ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1999
    Description: Stable delivery of a therapeutic protein under pharmacologic control was achieved through in vivo somatic gene transfer. This system was based on the expression of two chimeric, human-derived proteins that were reconstituted by rapamycin into a transcription factor complex. A mixture of two adeno-associated virus vectors, one expressing the transcription factor chimeras and one containing erythropoietin (Epo) under the control of a promoter responsive to the transcription factor, was injected into skeletal muscle of immune-competent mice. Administration of rapamycin resulted in 200-fold induction of plasma Epo. Stable engraftment of this humanized system in immune-competent mice was achieved for 6 months with similar results for at least 3 months in a rhesus monkey.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ye, X -- Rivera, V M -- Zoltick, P -- Cerasoli, F Jr -- Schnell, M A -- Gao, G -- Hughes, J V -- Gilman, M -- Wilson, J M -- P01 AR/NS43648-03/AR/NIAMS NIH HHS/ -- P30 DK47757-05/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1999 Jan 1;283(5398):88-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Human Gene Therapy, University of Pennsylvania, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9872748" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cytomegalovirus/genetics ; Dependovirus/genetics ; Erythropoietin/administration & dosage/blood/*genetics ; Female ; Gene Expression Regulation ; *Gene Transfer Techniques ; Genetic Therapy/*methods ; Genetic Vectors ; Hematocrit ; Injections, Intramuscular ; Macaca mulatta ; Male ; Mice ; Mice, Inbred BALB C ; Mice, Nude ; Muscle, Skeletal ; Promoter Regions, Genetic ; Recombinant Fusion Proteins ; Recombinant Proteins ; Sirolimus/*pharmacology ; Transcription Factors/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2000-02-26
    Description: Most types of antibiotic resistance impose a biological cost on bacterial fitness. These costs can be compensated, usually without loss of resistance, by second-site mutations during the evolution of the resistant bacteria in an experimental host or in a laboratory medium. Different fitness-compensating mutations were selected depending on whether the bacteria evolved through serial passage in mice or in a laboratory medium. This difference in mutation spectra was caused by either a growth condition-specific formation or selection of the compensated mutants. These results suggest that bacterial evolution to reduce the costs of antibiotic resistance can take different trajectories within and outside a host.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bjorkman, J -- Nagaev, I -- Berg, O G -- Hughes, D -- Andersson, D I -- New York, N.Y. -- Science. 2000 Feb 25;287(5457):1479-82.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bacteriology, Swedish Institute for Infectious Disease Control, S-171 82 Solna, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10688795" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Animals ; Anti-Bacterial Agents/*pharmacology ; *Antiporters ; Carrier Proteins/genetics ; Culture Media ; Drug Resistance, Microbial/*genetics ; Escherichia coli Proteins ; Evolution, Molecular ; Female ; Fusidic Acid/pharmacology ; Membrane Proteins/genetics ; Mice ; Mice, Inbred BALB C ; *Mutation ; Peptide Elongation Factor G/genetics ; Ribosomal Proteins/genetics ; Salmonella typhimurium/*drug effects/*genetics/growth & development/metabolism ; Selection, Genetic ; Serial Passage ; Streptomycin/pharmacology ; Suppression, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1999-07-27
    Description: Genetic selections were used to find peptides that inhibit biological pathways in budding yeast. The peptides were presented inside cells as peptamers, surface loops on a highly expressed and biologically inert carrier protein, a catalytically inactive derivative of staphylococcal nuclease. Peptamers that inhibited the pheromone signaling pathway, transcriptional silencing, and the spindle checkpoint were isolated. Putative targets for the inhibitors were identified by a combination of two-hybrid analysis and genetic dissection of the target pathways. This analysis identified Ydr517w as a component of the spindle checkpoint and reinforced earlier indications that Ste50 has both positive and negative roles in pheromone signaling. Analysis of transcript arrays showed that the peptamers were highly specific in their effects, which suggests that they may be useful reagents in organisms that lack sophisticated genetics as well as for identifying components of existing biological pathways that are potential targets for drug discovery.