ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Sequence Data  (17)
  • American Association for the Advancement of Science (AAAS)  (17)
  • American Physical Society (APS)
  • 1990-1994  (17)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (17)
  • American Physical Society (APS)
Years
Year
  • 1
    Publication Date: 1994-02-11
    Description: Tumor necrosis factor (TNF), but not lymphotoxin (LT), is directly trypanolytic for salivarian trypanosomes. This activity was not blocked by soluble 55-kilodalton and 75-kilodalton TNF receptors, but was potently inhibited by N,N'-diacetylchitobiose, an oligosaccharide that binds TNF. Comparative sequence analysis of TNF and LT localized the trypanocidal region, and synthetic peptides were trypanolytic. TNF molecules in which the trypanocidal region was mutated or deleted retained tumoricidal activity. Thus, trypanosome-TNF interactions occur via a TNF domain, probably with lectin-like affinity, which is functionally and spatially distinct from the mammalian TNF receptor binding sites.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lucas, R -- Magez, S -- De Leys, R -- Fransen, L -- Scheerlinck, J P -- Rampelberg, M -- Sablon, E -- De Baetselier, P -- New York, N.Y. -- Science. 1994 Feb 11;263(5148):814-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cellular Immunology, University of Brussels, Sint-Genesius-Rode, Belgium.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8303299" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Binding Sites ; *Disaccharides ; Glucans/metabolism/pharmacology ; L Cells (Cell Line) ; Lectins/chemistry/metabolism/*pharmacology ; Lymphotoxin-alpha/pharmacology ; Mice ; Molecular Sequence Data ; Mutation ; Peptide Fragments/chemistry/pharmacology ; Receptors, Tumor Necrosis Factor/metabolism ; Trypanosoma brucei brucei/*drug effects ; Tumor Necrosis Factor-alpha/chemistry/genetics/metabolism/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1991-07-26
    Description: Malignant hyperthermia (MH) causes neurological, liver, and kidney damage and death in humans and major economic losses in the swine industry. A single point mutation in the porcine gene for the skeletal muscle ryanodine receptor (ryr1) was found to be correlated with MH in five major breeds of lean, heavily muscled swine. Haplotyping suggests that the mutation in all five breeds has a common origin. Assuming that this is the causal mutation for MH, the development of a noninvasive diagnostic test will provide the basis for elimination of the MH gene or its controlled inclusion in swine breeding programs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fujii, J -- Otsu, K -- Zorzato, F -- de Leon, S -- Khanna, V K -- Weiler, J E -- O'Brien, P J -- MacLennan, D H -- New York, N.Y. -- Science. 1991 Jul 26;253(5018):448-51.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1862346" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Codon/genetics ; Haplotypes ; Malignant Hyperthermia/genetics/*veterinary ; Molecular Sequence Data ; *Mutation ; Polymerase Chain Reaction ; Polymorphism, Genetic ; Receptors, Cholinergic/*genetics ; Restriction Mapping ; Ryanodine/metabolism ; Ryanodine Receptor Calcium Release Channel ; Species Specificity ; Swine ; Swine Diseases/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1992-03-20
    Description: The highly symmetric pyruvate dehydrogenase multienzyme complexes have molecular masses ranging from 5 to 10 million daltons. They consist of numerous copies of three different enzymes: pyruvate dehydrogenase, dihydrolipoyl transacetylase, and lipoamide dehydrogenase. The three-dimensional crystal structure of the catalytic domain of Azotobacter vinelandii dihydrolipoyl transacetylase has been determined at 2.6 angstrom (A) resolution. Eight trimers assemble as a hollow truncated cube with an edge of 125 A, forming the core of the multienzyme complex. Coenzyme A must enter the 29 A long active site channel from the inside of the cube, and lipoamide must enter from the outside. The trimer of the catalytic domain of dihydrolipoyl transacetylase has a topology identical to chloramphenicol acetyl transferase. The atomic structure of the 24-subunit cube core provides a framework for understanding all pyruvate dehydrogenase and related multienzyme complexes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mattevi, A -- Obmolova, G -- Schulze, E -- Kalk, K H -- Westphal, A H -- de Kok, A -- Hol, W G -- New York, N.Y. -- Science. 1992 Mar 20;255(5051):1544-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Groningen, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1549782" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Azotobacter vinelandii/enzymology ; Chloramphenicol O-Acetyltransferase/genetics ; Humans ; Models, Molecular ; Molecular Sequence Data ; Molecular Structure ; Pyruvate Dehydrogenase Complex/*chemistry/genetics ; Sequence Homology, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1992-05-08
