ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1989-01-27
    Description: During sporulation in Bacillus subtilis, expression of developmental genes spoIVCB and cotD is induced in the mother cell compartment of the sporangium at morphological stages IV and V, respectively. A 27-kilodalton RNA polymerase sigma factor called sigma K (or sigma 27) has been found that causes weak transcription of spoIVCB and strong transcription of cotD. A 14-kD protein was also discovered that changes the specificity of sigma K-containing RNA polymerase, greatly stimulating spoIVCB transcription and markedly repressing cotD transcription. Both sigma K and the 14-kD protein are products of genes known to be required for expression of specific genes in the mother cell. Thus, sigma K directs gene expression in the mother cell and it is proposed that inactivation or sequestering of the 14-kD protein switches the temporal pattern of gene expression during the transition from stages IV to V of development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kroos, L -- Kunkel, B -- Losick, R -- GM18568/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1989 Jan 27;243(4890):526-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Developmental Biology, Harvard University, Cambridge, Massachusetts 02138.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2492118" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacillus subtilis/*genetics/physiology ; Cloning, Molecular ; DNA-Directed RNA Polymerases/*genetics/isolation & purification ; Electrophoresis, Polyacrylamide Gel ; Gene Expression Regulation ; Molecular Sequence Data ; Promoter Regions, Genetic ; Sigma Factor/*genetics/isolation & purification ; Spores, Bacterial/genetics ; Transcription Factors/*genetics ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1989-01-27
    Description: Differential gene expression in the mother cell chamber of sporulating cells of Bacillus subtilis is determined in part by an RNA polymerase sigma factor called sigma K (or sigma 27). The sigma K factor was assigned as the product of the sporulation gene spoIVCB on the basis of the partial aminoterminal amino acid sequence of the purified protein. The spoIVCB gene is now shown to be a truncated gene capable of specifying only the amino terminal half of sigma K. The carboxyl terminal half is specified by another sporulation gene, spoIIIC, to which spoIVCB becomes joined inframe at an intermediate stage of sporulation by site-specific recombination within a 5-base pair repeated sequence. Juxtaposition of spoIVCB and spoIIIC need not be reversible in that the mother cell and its chromosome are discarded at the end of the developmental cycle. The rearrangement of chromosomal DNA could account for the presence of sigma K selectively in the mother cell and may be a precedent for the generation of cell type-specific regulatory proteins in other developmental systems where cells undergo terminal differentiation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stragier, P -- Kunkel, B -- Kroos, L -- Losick, R -- New York, N.Y. -- Science. 1989 Jan 27;243(4890):507-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Developmental Biology, Harvard University, Cambridge, MA 02138.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2536191" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacillus subtilis/*genetics/physiology ; Base Sequence ; Cloning, Molecular ; DNA Probes ; DNA Restriction Enzymes ; DNA, Bacterial/genetics ; DNA-Directed RNA Polymerases/metabolism ; *Gene Expression Regulation ; *Gene Rearrangement ; *Genes, Bacterial ; Molecular Sequence Data ; Molecular Weight ; Mutation ; Nucleic Acid Hybridization ; Sigma Factor/genetics ; Spores, Bacterial ; Transcription Factors/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-10-25
    Description: Early in the process of spore formation in Bacillus subtilis a septum is formed that partitions the sporangium into daughter cells called the forespore and the mother cell. The daughter cells each have their own chromosome but follow dissimilar programs of gene expression. Differential gene expression in the forespore is now shown to be established by the compartmentalized activity of the transcription factor sigma F. The sigma F factor is produced prior to septation, but is active only in the forespore compartment of the post-septation sporangium. The sigma F factor is controlled by the products of sporulation operons spoIIA and spoIIE, which may be responsible for confining its activity to one of the daughter cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Margolis, P -- Driks, A -- Losick, R -- GM18568/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1991 Oct 25;254(5031):562-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Developmental Biology, Harvard University, Cambridge, MA 02138.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1948031" target="_blank"〉PubMed〈/a〉
    Keywords: Bacillus subtilis/cytology/genetics/*physiology ; Cloning, Molecular ; *Gene Expression Regulation, Bacterial ; Microscopy, Immunoelectron ; Mutagenesis, Site-Directed ; *Operon ; Sigma Factor/*physiology ; Spores, Bacterial/physiology/ultrastructure ; beta-Galactosidase/biosynthesis/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-05-01