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Norman, T C -- Smith, D L -- Sorger, P K -- Drees, B L -- O'Rourke, S M -- Hughes, T R -- Roberts, C J -- Friend, S H -- Fields, S -- Murray, A W -- P41-RR11823/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1999 Jul 23;285(5427):591-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, University of California, San Francisco, CA 94143-0444, USA. tnorman@microbia.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10417390" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Fungal Proteins/metabolism ; G1 Phase ; Galactose/metabolism ; Lipoproteins/metabolism ; Micrococcal Nuclease ; Mitosis ; Molecular Sequence Data ; Peptide Library ; Peptides/genetics/metabolism/*pharmacology ; Pheromones/*metabolism ; Protein Binding ; Protein-Serine-Threonine Kinases ; Protein-Tyrosine Kinases ; Saccharomyces cerevisiae/cytology/genetics/*metabolism ; *Saccharomyces cerevisiae Proteins ; *Selection, Genetic ; *Signal Transduction ; Spindle Apparatus/drug effects/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1996-07-26
    Description: The SWI/SNF complex participates in the restructuring of chromatin for transcription. The function of the yeast SWI/SNF complex in the remodeling of a nucleosome array has now been analyzed in vitro. Binding of the purified SWI/SNF complex to a nucleosome array disrupted multiple nucleosomes in an adenosine triphosphate-dependent reaction. However, removal of SWI/SNF left a deoxyribonuclease I-hypersensitive site specifically at a nucleosome that was bound by derivatives of the transcription factor Gal4p. Analysis of individual nucleosomes revealed that the SWI/SNF complex catalyzed eviction of histones from the Gal4-bound nucleosomes. Thus, the transient action of the SWI/SNF complex facilitated irreversible disruption of transcription factor-bound nucleosomes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Owen-Hughes, T -- Utley, R T -- Cote, J -- Peterson, C L -- Workman, J L -- GM47867/GM/NIGMS NIH HHS/ -- R01 GM049650/GM/NIGMS NIH HHS/ -- R37 GM049650/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Jul 26;273(5274):513-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology and Center for Gene Regulation, Pennsylvania State University, University Park, PA 16802-4500, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8662543" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases ; Adenosine Triphosphate/metabolism ; Base Sequence ; Binding Sites ; DNA, Fungal/metabolism ; DNA-Binding Proteins/*metabolism ; Deoxyribonuclease I/metabolism ; Fungal Proteins/*metabolism ; Histones/metabolism ; Molecular Sequence Data ; *Nuclear Proteins ; Nucleosomes/*metabolism/ultrastructure ; Saccharomyces cerevisiae ; *Saccharomyces cerevisiae Proteins ; Transcription Factors/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-03-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hughes, Virginia -- England -- Nature. 2010 Mar 18;464(7287):340-2. doi: 10.1038/464340a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20237536" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Antisocial Personality Disorder/physiopathology/psychology ; Child ; Female ; Forensic Sciences/ethics/*methods/trends ; Homicide/*legislation & jurisprudence/*psychology ; Humans ; Insanity Defense ; Magnetic Resonance Imaging/standards/*utilization ; Male ; *Neurosciences ; Positron-Emission Tomography/utilization ; Rape/legislation & jurisprudence/psychology ; Reproducibility of Results
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-01-15
    Description: The human Y chromosome began to evolve from an autosome hundreds of millions of years ago, acquiring a sex-determining function and undergoing a series of inversions that suppressed crossing over with the X chromosome. Little is known about the recent evolution of the Y chromosome because only the human Y chromosome has been fully sequenced. Prevailing theories hold that Y chromosomes evolve by gene loss, the pace of which slows over time, eventually leading to a paucity of genes, and stasis. These theories have been buttressed by partial sequence data from newly emergent plant and animal Y chromosomes, but they have not been tested in older, highly evolved Y chromosomes such as that of humans. Here we finished sequencing of the male-specific region of the Y chromosome (MSY) in our closest living relative, the chimpanzee, achieving levels of accuracy and completion previously reached for the human MSY. By comparing the MSYs of the two species we show that they differ radically in sequence structure and gene content, indicating rapid evolution during the past 6 million years. The chimpanzee MSY contains twice as many massive palindromes as the human MSY, yet it has lost large fractions of the MSY protein-coding genes and gene families present in the last common ancestor. We suggest that the extraordinary divergence of the chimpanzee and human MSYs was driven by four synergistic factors: the prominent role of the MSY in sperm production, 'genetic hitchhiking' effects in the absence of meiotic crossing over, frequent