ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0935-9648
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 33 (1995), S. 2343-2349 
    ISSN: 0887-6266
    Keywords: diffusion ; sorption ; fluorescence monitoring ; polymer coatings ; water ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The fluorescent molecular rotor probes 4-tricyanovinyl-[N-(2-hydroxyethyl)-N-ethyl]-aniline, tricyano-4-(dimethylamino) benzylidene, and tricyanovinyljulolidene have been used as extrinsic fluorescence probes for quantitative monitoring of water uptake in polymeric coatings. The presence of water causes plasticization of the polymer, which results in increased local mobility within the film. The nonradiative decay pathways of the rotor probes are increased as local mobility increases, and the resulting decrease in fluorescence intensity of the probes is directly proportional to the amount of water sorbed. Beyond allowing for the characterization of sorbent content, this fluorescence technique can be used to determine the diffusion coefficient of water in a polymer film. The relative change in fluorescence fits well to a Fickian diffusion model, yielding a diffusion coefficient for water of 3 × 10-8 cm2/s in poly(vinyl acetate), and a value of 6 × 10-9 cm2/s in a room-temperature cured epoxypolyamide, in excellent agreement with diffusion coefficient values determined from gravimetric analysis. Preliminary studies also demonstrate the utility of molecular rotor probes to monitor water uptake in individual layers of multilayered polymer systems. © 1995 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 34 (1996), S. 2987-2997 
    ISSN: 0887-6266
    Keywords: small molecule diffusion ; fluorescence nonradiative energy transfer ; glass transition temperature ; rubbery polymer ; probe shape effects ; probe flexibility effects ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: A novel experimental approach involving fluorescence nonradiative energy transfer (NRET) is employed to study the Fickian diffusion of small molecules in rubbery poly(isobutyl methacrylate) (PiBMA) films near the glass transition, using a formalism that directly relates the small molecule translational diffusion coefficient, D, to changes in the normalized nonradiative energy transfer efficiency, EN. Values of D for pyrene, 1,3-bis-(1-pyrene) propane (BPP), 1,3-bis-(1-pyrene) decane (BPD), 9,10-bis-phenyl ethynyl anthracene (BPEA), diphenyl Disperse Red 4 (DPDR4), and decacyclene in PiBMA are measured over temperatures ranging from approximately Tg to Tg + 25°C. Among these chromophores, significant differences in both the magnitude and temperature dependence of D are observed which are attributed to differences in molecule shape and flexibility, as well as molar volume. Other factors being equal, chromophore flexibility was shown both to increase the magnitude of D and to decrease its dependence on temperature, as does an increase in aspect ratio. For BPD, these effects are attributed to the ability of the flexible molecule to diffuse in a piecewise manner, requiring the cooperative mobility of fewer polymer chain segments than a rigid molecule of the same molar volume. For BPEA and DPDR4, this deviation from D being dominated by molar volume effects is attributed the to high aspect ratio of these elongated molecules. © 1996 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 35 (1997), S. 1067-1076 
    ISSN: 0887-6266
    Keywords: transmission electron microscopy ; block copolymer ; polyimide ; nanofoam ; porous films ; polymer foam ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Transmission electron microscopy was performed on a polymeric nanofoam material, derived from a triblock copolymer composed of a fluorinated polyimide center block, 3F/PMDA (derived from pyromelletic dianhydride (PMDA) and 1,1-bis(4-aminophenyl)-1-phenyl-2,2,2-trifluoroethane (3F)) and polypropylene oxide (PO) end blocks. The cast and imidized polymer exhibits a microphase-separated morphology consisting of PO microdomains within a polyimide matrix. The final nanofoam material is obtained by decomposing PO microdomains into low molecular weight products, which diffuse out of the polyimide matrix leaving nanometer length scale voids. Ruthenium tetroxide staining prior to microscopy was used to enhance the contrast between the 3F/PMDA matrix and the PO microdomains or voids, which permitted a more detailed view of the microstructure of both the foamed and unfoamed materials. From the power spectra of the micrographs, spatial correlation between the PO microdomains in the unfoamed material and between the voids in the foam were found. An interdomain separation distance of ca. 37 nm was observed. Analysis of the image yielded an average area of 411 nm2 for the PO domains. The analysis indicated that the PO domains were oblong, having average major and minor dimensions of 35 and 12.5 nm, respectively. An autocorrelation of the image showed that the domain center of masses were positioned 41 nm apart, in close agreement with the domain spacing (ca. 37 nm) found as described above. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 1067-1076, 1997
