ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2002-06-22
    Description: Place cells in hippocampal area CA1 may receive positional information from the intrahippocampal associative network in area CA3 or directly from the entorhinal cortex. To determine whether direct entorhinal connections support spatial firing and spatial memory, we removed all input from areas CA3 to CA1, thus isolating the CA1 area. Pyramidal cells in the isolated CA1 area developed sharp and stable place fields. Rats with an isolated CA1 area showed normal acquisition of an associative hippocampal-dependent spatial recognition task. Spatial recall was impaired. These results suggest that the hippocampus contains two functionally separable memory circuits: The direct entorhinal-CA1 system is sufficient for recollection-based recognition memory, but recall depends on intact CA3-CA1 connectivity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brun, Vegard H -- Otnass, Mona K -- Molden, Sturla -- Steffenach, Hill-Aina -- Witter, Menno P -- Moser, May-Britt -- Moser, Edvard I -- New York, N.Y. -- Science. 2002 Jun 21;296(5576):2243-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Neuroscience Unit, Medical-Technical Research Centre, Norwegian University of Science and Technology, 7489 Trondheim, Norway.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12077421" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Brain Mapping ; Denervation ; Electrodes, Implanted ; Entorhinal Cortex/*physiology ; Hippocampus/*cytology/*physiology ; Interneurons/physiology ; Maze Learning ; Memory/*physiology ; Mental Recall/physiology ; Nerve Net/physiology ; Neural Pathways ; Pyramidal Cells/*physiology ; Rats ; Space Perception/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2005-07-26
    Description: Hippocampal neurons were recorded under conditions in which the recording chamber was varied but its location remained unchanged versus conditions in which an identical chamber was encountered in different places. Two forms of neuronal pattern separation occurred. In the variable cue-constant place condition, the firing rates of active cells varied, often over more than an order of magnitude, whereas the location of firing remained constant. In the variable place-constant cue condition, both location and rates changed, so that population vectors for a given location in the chamber were statistically independent. These independent encoding schemes may enable simultaneous representation of spatial and episodic memory information.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Leutgeb, Stefan -- Leutgeb, Jill K -- Barnes, Carol A -- Moser, Edvard I -- McNaughton, Bruce L -- Moser, May-Britt -- New York, N.Y. -- Science. 2005 Jul 22;309(5734):619-23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for the Biology of Memory, Medical-Technical Research Centre, Norwegian University of Science and Technology, 7489 Trondheim, Norway.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16040709" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain Mapping ; Cues ; Electrodes, Implanted ; Electrophysiology ; Hippocampus/cytology/*physiology ; Interneurons/physiology ; Male ; Memory/*physiology ; Nerve Net/*physiology ; Neurons/*physiology ; Orientation/*physiology ; Perception/physiology ; Pyramidal Cells/*physiology ; Rats ; Rats, Long-Evans ; Space Perception/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-10-04
    Description: The ability to recall discrete memories is thought to depend on the formation of attractor states in recurrent neural networks. In such networks, representations can be reactivated reliably from subsets of the cues that were present when the memory was encoded, at the same time as interference from competing representations is minimized. Theoretical studies have pointed to the recurrent CA3 system of the hippocampus as a possible attractor network. Consistent with predictions from these studies, experiments have shown that place representations in CA3 and downstream CA1 tolerate small changes in the configuration of the environment but switch to uncorrelated representations when dissimilarities become larger. However, the kinetics supporting such network transitions, at the subsecond timescale, is poorly understood. Here we show in rats that instantaneous transformation of the spatial context does not change the hippocampal representation all at once but is followed by temporary bistability in the discharge activity of CA3 ensembles. Rather than sliding through a continuum of intermediate activity states, the CA3 network undergoes a short period of competitive flickering between preformed representations of the past and present environment before settling on the latter. Network flickers are extremely fast, often with complete replacement of the active ensemble from one theta cycle to the next. Within individual cycles, segregation is stronger towards the end, when firing starts to decline, pointing to the theta cycle as a temporal unit for expression of attractor states in the hippocampus. Repetition of pattern-completion processes across successive theta cycles may facilitate error correction and enhance discriminative power in the presence of weak and ambiguous input cues.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jezek, Karel -- Henriksen, Espen J -- Treves, Alessandro -- Moser, Edvard I -- Moser, May-Britt -- England -- Nature. 2011 Sep 28;478(7368):246-9. doi: 10.1038/nature10439.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Kavli Institute for Systems Neuroscience and Centre for the Biology of Memory, Norwegian University of Science and Technology, Olav Kyrres gate 9, MTFS, 7489 Trondheim, Norway. karel.jezek@biomed.cas.cz〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21964339" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cues ; Environment ; Hippocampus/*cytology/*physiology ; Male ; Memory/*physiology ; Models, Neurological ; Rats ; Rats, Long-Evans ; Space Perception/*physiology ; Theta Rhythm/*physiology ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-02-13
    Description: Grid cells are neurons with periodic spatial receptive fields (grids) that tile two-dimensional space in a hexagonal pattern. To provide useful information about location, grids must be stably anchored to an external reference frame. The mechanisms underlying this anchoring process have remained elusive. Here we show in differently sized familiar square enclosures that the axes of the grids are offset from the walls by an angle that minimizes symmetry with the borders of the environment. This rotational offset is invariably accompanied by an elliptic distortion of the grid pattern. Reversing the ellipticity analytically by a shearing transformation removes the angular offset. This, together with the near-absence of rotation in novel environments, suggests that the rotation emerges through non-coaxial strain as a function of experience. The systematic relationship between rotation and distortion of the grid pattern points to shear forces arising from anchoring to specific geometric reference points as key elements of the mechanism for alignment of grid patterns to the external world.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stensola, Tor -- Stensola, Hanne -- Moser, May-Britt -- Moser, Edvard I -- England -- Nature. 2015 Feb 12;518(7538):207-12. doi: 10.1038/nature14151.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrres gate 9, 7491 Trondheim, Norway.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25673414" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Brain Mapping ; Entorhinal Cortex/*cytology/physiology ; *Environment ; Male ; Models, Neurological ; Neurons/cytology/*physiology ; Orientation/*physiology ; Pattern Recognition, Visual/*physiology ; Rats ; Rats, Long-Evans ; Rotation ; Space Perception/*physiology ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2007-02-17
    Description: Theoretical models have long pointed to the dentate gyrus as a possible source of neuronal pattern separation. In agreement with predictions from these models, we show that minimal changes in the shape of the environment in which rats are exploring can substantially alter correlated activity patterns among place-modulated granule cells in the dentate gyrus. When the environments are made more different, new cell populations are recruited in CA3 but not in the dentate gyrus. These results imply a dual mechanism for pattern separation in which signals from the entorhinal cortex can be decorrelated both by changes in coincidence patterns in the dentate gyrus and by recruitment of nonoverlapping cell assemblies in CA3.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Leutgeb, Jill K -- Leutgeb, Stefan -- Moser, May-Britt -- Moser, Edvard I -- New York, N.Y. -- Science. 2007 Feb 16;315(5814):961-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for the Biology of Memory, Norwegian University of Science and Technology, 7489 Trondheim, Norway.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17303747" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Dentate Gyrus/cytology/*physiology ; Hippocampus/cytology/*physiology ; Male ; Neurons/physiology ; Orientation/physiology ; Rats ; Rats, Long-Evans ; Space Perception/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...