ectopic recombination within the MSY, and species differences in mating behaviour. Although genetic decay may be the principal dynamic in the evolution of newly emergent Y chromosomes, wholesale renovation is the paramount theme in the continuing evolution of chimpanzee, human and perhaps other older MSYs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3653425/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3653425/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hughes, Jennifer F -- Skaletsky, Helen -- Pyntikova, Tatyana -- Graves, Tina A -- van Daalen, Saskia K M -- Minx, Patrick J -- Fulton, Robert S -- McGrath, Sean D -- Locke, Devin P -- Friedman, Cynthia -- Trask, Barbara J -- Mardis, Elaine R -- Warren, Wesley C -- Repping, Sjoerd -- Rozen, Steve -- Wilson, Richard K -- Page, David C -- R01 HG000257/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Jan 28;463(7280):536-9. doi: 10.1038/nature08700. Epub 2010 Jan 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Whitehead Institute, and Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20072128" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromosomes, Human, Pair 21/genetics ; Chromosomes, Human, Y/*genetics ; DNA/chemistry/genetics ; Genes/*genetics ; Humans ; Male ; Molecular Sequence Data ; *Nucleic Acid Conformation ; Pan troglodytes/*genetics ; Sequence Homology, Nucleic Acid ; Y Chromosome/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1989-11-03
    Description: A complementary DNA (cDNA) for ubiquitin carboxyl-terminal hydrolase isozyme L3 was cloned from human B cells. The cDNA encodes a protein of 230 amino acids with a molecular mass of 26.182 daltons. The human protein is very similar to the bovine homolog, with only three amino acids differing in over 100 residues compared. The amino acid sequence deduced from the cDNA was 54% identical to that of the neuron-specific protein PGP 9.5. Purification of bovine PGP 9.5 confirmed that it is also a ubiquitin carboxyl-terminal hydrolase. These results suggest that a family of such related proteins exists and that their expression is tissue-specific.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilkinson, K D -- Lee, K M -- Deshpande, S -- Duerksen-Hughes, P -- Boss, J M -- Pohl, J -- New York, N.Y. -- Science. 1989 Nov 3;246(4930):670-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2530630" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; B-Lymphocytes/enzymology ; Base Sequence ; Cattle ; DNA/genetics ; Humans ; Isoenzymes/genetics ; Molecular Sequence Data ; Neuropeptides/*genetics/isolation & purification ; Sequence Homology, Nucleic Acid ; Thiolester Hydrolases/*genetics/isolation & purification ; Ubiquitin Thiolesterase
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2007-10-27
    Description: The melanocortin 1 receptor (MC1R) regulates pigmentation in humans and other vertebrates. Variants of MC1R with reduced function are associated with pale skin color and red hair in humans of primarily European origin. We amplified and sequenced a fragment of the MC1R gene (mc1r) from two Neanderthal remains. Both specimens have a mutation that was not found in approximately 3700 modern humans analyzed. Functional analyses show that this variant reduces MC1R activity to a level that alters hair and/or skin pigmentation in humans. The impaired activity of this variant suggests that Neanderthals varied in pigmentation levels, potentially on the scale observed in modern humans. Our data suggest that inactive MC1R variants evolved independently in both modern humans and Neanderthals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lalueza-Fox, Carles -- Rompler, Holger -- Caramelli, David -- Staubert, Claudia -- Catalano, Giulio -- Hughes, David -- Rohland, Nadin -- Pilli, Elena -- Longo, Laura -- Condemi, Silvana -- de la Rasilla, Marco -- Fortea, Javier -- Rosas, Antonio -- Stoneking, Mark -- Schoneberg, Torsten -- Bertranpetit, Jaume -- Hofreiter, Michael -- New York, N.Y. -- Science. 2007 Nov 30;318(5855):1453-5. Epub 2007 Oct 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departament de Biologia Animal, Universitat de Barcelona, Spain. clalueza@ub.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17962522" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Substitution ; Animals ; Biological Evolution ; Cell Line ; DNA/genetics ; *Fossils ; Hair Color/*genetics ; Hominidae/*genetics ; Humans ; Molecular Sequence Data ; *Mutation ; Polymerase Chain Reaction ; Receptor, Melanocortin, Type 1/chemistry/*genetics/metabolism ; Sequence Analysis, DNA ; Skin Pigmentation/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2007-04-28
