ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-29
    Description: We consider the discontinuous Galerkin (DG) finite element discretization of first order systems of conservation laws derivable as moments of the kinetic Boltzmann equation. This includes well known conservation law systems such as the Euler For the class of first order nonlinear conservation laws equipped with an entropy extension, an energy analysis of the DG method for the Cauchy initial value problem is developed. Using this DG energy analysis, several new variants of existing numerical flux functions are derived and shown to be energy stable.
    Keywords: Numerical Analysis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-29
    Description: This paper considers a family of nonconservative numerical discretizations for conservation laws which retains the correct weak solution behavior in the limit of mesh refinement whenever sufficient order numerical quadrature is used. Our analysis of 2-D discretizations in nonconservative form follows the 1-D analysis of Hou and Le Floch. For a specific family of nonconservative discretizations, it is shown under mild assumptions that the error arising from non-conservation is strictly smaller than the discretization error in the scheme. In the limit of mesh refinement under the same assumptions, solutions are shown to satisfy an entropy inequality. Using results from this analysis, a variant of the "N" (Narrow) residual distribution scheme of van der Weide and Deconinck is developed for first-order systems of conservation laws. The modified form of the N-scheme supplants the usual exact single-state mean-value linearization of flux divergence, typically used for the Euler equations of gasdynamics, by an equivalent integral form on simplex interiors. This integral form is then numerically approximated using an adaptive quadrature procedure. This renders the scheme nonconservative in the sense described earlier so that correct weak solutions are still obtained in the limit of mesh refinement. Consequently, we then show that the modified form of the N-scheme can be easily applied to general (non-simplicial) element shapes and general systems of first-order conservation laws equipped with an entropy inequality where exact mean-value linearization of the flux divergence is not readily obtained, e.g. magnetohydrodynamics, the Euler equations with certain forms of chemistry, etc. Numerical examples of subsonic, transonic and supersonic flows containing discontinuities together with multi-level mesh refinement are provided to verify the analysis.
    Keywords: Numerical Analysis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-06
    Description: The role of involutions in energy stability of the discontinuous Galerkin (DG) discretization of Maxwell and magnetohydrodynamic (MHD) systems is examined. Important differences are identified in the symmetrization of the Maxwell and MHD systems that impact the construction of energy stable discretizations using the DG method. Specifically, general sufficient conditions to be imposed on the DG numerical flux and approximation space are given so that energy stability is retained These sufficient conditions reveal the favorable energy consequence of imposing continuity in the normal component of the magnetic induction field at interelement boundaries for MHD discretizations. Counterintuitively, this condition is not required for stability of Maxwell discretizations using the discontinuous Galerkin method.
    Keywords: Numerical Analysis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-18
    Description: We consider preconditioning methods for convection dominated fluid flow problems based on a nonoverlapping Schur complement domain decomposition procedure for arbitrary triangulated domains. The triangulation is first partitioned into a number of subdomains and interfaces which induce a natural 2 x 2 partitioning of the p.d.e. discretization matrix. We view the Schur complement induced by this partitioning as an algebraically derived coarse space approximation. This avoids the known difficulties associated with the direct formation of an effective coarse discretization for advection dominated equations. By considering various approximations of the block factorization of the 2 x 2 system, we have developed a family of robust preconditioning techniques. A computer code based on these ideas has been developed and tested on the IBM SP2 using MPI message passing protocol. A number of 2-D CFD calculations will be presented for both scalar advection-diffusion equations and the Euler equations discretized using stabilized finite element and finite volume methods. These results show very good scalability of the preconditioner for various discretizations as the number of processors is increased while the number of degrees of freedom per processor is fixed.
    Keywords: Numerical Analysis
    Type: 10th Conference on Finite Element Methods in Fluids; Jan 08, 1998; Tucson, AZ; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-18
    Description: Building upon the standard symmetrization theory for hyperbolic systems of conservation laws, congruence properties of the symmetrized system are explored. These congruence properties suggest variants of several stabilized numerical discretization procedures for hyperbolic equations (upwind finite-volume, Galerkin least-squares, discontinuous Galerkin) that benefit computationally from congruence approximation. Specifically, it becomes straightforward to construct the spatial discretization and Jacobian linearization for these schemes (given a small amount of derivative information) for possible use in Newton's method, discrete optimization, homotopy algorithms, etc. Some examples will be given for the compressible Euler equations and the nonrelativistic MHD equations using linear and quadratic spatial approximation.
