ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-10-12
    Description: Jasmonates are a family of plant hormones that regulate plant growth, development and responses to stress. The F-box protein CORONATINE INSENSITIVE 1 (COI1) mediates jasmonate signalling by promoting hormone-dependent ubiquitylation and degradation of transcriptional repressor JAZ proteins. Despite its importance, the mechanism of jasmonate perception remains unclear. Here we present structural and pharmacological data to show that the true Arabidopsis jasmonate receptor is a complex of both COI1 and JAZ. COI1 contains an open pocket that recognizes the bioactive hormone (3R,7S)-jasmonoyl-l-isoleucine (JA-Ile) with high specificity. High-affinity hormone binding requires a bipartite JAZ degron sequence consisting of a conserved alpha-helix for COI1 docking and a loop region to trap the hormone in its binding pocket. In addition, we identify a third critical component of the jasmonate co-receptor complex, inositol pentakisphosphate, which interacts with both COI1 and JAZ adjacent to the ligand. Our results unravel the mechanism of jasmonate perception and highlight the ability of F-box proteins to evolve as multi-component signalling hubs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2988090/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2988090/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sheard, Laura B -- Tan, Xu -- Mao, Haibin -- Withers, John -- Ben-Nissan, Gili -- Hinds, Thomas R -- Kobayashi, Yuichi -- Hsu, Fong-Fu -- Sharon, Michal -- Browse, John -- He, Sheng Yang -- Rizo, Josep -- Howe, Gregg A -- Zheng, Ning -- P30 DK056341/DK/NIDDK NIH HHS/ -- P30 DK056341-10/DK/NIDDK NIH HHS/ -- R01 AI068718/AI/NIAID NIH HHS/ -- R01 AI068718-04/AI/NIAID NIH HHS/ -- R01 CA107134/CA/NCI NIH HHS/ -- R01 CA107134-07/CA/NCI NIH HHS/ -- R01 GM057795/GM/NIGMS NIH HHS/ -- R01 GM057795-12/GM/NIGMS NIH HHS/ -- R01AI068718/AI/NIAID NIH HHS/ -- R01GM57795/GM/NIGMS NIH HHS/ -- T32 GM07270/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Nov 18;468(7322):400-5. doi: 10.1038/nature09430. Epub 2010 Oct 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Box 357280, University of Washington, Seattle, Washington 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20927106" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acids/chemistry/metabolism ; Arabidopsis/chemistry/metabolism ; Arabidopsis Proteins/*chemistry/*metabolism ; Binding Sites ; Crystallography, X-Ray ; Cyclopentanes/chemistry/*metabolism ; F-Box Proteins/chemistry/metabolism ; Indenes/chemistry/metabolism ; Inositol Phosphates/*metabolism ; Isoleucine/analogs & derivatives/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Oxylipins/chemistry/*metabolism ; Peptide Fragments/chemistry/metabolism ; Plant Growth Regulators/chemistry/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Repressor Proteins/*chemistry/*metabolism ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-12-18
    Description: Strigolactones (SLs) are a group of newly identified plant hormones that control plant shoot branching. SL signalling requires the hormone-dependent interaction of DWARF 14 (D14), a probable candidate SL receptor, with DWARF 3 (D3), an F-box component of the Skp-Cullin-F-box (SCF) E3 ubiquitin ligase complex. Here we report the characterization of a dominant SL-insensitive rice (Oryza sativa) mutant dwarf 53 (d53) and the cloning of D53, which encodes a substrate of the SCF(D3) ubiquitination complex and functions as a repressor of SL signalling. Treatments with GR24, a synthetic SL analogue, cause D53 degradation via the proteasome in a manner that requires D14 and the SCF(D3) ubiquitin ligase, whereas the dominant form of D53 is resistant to SL-mediated degradation. Moreover, D53 can interact with transcriptional co-repressors known as TOPLESS-RELATED PROTEINS. Our results suggest a model of SL signalling that involves SL-dependent degradation of the D53 repressor mediated by the D14-D3 complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jiang, Liang -- Liu, Xue -- Xiong, Guosheng -- Liu, Huihui -- Chen, Fulu -- Wang, Lei -- Meng, Xiangbing -- Liu, Guifu -- Yu, Hong -- Yuan, Yundong -- Yi, Wei -- Zhao, Lihua -- Ma, Honglei -- He, Yuanzheng -- Wu, Zhongshan -- Melcher, Karsten -- Qian, Qian -- Xu, H Eric -- Wang, Yonghong -- Li, Jiayang -- England -- Nature. 