ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-04-30
    Description: Grid cells in parahippocampal cortices fire at vertices of a periodic triangular grid that spans the entire recording environment. Such precise neural computations in space have been proposed to emerge from equally precise temporal oscillations within cells or within the local neural circuitry. We found that grid-like firing patterns in the entorhinal cortex vanished when theta oscillations were reduced after intraseptal lidocaine infusions in rats. Other spatially modulated cells in the same cortical region and place cells in the hippocampus retained their spatial firing patterns to a larger extent during these periods without well-organized oscillatory neuronal activity. Precisely timed neural activity within single cells or local networks is thus required for periodic spatial firing but not for single place fields.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koenig, Julie -- Linder, Ashley N -- Leutgeb, Jill K -- Leutgeb, Stefan -- New York, N.Y. -- Science. 2011 Apr 29;332(6029):592-5. doi: 10.1126/science.1201685.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Neurobiology Section and Center for Neural Circuits and Behavior, Division of Biological Sciences, University of California, San Diego, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21527713" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Entorhinal Cortex/cytology/*physiology ; Hippocampus/cytology/*physiology ; Lidocaine/pharmacology ; Male ; Membrane Potentials ; Motor Activity ; Nerve Net/physiology ; Neural Pathways ; Neurons/*physiology ; Periodicity ; Rats ; Rats, Long-Evans ; Septum Pellucidum/drug effects/physiology ; *Space Perception ; *Theta Rhythm/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-07-24
    Description: The hippocampus has differentiated into an extensively connected recurrent stage (CA3) followed by a feed-forward stage (CA1). We examined the function of this structural differentiation by determining how cell ensembles in rat CA3 and CA1 generate representations of rooms with common spatial elements. In CA3, distinct subsets of pyramidal cells were activated in each room, regardless of the similarity of the testing enclosure. In CA1, the activated populations overlapped, and the overlap increased in similar enclosures. After exposure to a novel room, ensemble activity developed slower in CA3 than CA1, suggesting that the representations emerged independently.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Leutgeb, Stefan -- Leutgeb, Jill K -- Treves, Alessandro -- Moser, May-Britt -- Moser, Edvard I -- New York, N.Y. -- Science. 2004 Aug 27;305(5688):1295-8. Epub 2004 Jul 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for the Biology of Memory, Medical-Technical Research Centre, Norwegian University of Science and Technology, 7489 Trondheim, Norway.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15272123" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Brain Mapping ; Cues ; Electrodes, Implanted ; Entorhinal Cortex/physiology ; Hippocampus/cytology/*physiology ; Male ; *Memory ; Nerve Net/*physiology ; Neurons/*physiology ; Pyramidal Cells/*physiology ; Rats ; Rats, Long-Evans ; *Space Perception
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2005-07-26
    Description: Hippocampal neurons were recorded under conditions in which the recording chamber was varied but its location remained unchanged versus conditions in which an identical chamber was encountered in different places. Two forms of neuronal pattern separation occurred. In the variable cue-constant place condition, the firing rates of active cells varied, often over more than an order of magnitude, whereas the location of firing remained constant. In the variable place-constant cue condition, both location and rates changed, so that population vectors for a given location in the chamber were statistically independent. These independent encoding schemes may enable simultaneous representation of spatial and episodic memory information.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Leutgeb, Stefan -- Leutgeb, Jill K -- Barnes, Carol A -- Moser, Edvard I -- McNaughton, Bruce L -- Moser, May-Britt -- New York, N.Y. -- Science. 2005 Jul 22;309(5734):619-23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for the Biology of Memory, Medical-Technical Research Centre, Norwegian University of Science and Technology, 7489 Trondheim, Norway.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16040709" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain Mapping ; Cues ; Electrodes, Implanted ; Electrophysiology ; Hippocampus/cytology/*physiology ; Interneurons/physiology ; Male ; Memory/*physiology ; Nerve Net/*physiology ; Neurons/*physiology ; Orientation/*physiology ; Perception/physiology ; Pyramidal Cells/*physiology ; Rats ; Rats, Long-Evans ; Space Perception/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2007-02-17
    Description: Theoretical models have long pointed to the dentate gyrus as a possible source of neuronal pattern separation. In agreement with predictions from these models, we show that minimal changes in the shape of the environment in which rats are exploring can substantially alter correlated activity patterns among place-modulated granule cells in the dentate gyrus. When the environments are made more different, new cell populations are recruited in CA3 but not in the dentate gyrus. These results imply a dual mechanism for pattern separation in which signals from the entorhinal cortex can be decorrelated both by changes in coincidence patterns in the dentate gyrus and by recruitment of nonoverlapping cell assemblies in CA3.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Leutgeb, Jill K -- Leutgeb, Stefan -- Moser, May-Britt -- Moser, Edvard I -- New York, N.Y. -- Science. 2007 Feb 16;315(5814):961-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for the Biology of Memory, Norwegian University of Science and Technology, 7489 Trondheim, Norway.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17303747" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Dentate Gyrus/cytology/*physiology ; Hippocampus/cytology/*physiology ; Male ; Neurons/physiology ; Orientation/physiology ; Rats ; Rats, Long-Evans ; Space Perception/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-11-06
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-11-21
    Description: The time when an event occurs can become part of autobiographical memories. In brain structures that support such memories, a neural code should exist that represents when or how long ago events occurred. Here we describe a neuronal coding mechanism in hippocampus that can be used to represent the recency...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...