zhang, Huimin -- Duan, Lixin -- Chen, Huiming -- Zeng, Jianguo -- Zhou, Qian -- Wang, Shenhao -- Gu, Wenjia -- Liu, Min -- Ren, Jinwei -- Gu, Xingfang -- Zhang, Shengping -- Wang, Ye -- Yasukawa, Ken -- Bouwmeester, Harro J -- Qi, Xiaoquan -- Zhang, Zhonghua -- Lucas, William J -- Huang, Sanwen -- New York, N.Y. -- Science. 2014 Nov 28;346(6213):1084-8. doi: 10.1126/science.1259215.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China. Agricultural Genomic Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China. ; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China. College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China. ; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China. Horticulture and Landscape College, Hunan Agricultural University, National Chinese Medicinal Herbs Technology Center, Changsha 410128, China. ; Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China. ; Hunan Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China. ; Horticulture and Landscape College, Hunan Agricultural University, National Chinese Medicinal Herbs Technology Center, Changsha 410128, China. ; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China. ; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China. College of Life Sciences, Wuhan University, Wuhan 430072, China. ; Institute of Microbiology, Chinese Academy of Sciences, Beijing 100190, China. ; School of Pharmacy, Nihon University, Tokyo 101-8308, Japan. ; Laboratory of Plant Physiology, Wageningen University, Wageningen 6700, Netherlands. ; Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA. ; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China. Agricultural Genomic Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China. huangsanwen@caas.cn.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25430763" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Cucumis sativus/genetics/*metabolism ; Fruit/genetics/*metabolism ; Gene Expression Regulation, Plant ; Genome, Plant ; Molecular Sequence Data ; Plant Leaves/genetics/*metabolism ; Plant Proteins/genetics/*metabolism ; *Taste ; Transcription Factors/genetics/*metabolism ; Triterpenes/chemical synthesis/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...