2013 Dec 19;504(7480):401-5. doi: 10.1038/nature12870. Epub 2013 Dec 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China [2]. ; State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China. ; VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. ; Laboratory of Structural Sciences, Van Andel Research Institute, 333 Bostwick Avenue Northeast, Grand Rapids, Michigan 49503, USA. ; State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China. ; 1] VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China [2] Laboratory of Structural Sciences, Van Andel Research Institute, 333 Bostwick Avenue Northeast, Grand Rapids, Michigan 49503, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24336200" target="_blank"〉PubMed〈/a〉
    Keywords: Cloning, Molecular ; Gene Expression Regulation, Plant ; Lactones/*antagonists & inhibitors/*metabolism ; Models, Biological ; Multiprotein Complexes/chemistry/metabolism ; Mutation/genetics ; Oryza/genetics/*metabolism ; Plant Growth Regulators/antagonists & inhibitors/*metabolism ; Plant Proteins/chemistry/genetics/*metabolism ; Proteasome Endopeptidase Complex/metabolism ; Protein Binding ; Proteolysis ; *Signal Transduction ; Ubiquitin/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-11-26
    Description: Abscisic acid (ABA) is an essential hormone for plants to survive environmental stresses. At the center of the ABA signaling network is a subfamily of type 2C protein phosphatases (PP2Cs), which form exclusive interactions with ABA receptors and subfamily 2 Snfl-related kinase (SnRK2s). Here, we report a SnRK2-PP2C complex structure, which reveals marked similarity in PP2C recognition by SnRK2 and ABA receptors. In the complex, the kinase activation loop docks into the active site of PP2C, while the conserved ABA-sensing tryptophan of PP2C inserts into the kinase catalytic cleft, thus mimicking receptor-PP2C interactions. These structural results provide a simple mechanism that directly couples ABA binding to SnRK2 kinase activation and highlight a new paradigm of kinase-phosphatase regulation through mutual packing of their catalytic sites.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3584687/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3584687/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Soon, Fen-Fen -- Ng, Ley-Moy -- Zhou, X Edward -- West, Graham M -- Kovach, Amanda -- Tan, M H Eileen -- Suino-Powell, Kelly M -- He, Yuanzheng -- Xu, Yong -- Chalmers, Michael J -- Brunzelle, Joseph S -- Zhang, Huiming -- Yang, Huaiyu -- Jiang, Hualiang -- Li, Jun -- Yong, Eu-Leong -- Cutler, Sean -- Zhu, Jian-Kang -- Griffin, Patrick R -- Melcher, Karsten -- Xu, H Eric -- GM084041/GM/NIGMS NIH HHS/ -- R01 GM059138/GM/NIGMS NIH HHS/ -- S10 RR027270/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2012 Jan 6;335(6064):85-8. doi: 10.1126/science.1215106. Epub 2011 Nov 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Structural Sciences, Van Andel Research Institute, 333 Bostwick Avenue NE, Grand Rapids, MI 49503, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22116026" target="_blank"〉PubMed〈/a〉
    Keywords: Abscisic Acid/chemistry/*metabolism ; Amino Acid Sequence ; Arabidopsis/chemistry/*metabolism ; Arabidopsis Proteins/antagonists & inhibitors/*chemistry/*metabolism ; Catalytic Domain ; Crystallography, X-Ray ; Enzyme Activation ; Models, Molecular ; *Molecular Mimicry ; Molecular Sequence Data ; Phosphoprotein Phosphatases/*chemistry/*metabolism ; Phosphorylation ; Protein Binding ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/antagonists & inhibitors/*chemistry/*metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-03-24