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Acta Polymerica 46 (1995), S. 60-63 
    ISSN: 0323-7648
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: X-ray diffraction measurements on thin films of poly(hexyl-pentylsilane) cast on silicon substrates are presented. The polymer chains pack in a hexagonal lattice which is oriented such that the chains lie parallel to the surface. In addition, a remarkable degree of orientational order was found with the planes containing the neighbor molecules lying in the surface plane. Parallel to the film surface, the average crystallite size is 600 Å, while perpendicular to the surface, there is nearly perfect interchain stacking of the polymers throughout the thickness of the film.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 33 (1995), S. 1381-1389 
    ISSN: 0887-624X
    Keywords: particle size distribution ; evolution of latex particles ; miniemulsion polymerization; evolution of particle size ; mechanism of miniemulsion polymerization ; particle nucleation in miniemulsion polymerization ; calorimetry, miniemulsion polymerization of styrene ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The mechanism of the miniemulsion polymerization of styrene was investiaged through a combination of calorimetry to monitor the polymerization rate and transmission electron microscopy (TEM) to follow the evolution of the particle size distribution. These techniques proved to be a powerful combination for gaining detailed mechanistic information regarding these polymerizations. Particle size analysis of the latexes withdrawn during the course of the reaction revealed that most of the polymer particles were formed by a relatively low conversion (i.e., 10% conversion). However, nucleation continued well past this point (to 40-60% conversion). In fact, it was observed that nucleation in miniemulsion polymerizations using cetyl alcohol continued past the maximum in the rate of polymerization. As a result of these long nucleation periods, the latex particle size distributions produced from these miniemulsion polymerizations were broader than their conventional emulsion polymerization counterparts, and were negatively skewed with a tail of small particles. The amount of negative skewing of the particle size distributions was found to decrease with increasing initiator (potassium persulfate) concentration. Finally, a correlation was observed between the length of time to the maximum polymerization rate and the breadth of the particle size distribution as reflected in the standard deviation. © 1995 John Wiley & Sons, Inc.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 35 (1997), S. 989-1006 
    ISSN: 0887-624X
    Keywords: emulsion polymerization ; molecular weight distribution ; styrene ; morphology ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Styrene ab initio emulsion polymerizations were conducted at 70°C in an automated reaction calorimeter. Two polymerizations were performed, one above and the other below the critical micelle concentration (CMC) of the surfactant, thus ensuring differing polymerization kinetics between the two: the system below the CMC gave large particles that were expected to follow pseudobulk kinetics, while that above the CMC gave small particles that were expected to follow zero-one kinetics. The evolutions of the molecular weight distributions (MWDs) were characterized by removing samples periodically during the course of the reactions and analyzing with gel permeation chromatography. Interpretation of the data used average molecular weights, the GPC MWDs, and the number MWDs, as functions of conversion. It was found that all of the number MWDs (plotted as ln (number of polymer chains) vs. molecular weight of polymer chains) were concave-up at low molecular weights and become nearly linear at molecular weights (≥3-4 × 106); this linearity is expected from theory. The slope of the high molecular weight region was consistent with theory for the dominant mode for chain stoppage: termination and transfer for the pseudobulk system and (predominantly) chain transfer to monomer for the zero-one system. The most likely explanation for the concavity of the number MWDs is a heterogeneity of radicals: some surface anchored with sulfate end groups and others (with hydrogen end groups arising from transfer to monomer and/or reentry) being more mobile. Thus, two types of termination are proposed: slow reaction-diffusion for the less mobile surface anchored chains, and rapid short-long (center of mass) termination for the more mobile hydrogen-terminated chains. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 989-1006, 1997
