ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Applied physics 46 (1988), S. 305-312 
    ISSN: 1432-0630
    Keywords: 61.80 Fe ; 66.30 Lw ; 79.20 Kz
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Sputtering of the solid rare gas Ar by 0.8–3.0 keV electrons was studied experimentally and theoretically. The argon films were deposited on a quartz-crystal microbalance kept at liquid-helium temperature. The yield was determined from the mass loss during irradiation. The absolute yield shows a significant dependence on film thickness in accordance with earlier measurements on electronic sputtering of solid argon. The yield shows a maximum of about 3.0±0.4 Ar/elec. at 1.5 keV. The thickness dependence reflects the mobility of electronic excitations created by the primary electrons. The data analysis is based on a theoretical treatment for the diffusive motion of these excitations. From the thickness as well as the energy dependence of the yield we may derive a characteristic diffusion length for the excitations of 200–300 Å.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-05-17
    Description: 40 years ago two new solar phenomena were described: supergranulation and the five-minute solar oscillations. While the oscillations have since been explained and exploited to determine the properties of the solar interior, the supergranulation has remained unexplained. The supergranules, appearing as convective-like cellular patterns of horizontal outward flow with a characteristic diameter of 30 Mm and an apparent lifetime of 1 day, have puzzling properties, including their apparent superrotation and the minute temperature variations over the cells. Using a 60-day sequence of data from the MDI (Michelson-Doppler Imager) instrument onboard the SOHO (Solar and Heliospheric Observatory) spacecraft, we show that the supergranulation pattern is formed by a superposition of traveling waves with periods of 5-10 days. The wave power is anisotropic with excess power in the direction of rotation and toward the equator, leading to spurious rotation rates and north-south flows as derived from correlation analyses. These newly discovered waves could play an important role in maintaining differential rotation in the upper convection zone by transporting angular momentum towards the equator.
    Keywords: Solar Physics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The medium-l program of the Michelson Doppler Imager instrument on board SOHO provides continuous observations of oscillation modes of angular degree, l, from 0 to approximately 300. The data for the program are partly processed on board because only about 3% of MDI observations can be transmitted continuously to the ground. The on-board data processing, the main component of which is Gaussian-weighted binning, has been optimized to reduce the negative influence of spatial aliasing of the high-degree oscillation modes. The data processing is completed in a data analysis pipeline at the SOI Stanford Support Center to determine the mean multiplet frequencies and splitting coefficients. The initial results show that the noise in the medium-l oscillation power spectrum is substantially lower than in ground-based measurements. This enables us to detect lower amplitude modes and, thus, to extend the range of measured mode frequencies. This is important for inferring the Sun's internal structure and rotation. The MDI observations also reveal the asymmetry of oscillation spectral lines. The line asymmetries agree with the theory of mode excitation by acoustic sources localized in the upper convective boundary layer. The sound-speed profile inferred from the mean frequencies gives evidence for a sharp variation at the edge of the energy-generating core. The results also confirm the previous finding by the GONG (Gough et al., 1996) that, in a thin layer just beneath the convection zone, helium appears to be less abundant than predicted by theory. Inverting the multiplet frequency splittings from MDI, we detect significant rotational shear in this thin layer. This layer is likely to be the place where the solar dynamo operates. In order to understand how the Sun works, it is extremely important to observe the evolution of this transition layer throughout the 11-year activity cycle.
    Keywords: Solar Physics
    Type: NASA-CR-204703 , NAS 1.26:204703 , Solar Physics; 170; 43-61
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Helioseismic analysis of solar global oscillations allows investigation of the internal structure of the Sun. One important test of the reliability of the inferences from helioseismology is that the results from independent sets of contemporaneous data are consistent with one another. Here we compare mode frequencies from the Global Oscillation Network Group and Michelson Doppler Imager on board SOHO and resulting inversion results on the Sun's internal structure. The average relative differences between the data sets are typically less than 1 x 10(exp -5) substantially smaller than the formal errors in the differences; however, in some cases the frequency differences show a systematic behavior that might nonetheless influence the inversion results. We find that the differences in frequencies are not a result of instrumental effects but are almost entirely related to the data pipeline software. Inversion of the frequencies shows that their differences do not result in any significant effects on the resulting inferences on solar structure. We have also experimented with fitting asymmetric profiles to the oscillation power spectra and find that, compared with the symmetric fits, this causes no significant change in the inversion results.
    Keywords: Solar Physics
    Type: The Astrophysical Journal; 591; 432-445
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...