    Description: The general transcription factor IID (TFIID) plays a central role in the initiation of RNA polymerase II (Pol II)-dependent transcription by nucleating pre-initiation complex (PIC) assembly at the core promoter. TFIID comprises the TATA-binding protein (TBP) and 13 TBP-associated factors (TAF1-13), which specifically interact with a variety of core promoter DNA sequences. Here we present the structure of human TFIID in complex with TFIIA and core promoter DNA, determined by single-particle cryo-electron microscopy at sub-nanometre resolution. All core promoter elements are contacted by subunits of TFIID, with TAF1 and TAF2 mediating major interactions with the downstream promoter. TFIIA bridges the TBP-TATA complex with lobe B of TFIID. We also present the cryo-electron microscopy reconstruction of a fully assembled human TAF-less PIC. Superposition of common elements between the two structures provides novel insights into the general role of TFIID in promoter recognition, PIC assembly, and transcription initiation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4856295/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4856295/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Louder, Robert K -- He, Yuan -- Lopez-Blanco, Jose Ramon -- Fang, Jie -- Chacon, Pablo -- Nogales, Eva -- GM008295/GM/NIGMS NIH HHS/ -- GM63072/GM/NIGMS NIH HHS/ -- R01 GM063072/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2016 Mar 31;531(7596):604-9. doi: 10.1038/nature17394. Epub 2016 Mar 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biophysics Graduate Group, University of California, Berkeley, California 94720, USA. ; QB3 Institute, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA. ; Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA. ; Department of Biological Physical Chemistry, Rocasolano Physical Chemistry Institute, CSIC, Serrano 119, Madrid 28006, Spain. ; Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27007846" target="_blank"〉PubMed〈/a〉
    Keywords: Cryoelectron Microscopy ; DNA/chemistry/metabolism/ultrastructure ; Humans ; Models, Molecular ; Promoter Regions, Genetic/*genetics ; Protein Binding ; Substrate Specificity ; TATA Box/genetics ; TATA-Binding Protein Associated Factors/chemistry/metabolism/ultrastructure ; TATA-Box Binding Protein/chemistry/metabolism/ultrastructure ; Transcription Factor TFIIA/chemistry/metabolism/ultrastructure ; Transcription Factor TFIID/chemistry/*metabolism/*ultrastructure ; *Transcription Initiation, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-07-23
    Description: G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a approximately 20 degrees rotation between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4521999/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4521999/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kang, Yanyong -- Zhou, X Edward -- Gao, Xiang -- He, Yuanzheng -- Liu, Wei -- Ishchenko, Andrii -- Barty, Anton -- White, Thomas A -- Yefanov, Oleksandr -- Han, Gye Won -- Xu, Qingping -- de Waal, Parker W -- Ke, Jiyuan -- Tan, M H Eileen -- Zhang, Chenghai -- Moeller, Arne -- West, Graham M -- Pascal, Bruce D -- Van Eps, Ned -- Caro, Lydia N -- Vishnivetskiy, Sergey A -- Lee, Regina J -- Suino-Powell, Kelly M -- Gu, Xin -- Pal, Kuntal -- Ma, Jinming -- Zhi, Xiaoyong -- Boutet, Sebastien -- Williams, Garth J -- Messerschmidt, Marc -- Gati, Cornelius -- Zatsepin, Nadia A -- Wang, Dingjie -- James, Daniel -- Basu, Shibom -- Roy-Chowdhury, Shatabdi -- Conrad, Chelsie E -- Coe, Jesse -- Liu, Haiguang -- Lisova, Stella -- Kupitz, Christopher -- Grotjohann, Ingo -- Fromme, Raimund -- Jiang, Yi -- Tan, Minjia -- Yang, Huaiyu -- Li, Jun -- Wang, Meitian -- Zheng, Zhong -- Li, Dianfan -- Howe, Nicole -- Zhao, Yingming -- Standfuss, Jorg -- Diederichs, Kay -- Dong, Yuhui -- Potter, Clinton S -- Carragher, Bridget -- Caffrey, Martin -- Jiang, Hualiang -- Chapman, Henry N -- Spence, John C H -- Fromme, Petra -- Weierstall, Uwe -- Ernst, Oliver P -- Katritch, Vsevolod -- Gurevich, Vsevolod V -- Griffin, Patrick R -- Hubbell, Wayne L -- Stevens, Raymond C -- Cherezov, Vadim -- Melcher, Karsten -- Xu, H Eric -- DK071662/DK/NIDDK NIH HHS/ -- EY005216/EY/NEI NIH HHS/ -- EY011500/EY/NEI NIH HHS/ -- GM073197/GM/NIGMS NIH HHS/ -- GM077561/GM/NIGMS NIH HHS/ -- GM095583/GM/NIGMS NIH HHS/ -- GM097463/GM/NIGMS NIH HHS/ -- GM102545/GM/NIGMS NIH HHS/ -- GM103310/GM/NIGMS NIH HHS/ -- GM104212/GM/NIGMS NIH HHS/ -- GM108635/GM/NIGMS NIH HHS/ -- P30EY000331/EY/NEI NIH HHS/ -- P41 GM103310/GM/NIGMS NIH HHS/ -- P41GM103393/GM/NIGMS NIH HHS/ -- P41RR001209/RR/NCRR NIH HHS/ -- P50 GM073197/GM/NIGMS NIH HHS/ -- P50 GM073210/GM/NIGMS NIH HHS/ -- R01 DK066202/DK/NIDDK NIH HHS/ -- R01 DK071662/DK/NIDDK NIH HHS/ -- R01 EY011500/EY/NEI NIH HHS/ -- R01 GM087413/GM/NIGMS NIH HHS/ -- R01 GM109955/GM/NIGMS NIH HHS/ -- S10 RR027270/RR/NCRR NIH HHS/ -- U54 GM094586/GM/NIGMS