    Description: Voltage-sensitive sodium channels are responsible for the initiation and propagation of the action potential and therefore are important for neuronal excitability. Complementary DNA clones encoding the beta 1 subunit of the rat brain sodium channel were isolated by a combination of polymerase chain reaction and library screening techniques. The deduced primary structure indicates that the beta 1 subunit is a 22,851-dalton protein that contains a single putative transmembrane domain and four potential extracellular N-linked glycosylation sites, consistent with biochemical data. Northern blot analysis reveals a 1,400-nucleotide messenger RNA in rat brain, heart, skeletal muscle, and spinal cord. Coexpression of beta 1 subunits with alpha subunits increases the size of the peak sodium current, accelerates its inactivation, and shifts the voltage dependence of inactivation to more negative membrane potentials. These results indicate that the beta 1 subunit is crucial in the assembly, expression, and functional modulation of the heterotrimeric complex of the rat brain sodium channel.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Isom, L L -- De Jongh, K S -- Patton, D E -- Reber, B F -- Offord, J -- Charbonneau, H -- Walsh, K -- Goldin, A L -- Catterall, W A -- NS15751/NS/NINDS NIH HHS/ -- NS25704/NS/NINDS NIH HHS/ -- NS26729/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1992 May 8;256(5058):839-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Washington, Seattle 98195.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1375395" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Blotting, Northern ; Brain/*physiology ; Cloning, Molecular ; DNA/genetics/isolation & purification ; Female ; Kinetics ; Macromolecular Substances ; Membrane Potentials ; Molecular Sequence Data ; Oocytes/physiology ; Polymerase Chain Reaction/methods ; Protein Conformation ; RNA/genetics/isolation & purification ; RNA, Messenger/genetics ; Rats ; Sodium Channels/*genetics/*physiology ; Voltage-Gated Sodium Channel beta-1 Subunit ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1990-05-11
    Description: Receptors for immunoglobulin G immune complexes (Fc gamma RII and Fc gamma RIII) are expressed on most hematopoietic cells and show much structural and functional diversity. In order to determine the genetic basis for this diversity, a family of genes encoding the human and mouse receptors was isolated and characterized. Humans have five distinct genes for low-affinity Fc gamma Rs, in contrast to two in the mouse. With the use of yeast artificial chromosomes, the genes encoding the human receptors were oriented and linked, which established the structure of this complex locus. Comparison of the human and mouse genes generated a model for the evolutionary amplification of this locus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Qiu, W Q -- de Bruin, D -- Brownstein, B H -- Pearse, R -- Ravetch, J V -- GM 36306/GM/NIGMS NIH HHS/ -- GM 39256/GM/NIGMS NIH HHS/ -- K23 AG022476/AG/NIA NIH HHS/ -- R01 AG031171/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 1990 May 11;248(4956):732-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular Biology, Sloan-Kettering Institute, New York, NY 10021.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2139735" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, Differentiation/*genetics/metabolism ; Base Sequence ; Blotting, Southern ; Exons ; Genome, Human ; Humans ; Immunoglobulin G/metabolism ; Introns ; Mice ; Molecular Sequence Data ; *Multigene Family ; Mutation ; Receptors, Fc/*genetics/metabolism ; Receptors, IgG ; Recombination, Genetic ; Restriction Mapping ; Spleen/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-07-12