    Description: Bacteria form communities known as biofilms, which disassemble over time. In our studies outlined here, we found that, before biofilm disassembly, Bacillus subtilis produced a factor that prevented biofilm formation and could break down existing biofilms. The factor was shown to be a mixture of D-leucine, D-methionine, D-tyrosine, and D-tryptophan that could act at nanomolar concentrations. D-amino acid treatment caused the release of amyloid fibers that linked cells in the biofilm together. Mutants able to form biofilms in the presence of D-amino acids contained alterations in a protein (YqxM) required for the formation and anchoring of the fibers to the cell. D-amino acids also prevented biofilm formation by Staphylococcus aureus and Pseudomonas aeruginosa. D-amino acids are produced by many bacteria and, thus, may be a widespread signal for biofilm disassembly.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2921573/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2921573/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kolodkin-Gal, Ilana -- Romero, Diego -- Cao, Shugeng -- Clardy, Jon -- Kolter, Roberto -- Losick, Richard -- CA24487/CA/NCI NIH HHS/ -- GM086258/GM/NIGMS NIH HHS/ -- GM18546/GM/NIGMS NIH HHS/ -- GM58213/GM/NIGMS NIH HHS/ -- R01 GM018568/GM/NIGMS NIH HHS/ -- R01 GM018568-39/GM/NIGMS NIH HHS/ -- R01 GM058213/GM/NIGMS NIH HHS/ -- R01 GM086258/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Apr 30;328(5978):627-9. doi: 10.1126/science.1188628.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20431016" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acids/*metabolism/pharmacology ; Bacillus subtilis/*physiology ; Bacterial Proteins/chemistry/metabolism ; *Biofilms/growth & development ; Cell Wall ; Culture Media, Conditioned ; Genes, Bacterial ; Leucine/metabolism/pharmacology ; Methionine/metabolism/pharmacology ; Molecular Sequence Data ; Mutation ; Pseudomonas aeruginosa/physiology ; Staphylococcus aureus/physiology ; Stereoisomerism ; Tryptophan/metabolism/pharmacology ; Tyrosine/metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-05-02
    Description: A major breakthrough in understanding the bacterial cell is the discovery that the cell is highly organized at the level of protein localization. Proteins are positioned at particular sites in bacteria, including the cell pole, the incipient division plane, and the septum. Differential protein localization can control DNA replication, chromosome segregation, and cytokinesis and is responsible for generating daughter cells with different fates upon cell division. Recent discoveries have revealed that progression through the cell cycle and communication between cellular compartments are mediated by two-component signal transduction systems and signaling pathways involving transcription factor activation by proteolytic processing. Asymmetric cell division in Caulobacter crescentus and sporulation in Bacillus subtilis are used as paradigms for the control of the cell cycle and cellular morphogenesis in bacterial cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shapiro, L -- Losick, R -- GM-32506/GM/NIGMS NIH HHS/ -- GM18568/GM/NIGMS NIH HHS/ -- GM51426/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 May 2;276(5313):712-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology, Beckman Center, Stanford University School of Medicine, Stanford, CA 94305-5427, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9115191" target="_blank"〉PubMed〈/a〉
    Keywords: Bacillus subtilis/cytology/genetics/*physiology ; Bacterial Proteins/*metabolism ; Caulobacter crescentus/cytology/genetics/physiology ; Cell Cycle ; Cell Polarity ; Chromosomes, Bacterial/physiology ; *DNA-Binding Proteins ; Gene Expression Regulation, Bacterial ; Genes, Bacterial ; Morphogenesis ; Spores, Bacterial/physiology ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1995-10-27
    Description: Cell fate is determined by cell-specific activation of transcription factor sigma F after asymmetric division during sporulation by Bacillus subtilis. The activity of sigma F is governed by SpoIIAA, SpoIIAB, and SpoIIE, a membrane protein localized at the polar septum. SpoIIAB binds to and inhibits sigma F, and SpoIIAA inhibits SpoIIAB, which prevents SpoIIAB from binding to sigma F. SpoIIAB is also a serine kinase that inactivates SpoIIAA. Here, it is demonstrated that SpoIIE dephosphorylates SpoIIAA-P and overcomes SpoIIAB-mediated inhibition of sigma F. The finding that SpoIIE is a serine phosphatase links asymmetric division to the pathway governing cell-specific gene transcription.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Duncan, L -- Alper, S -- Arigoni, F -- Losick, R -- Stragier, P -- GM18568/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1995 Oct 27;270(5236):641-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7570023" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; Bacillus subtilis/cytology/genetics/*physiology ; Bacterial Proteins/antagonists & inhibitors/*metabolism ; Cell Division ; Molecular Sequence Data ; Phosphoprotein Phosphatases/*metabolism ; Phosphorylation ; Recombinant Fusion Proteins/metabolism ; Sigma Factor/antagonists & inhibitors/*metabolism ; Spores, Bacterial/*physiology ; *Transcription Factors ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...