NIH HHS/ -- U54 GM094599/GM/NIGMS NIH HHS/ -- U54 GM094618/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Jul 30;523(7562):561-7. doi: 10.1038/nature14656. Epub 2015 Jul 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Structural Sciences, Center for Structural Biology and Drug Discovery, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA. ; Department of Chemistry and Biochemistry, and Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-1604, USA. ; Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, California 90089, USA. ; Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany. ; Joint Center for Structural Genomics, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA. ; 1] Laboratory of Structural Sciences, Center for Structural Biology and Drug Discovery, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA [2] Department of Obstetrics &Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore. ; The National Resource for Automated Molecular Microscopy, New York Structural Biology Center, New York, New York 10027, USA. ; Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458, USA. ; Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA. ; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada. ; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, USA. ; Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA. ; 1] Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA [2] BioXFEL, NSF Science and Technology Center, 700 Ellicott Street, Buffalo, New York 14203, USA. ; 1] Department of Chemistry and Biochemistry, and Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-1604, USA [2] Department of Physics, Arizona State University, Tempe, Arizona 85287, USA. ; 1] Department of Chemistry and Biochemistry, and Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-1604, USA [2] Beijing Computational Science Research Center, Haidian District, Beijing 10084, China. ; 1] Department of Chemistry and Biochemistry, and Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-1604, USA [2] Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA. ; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. ; Department of Obstetrics &Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore. ; Swiss Light Source at Paul Scherrer Institute, CH-5232 Villigen, Switzerland. ; Department of Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, California 90089, USA. ; School of Medicine and School of Biochemistry and Immunology, Trinity College, Dublin 2, Ireland. ; 1] BioXFEL, NSF Science and Technology Center, 700 Ellicott Street, Buffalo, New York 14203, USA [2] Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois 60637, USA. ; Laboratory of Biomolecular Research at Paul Scherrer Institute, CH-5232 Villigen, Switzerland. ; Department of Biology, Universitat Konstanz, 78457 Konstanz, Germany. ; Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China. ; 1] Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany [2] Centre for Ultrafast Imaging, 22761 Hamburg, Germany. ; 1] Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada [2] Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada. ; 1] Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, California 90089, USA [2] Department of Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, California 90089, USA [3] iHuman Institute, ShanghaiTech University, 2F Building 6, 99 Haike Road, Pudong New District, Shanghai 201210, China. ; 1] Laboratory of Structural Sciences, Center for Structural Biology and Drug Discovery, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA [2] VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26200343" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arrestin/*chemistry/*metabolism ; Binding Sites ; Crystallography, X-Ray ; Disulfides/chemistry/metabolism ; Humans ; Lasers ; Mice ; Models, Molecular ; Multiprotein Complexes/biosynthesis/chemistry/metabolism ; Protein Binding ; Reproducibility of Results ; Rhodopsin/*chemistry/*metabolism ; Signal Transduction ; X-Rays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-01-28