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Advanced Materials for Optics and Electronics 8 (1998), S. 317-324 
    ISSN: 1057-9257
    Keywords: gas sensing ; nitrogen dioxide ; stilbene ; biphenyl ; UV-visible spectroscopy ; thin films ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Electrical Engineering, Measurement and Control Technology , Physics
    Notes: Thin films of a selection of stilbene and biphenyl side-chain substituted liquid crystal polymers based on polysiloxanes were deposited using an automated dip-coating technique and exposed to either 100 ppm NO2 gas and/or concentrated nitric acid vapour, the consequent effect being monitored by changes in the UV-visible spectra of the material. No effective response to NO2 was observed from the biphenylene analogue, but the stilbene derivatives showed spectral changes to suggest that an interaction occurs between the vapour and the bridge position of the stilbene side-chain. The stilbenes also show a marked pre-conditioning phenomenon upon exposure to nitric acid vapour prior to exposure to nitrogen dioxide. This procedure gives a material that has a more reversible response on exposure to NO2 gas than an anagolous film that has not been pre-treated. Copyright © 1998 John Wiley & Sons, Ltd.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Advanced Materials for Optics and Electronics 8 (1998), S. 309-316 
    ISSN: 1057-9257
    Keywords: optical gas sensing ; polysiloxane ; azobenzene ; NO2 ; molecular modelling ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Electrical Engineering, Measurement and Control Technology , Physics
    Notes: Siloxane copolymers having as side-chains azobenzene derivatives bearing different electron-withdrawing and donating substituents were deposited as thin films by dip coating, and their behaviour upon exposure to 100 pm NO2 was studied by UV/visible spectroscopy. Electron-donating substituents at the ortho positions on the aromatic rings in the azo unit have significant influence on the absorbance changes produced by exposure to NO2, and this is explained by modelling, which suggests that interaction between the electrophilic nitrogen atom in NO2 and the electron clouds of the azobenzene skeleton is responsible for the sensing process, rather than the formation of a Wheland intermediate or other product of chemical reaction. Especially effective substituents are methoxy groups in either aromatic ring ortho or the azo linkage, which also produce a significant increase in intensity of the long-wavelength n-π* transition. This moves the optical interrogation signal to a wavelength range of particular benefit for potential applications. Copyright © 1998 John Wiley & Sons, Ltd.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Advanced Materials for Optics and Electronics 8 (1998), S. 47-52 
    ISSN: 1057-9257
    Keywords: ligand gated ; channel protein ; biomembrane ; biosensor ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Electrical Engineering, Measurement and Control Technology , Physics
    Notes: We demonstrate a novel protective configuration for a gated channel biosensor. The bilayer membrane containing the channel proteins is formed by a simple self-assembly technique ensuring continuous coverage of the interface between two slabs of agarose gel by a biomimetic lamella in a fluid state. The gel protects both membrane surfaces from mechanical shock and contact with low-energy media while allowing diffusion of biomolecules up to 10 MDa in weight. The technique has been demonstrated using both dioleoyl-phosphatidylcholine (DOPC) and a phosphatidylcholine lipid cross-linked with a short polysiloxane chain (PSPC). The conductance per unit area of the channel-free membrane produced by this method was less than 25 S m-2 for DOPC and 2 S m-2 for PSPC, and the bilayer nature of the barrier in both cases has been demonstrated by measurement of the capacitance. The applicability to sensors has been confirmed using gramicidin-D, a 1·1 kDa unilamellar lipid bilayer pore former, and partially confirmed using valinomycin, a selective ion transporter. On incorporation of gramicidin the membrane conductance increased by over an order of magnitude. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...