    Description: New strategies for prevention and treatment of type 2 diabetes (T2D) require improved insight into disease etiology. We analyzed 386,731 common single-nucleotide polymorphisms (SNPs) in 1464 patients with T2D and 1467 matched controls, each characterized for measures of glucose metabolism, lipids, obesity, and blood pressure. With collaborators (FUSION and WTCCC/UKT2D), we identified and confirmed three loci associated with T2D-in a noncoding region near CDKN2A and CDKN2B, in an intron of IGF2BP2, and an intron of CDKAL1-and replicated associations near HHEX and in SLC30A8 found by a recent whole-genome association study. We identified and confirmed association of a SNP in an intron of glucokinase regulatory protein (GCKR) with serum triglycerides. The discovery of associated variants in unsuspected genes and outside coding regions illustrates the ability of genome-wide association studies to provide potentially important clues to the pathogenesis of common diseases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Diabetes Genetics Initiative of Broad Institute of Harvard and MIT, Lund University, and Novartis Institutes of BioMedical Research -- Saxena, Richa -- Voight, Benjamin F -- Lyssenko, Valeriya -- Burtt, Noel P -- de Bakker, Paul I W -- Chen, Hong -- Roix, Jeffrey J -- Kathiresan, Sekar -- Hirschhorn, Joel N -- Daly, Mark J -- Hughes, Thomas E -- Groop, Leif -- Altshuler, David -- Almgren, Peter -- Florez, Jose C -- Meyer, Joanne -- Ardlie, Kristin -- Bengtsson Bostrom, Kristina -- Isomaa, Bo -- Lettre, Guillaume -- Lindblad, Ulf -- Lyon, Helen N -- Melander, Olle -- Newton-Cheh, Christopher -- Nilsson, Peter -- Orho-Melander, Marju -- Rastam, Lennart -- Speliotes, Elizabeth K -- Taskinen, Marja-Riitta -- Tuomi, Tiinamaija -- Guiducci, Candace -- Berglund, Anna -- Carlson, Joyce -- Gianniny, Lauren -- Hackett, Rachel -- Hall, Liselotte -- Holmkvist, Johan -- Laurila, Esa -- Sjogren, Marketa -- Sterner, Maria -- Surti, Aarti -- Svensson, Margareta -- Svensson, Malin -- Tewhey, Ryan -- Blumenstiel, Brendan -- Parkin, Melissa -- Defelice, Matthew -- Barry, Rachel -- Brodeur, Wendy -- Camarata, Jody -- Chia, Nancy -- Fava, Mary -- Gibbons, John -- Handsaker, Bob -- Healy, Claire -- Nguyen, Kieu -- Gates, Casey -- Sougnez, Carrie -- Gage, Diane -- Nizzari, Marcia -- Gabriel, Stacey B -- Chirn, Gung-Wei -- Ma, Qicheng -- Parikh, Hemang -- Richardson, Delwood -- Ricke, Darrell -- Purcell, Shaun -- F32 DK079466/DK/NIDDK NIH HHS/ -- F32 DK079466-01/DK/NIDDK NIH HHS/ -- K23 DK067288/DK/NIDDK NIH HHS/ -- K23 DK080145/DK/NIDDK NIH HHS/ -- K23 DK080145-01/DK/NIDDK NIH HHS/ -- K23 DK65978-04/DK/NIDDK NIH HHS/ -- K23-HL083102/HL/NHLBI NIH HHS/ -- U01 HG004171/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2007 Jun 1;316(5829):1331-6. Epub 2007 Apr 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Broad Institute of Harvard and Massachusetts Institute of Technology (MIT), Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17463246" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/genetics ; Aged ; Alleles ; Blood Glucose/analysis ; Case-Control Studies ; Chromosome Mapping ; Chromosomes, Human, Pair 9/genetics ; Diabetes Mellitus, Type 2/*genetics ; Female ; Genetic Markers ; *Genetic Predisposition to Disease ; *Genome, Human ; Genotype ; Haplotypes ; Humans ; Insulin Resistance/genetics ; Insulin-Like Growth Factor Binding Proteins/genetics ; Introns ; Male ; Meta-Analysis as Topic ; Middle Aged ; *Polymorphism, Single Nucleotide ; Quantitative Trait, Heritable ; Triglycerides/*blood
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2008-05-31
    Description: Close relatedness has long been considered crucial to the evolution of eusociality. However, it has recently been suggested that close relatedness may be a consequence, rather than a cause, of eusociality. We tested this idea with a comparative analysis of female mating frequencies in 267 species of eusocial bees, wasps, and ants. We found that mating with a single male, which maximizes relatedness, is ancestral for all eight independent eusocial lineages that we investigated. Mating with multiple males is always derived. Furthermore, we found that high polyandry (〉2 effective mates) occurs only in lineages whose workers have lost reproductive totipotency. These results provide the first evidence that monogamy was critical in the evolution of eusociality, strongly supporting the prediction of inclusive fitness theory.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hughes, William O H -- Oldroyd, Benjamin P -- Beekman, Madeleine -- Ratnieks, Francis L W -- New York, N.Y. -- Science. 2008 May 30;320(5880):1213-6. doi: 10.1126/science.1156108.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Integrative and Comparative Biology, University of Leeds, Leeds, LS2 9JT, UK. w.o.h.hughes@leeds.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18511689" target="_blank"〉PubMed〈/a〉
    Keywords: Altruism ; Animals ; Ants ; Bees ; *Biological Evolution ; Female ; Male ; Phylogeny ; *Sexual Behavior, Animal ; *Social Behavior ; Sociobiology ; Wasps
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...