    Description: Inflammasomes are intracellular protein complexes that drive the activation of inflammatory caspases. So far, four inflammasomes involving NLRP1, NLRP3, NLRC4 and AIM2 have been described that recruit the common adaptor protein ASC to activate caspase-1, leading to the secretion of mature IL-1beta and IL-18 proteins. The NLRP3 inflammasome has been implicated in the pathogenesis of several acquired inflammatory diseases as well as cryopyrin-associated periodic fever syndromes (CAPS) caused by inherited NLRP3 mutations. Potassium efflux is a common step that is essential for NLRP3 inflammasome activation induced by many stimuli. Despite extensive investigation, the molecular mechanism leading to NLRP3 activation in response to potassium efflux remains unknown. Here we report the identification of NEK7, a member of the family of mammalian NIMA-related kinases (NEK proteins), as an NLRP3-binding protein that acts downstream of potassium efflux to regulate NLRP3 oligomerization and activation. In the absence of NEK7, caspase-1 activation and IL-1beta release were abrogated in response to signals that activate NLRP3, but not NLRC4 or AIM2 inflammasomes. NLRP3-activating stimuli promoted the NLRP3-NEK7 interaction in a process that was dependent on potassium efflux. NLRP3 associated with the catalytic domain of NEK7, but the catalytic activity of NEK7 was shown to be dispensable for activation of the NLRP3 inflammasome. Activated macrophages formed a high-molecular-mass NLRP3-NEK7 complex, which, along with ASC oligomerization and ASC speck formation, was abrogated in the absence of NEK7. NEK7 was required for macrophages containing the CAPS-associated NLRP3(R258W) activating mutation to activate caspase-1. Mouse chimaeras reconstituted with wild-type, Nek7(-/-) or Nlrp3(-/-) haematopoietic cells showed that NEK7 was required for NLRP3 inflammasome activation in vivo. These studies demonstrate that NEK7 is an essential protein that acts downstream of potassium efflux to mediate NLRP3 inflammasome assembly and activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉He, Yuan -- Zeng, Melody Y -- Yang, Dahai -- Motro, Benny -- Nunez, Gabriel -- R01AI063331/AI/NIAID NIH HHS/ -- R01DK091191/DK/NIDDK NIH HHS/ -- T32 HL007517/HL/NHLBI NIH HHS/ -- T32DK094775/DK/NIDDK NIH HHS/ -- T32HL007517/HL/NHLBI NIH HHS/ -- England -- Nature. 2016 Feb 18;530(7590):354-7. doi: 10.1038/nature16959. Epub 2016 Jan 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA. ; The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China. ; The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26814970" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis Regulatory Proteins/deficiency/genetics/metabolism ; Biocatalysis ; Carrier Proteins/chemistry/genetics/*metabolism ; Caspase 1/metabolism ; Catalytic Domain ; Cells, Cultured ; Cryopyrin-Associated Periodic Syndromes/genetics ; Enzyme Activation ; HEK293 Cells ; Humans ; Inflammasomes/*chemistry/*metabolism ; Interleukin-1beta/secretion ; Macrophages/metabolism ; Mice ; Mice, Inbred C57BL ; Potassium/*metabolism ; Protein Binding ; Protein Multimerization ; Protein-Serine-Threonine Kinases/chemistry/deficiency/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0021-9304
    Keywords: titanium ; dental implant ; osseointegration failure ; surface analysis ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: A multitechnique approach has been used to characterize the surface of nonosseointegrated titanium implants and the surrounding biological tissues. Five pure titanium dental implants were used as reference, and 25 removed implants were studied. Surface and in-depth chemical compositions of the implants (from a total of 16 patients) were investigated by X-ray photoelectron spectroscopy (XPS). Histological slides of the surrounding tissues were examined by light microscopy, XPS, and electron microprobe analysis. None of the failed implants presented the regular surface composition and depth profile of the TiO2 overlayer; foreign elements (Ca, Na, P, Si, Cl, Zn, Pb, and Al) were observed on some implants. Fibrosis, lymphocytic and plasmocytic infiltrates, and granulomatous lesions were detected in the surrounding tissues. XPS and electron microprobe analysis indicated the presence of Zn, Fe, Sn, and Ti in the tissues. As a possible scenario for implant failure, we propose and discuss a oxidoreduction mechanism, leading to a partial dissolution or the complete dissociation of the protective titanium dioxide overlayer and to ion diffusion through the surrounding tissues. © 1998 John Wiley & Sons, Inc. J Biomed Mater Res (Appl Biomater) 43: 300-312, 1998