    Keywords: Numerical Analysis
    Type: Apr 09, 1998 - Apr 10, 1998; Providence, RI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-18
    Description: Several stabilized demoralization procedures for conservation law equations on triangulated domains will be considered. Specifically, numerical schemes based on upwind finite volume, fluctuation splitting, Galerkin least-squares, and space discontinuous Galerkin demoralization will be considered in detail. A standard energy analysis for several of these methods will be given via entropy symmetrization. Next, we will present some relatively new theoretical results concerning congruence relationships for left or right symmetrized equations. These results suggest new variants of existing FV, DG, GLS, and FS methods which are computationally more efficient while retaining the pleasant theoretical properties achieved by entropy symmetrization. In addition, the task of Jacobean linearization of these schemes for use in Newton's method is greatly simplified owing to exploitation of exact symmetries which exist in the system. The FV, FS and DG schemes also permit discrete maximum principle analysis and enforcement which greatly adds to the robustness of the methods. Discrete maximum principle theory will be presented for general finite volume approximations on unstructured meshes. Next, we consider embedding these nonlinear space discretizations into exact and inexact Newton solvers which are preconditioned using a nonoverlapping (Schur complement) domain decomposition technique. Elements of nonoverlapping domain decomposition for elliptic problems will be reviewed followed by the present extension to hyperbolic and elliptic-hyperbolic problems. Other issues of practical relevance such the meshing of geometries, code implementation, turbulence modeling, global convergence, etc, will. be addressed as needed.
    Keywords: Numerical Analysis
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-18
    Description: We consider preconditioning methods for nonself-adjoint advective-diffusive systems based on a nonoverlapping Schur complement procedure for arbitrary triangulated domains. The triangulation is first partitioned using the METIS multi-level $k$-way partitioning code. This partitioning of the triangulation induces a natural 2x2 partitioning of the demoralization matrix. By considering various inverse approximations of the 2x2 system we have developed a family of robust preconditioning techniques. The performance of these approximations will be discussed and numerous examples shown to illustrate the efficiency of the technique.
    Keywords: Numerical Analysis
    Type: Jan 24, 1997 - Feb 02, 1997; Waterloo; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-17
    Description: This talk considers simplified finite element discretization techniques for first-order systems of conservation laws equipped with a convex (entropy) extension. Using newly developed techniques in entropy symmetrization theory, simplified forms of the discontinuous Galerkin (DG) finite element method have been developed and analyzed. The use of symmetrization variables yields numerical schemes which inherit global entropy stability properties of the PDE (partial differential equation) system. Central to the development of the simplified DG methods is the Eigenvalue Scaling Theorem which characterizes right symmetrizers of an arbitrary first-order hyperbolic system in terms of scaled eigenvectors of the corresponding flux Jacobian matrices. A constructive proof is provided for the Eigenvalue Scaling Theorem with detailed consideration given to the Euler equations of gas dynamics and extended conservation law systems derivable as moments of the Boltzmann equation. Using results from kinetic Boltzmann moment closure theory, we then derive and prove energy stability for several approximate DG fluxes which have practical and theoretical merit.
    Keywords: Numerical Analysis
    Type: Oxford ICFD Conference; Mar 24, 2001 - Mar 28, 2001; Oxford; United Kingdom
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: This lecture considers a-posteriori error estimates for the numerical solution of conservation laws with time invariant constraints such as those arising in magnetohydrodynamics (MHD) and gravitational physics. Using standard duality arguments, a-posteriori error estimates for the discontinuous Galerkin finite element method are then presented for MHD with solenoidal constraint. From these estimates, a procedure for adaptive discretization is outlined. A taxonomy of Green's functions for the linearized MHD operator is given which characterizes the domain of dependence for pointwise errors. The extension to other constrained systems such as the Einstein equations of gravitational physics are then considered. Finally, future directions and open problems are discussed.
    Keywords: Numerical Analysis
    Type: Workshop on "Hyperbolic Conservation Laws"; Apr 04, 2004 - Apr 10, 2004; Oberwolfach; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: Space-based systems are developing into critical infrastructure required to support the quality of life on Earth. Hence, spacecraft reliability is a serious issue that is complicated by exposure to the space environment. Complex mission designs along with rapidly evolving technologies have outpaced efforts to accommodate detrimental space environment impacts on systems. Hazardous space environments, the effects on systems, and the accommodation of the effects are described with a focus on the need to predict space environments.
    Keywords: Space Sciences (General)
    Type: American Meteorological Society Annual Meeting Space Weather Symposium; Jan 01, 2004; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...