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 24 (1992), S. 743-760 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The effects of NO on the decomposition of CH3ONO have been investigated in the temperature range 450-520 K at a constant pressure of 710 torr using He as buffer gas. The measured time-dependent concentration profiles of CH3ONO, NO, N2O, and CH2O can be quantitatively accounted for with a general mechanism consisting of various reactions of CH3O, HNO, and (HNO)2. The results of kinetic modeling with sensitivity analyses indicate that the disappearance rate of CH3ONO is weakly affected by NO addition, whereas that of the HNO intermediate strongly altered by the added NO. In the presence of low NO concentrations, the modeling of N2O yields leads to the rate constant for the bimolecular reaction, HNO + HNO → N2O + H2O (25): \documentclass{article}\pagestyle{empty}\begin{document}$$ k_{25} = 10^{8.93 \pm 0.30}\, \,e^{-1,550 \pm 150/{\rm T}} {\rm cm}^3 /{\rm mol}\,{\rm s} $$\end{document} In the presence of high NO concentrations (PNO 〉 50 torr), the modeling of CH2O yields gives the rate constant for the termolecular radical formation channel, HNO + 2NO → HN2O + NO2 (35): \documentclass{article}\pagestyle{empty}\begin{document}$$ k_{35} = 10^{11.2 \pm 0.3}\, \,e^{-1050 \pm 200/{\rm T}} {\rm cm}^6 /{\rm mol}^2\,{\rm s} $$\end{document} Discussion on the mechanisms for reactions (25) and (35), and the alkyl homolog of (35), RNO + 2NO, is presented herein. © John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 25 (1993), S. 845-863 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The thermal reaction of HNCO with NO2 has been studied in the temperature range of 623 to 773 K by FTIR spectrometry. Major products measured are CO2 and NO with a small amount of N2O. Kinetic modeling of the time resolved concentration profiles of the reactants and products, aided by the thermochemical data of various likely reactive intermediates computed by means of the BAC-MP4 method, allows us to conclude that the reaction is initiated exclusively by a new bimolecular process: with a rate constant, k1 = 2.5 × 1012e-13,100/T cm3/mols. The well-known bimolecular reaction is the only strong competitive process in this important reactive system throughout the temperature range studied. Kinetic modeling of NO formation and NO2 decay rates gave rise to values of k10 which were in close agreement with literature data. © 1993 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 23 (1991), S. 1129-1149 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The thermal reaction of HNCO has been studied in a static cell at temperatures between 873 and 1220 K and a constant pressure of 800 torr under highly diluted conditions. The reaction was measurable above 1000 K by FTIR spectrometry. The products detected include CO, CO2, HCN, NH3, and the unreacted HNCO. In this moderate temperature regime, the rates of product formation and HNCO decay cannot be accounted for by a previously established high-temperature mechanism, assuming HNCO → NH + CO (1) as the initiation process. Instead, a new bimolecular reaction, 2HNCO → CO2 + HNCNH (2), has been invoked to interpret the disappearance of HNCO as well as the formation of various products, most importantly CO2.The concentration profiles of all measured species can be quantitatively modeled, throughout the temperature range analyzed, by varying k2 using a modified mechanism. The kinetically modeled values of k2 can be effectively represented by \documentclass{article}\pagestyle{empty}\begin{document}$$ k_{\rm 2} = 10^{10.84 \pm 0.07} {\rm \,exp}(- 21,240 \pm 1,960/{\rm T}){\rm\, cm}^3 /{\rm mol\, s}{\rm .} $$\end{document}This result agrees closely with that computed with the conventional transition-state theory using the TST parameters predicted by the BAC-MP4 method: \documentclass{article}\pagestyle{empty}\begin{document}$$ k_2 ({\rm BAC} - {\rm MP}4) = 10^{11.13} {\rm \,exp(- 21,600/T) cm}^{\rm 3} /{\rm mol s}{\rm .} $$\end{document}The bimolecular reaction takes place via a stable 4-membered ring intermediate which is isoelectronic with diketene; viz.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...