    Description: The dorsal blastopore lip of the early Xenopus laevis gastrula can organize a complete secondary body axis when transplanted to another embryo. A search for potential gene regulatory components specifically expressed in the organizer was undertaken that resulted in the identification of four types of complementary DNAs from homeobox-containing genes that fulfill this criterion. The most abundant of these encodes a DNA-binding specificity similar to that of the Drosophila melanogaster anterior morphogen bicoid. The other three are also homologous to developmentally significant Drosophila genes. These four genes may participate in the regulation of the developmental potential of the organizer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Blumberg, B -- Wright, C V -- De Robertis, E M -- Cho, K W -- HD-07273/HD/NICHD NIH HHS/ -- HD-21502/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1991 Jul 12;253(5016):194-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, University of California, Los Angeles 90024.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1677215" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Blotting, Northern ; DNA/genetics ; DNA-Binding Proteins/*physiology ; Embryonic Induction ; Gene Expression ; Gene Library ; *Genes, Homeobox ; Molecular Sequence Data ; Morphogenesis ; Oligonucleotides/chemistry ; RNA, Messenger/genetics ; Xenopus laevis/*embryology/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1991-12-20
    Description: The interaction of antigen-specific T cell receptors (TCRs) with their ligands, peptides bound to molecules of the major histocompatibility complex (MHC), is central to most immune responses, yet little is known about its chemical characteristics. The binding to T cells of a labeled monoclonal antibody to the TCR was inhibited by soluble class II MHC heterodimers complexed to different peptides. Inhibition was both peptide- and TCR-specific and of low affinity, with a KD = 4 x 10(-5) to 6 x 10(-5) M, orders of magnitude weaker than comparable antibody-antigen interactions. This finding is consistent with the scanning nature of T cell recognition and suggests that antigen-independent adhesion precedes TCR engagement.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Matsui, K -- Boniface, J J -- Reay, P A -- Schild, H -- Fazekas de St Groth, B -- Davis, M M -- AI19512/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1991 Dec 20;254(5039):1788-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Stanford, CA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1763329" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibodies, Monoclonal ; Antigen-Presenting Cells/immunology ; Cell Line ; Genetic Variation ; Immunoglobulin Fab Fragments/immunology ; Kinetics ; Macromolecular Substances ; *Major Histocompatibility Complex ; Models, Biological ; Molecular Sequence Data ; Peptides/immunology/*metabolism ; Protein Binding ; Receptors, Antigen, T-Cell/immunology/*physiology ; T-Lymphocytes/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1991-12-13
    Description: Many human melanoma tumors express antigens that are recognized in vitro by cytolytic T lymphocytes (CTLs) derived from the tumor-bearing patient. A gene was identified that directed the expression of antigen MZ2-E on a human melanoma cell line. This gene shows no similarity to known sequences and belongs to a family of at least three genes. It is expressed by the original melanoma cells, other melanoma cell lines, and by some tumor cells of other histological types. No expression was observed in a panel of normal tissues. Antigen MZ2-E appears to be presented by HLA-A1; anti-MZ2-E CTLs of the original patient recognized two melanoma cell lines of other HLA-A1 patients that expressed the gene. Thus, precisely targeted immunotherapy directed against antigen MZ2-E could be provided to individuals identified by HLA typing and analysis of the RNA of a small tumor sample.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉van der Bruggen, P -- Traversari, C -- Chomez, P -- Lurquin, C -- De Plaen, E -- Van den Eynde, B -- Knuth, A -- Boon, T -- New York, N.Y. -- Science. 1991 Dec 13;254(5038):1643-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ludwig Institute for Cancer Research, Brussels, Belgium.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1840703" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, Neoplasm/*genetics ; Base Sequence ; Blotting, Northern ; Cloning, Molecular ; DNA/genetics ; Gene Expression ; Genes, Neoplasm ; Humans ; Melanoma/*immunology ; Melanoma-Specific Antigens ; Molecular Sequence Data ; *Neoplasm Proteins ; Polymerase Chain Reaction ; RNA, Messenger/genetics ; RNA, Neoplasm/genetics ; T-Lymphocytes, Cytotoxic/*immunology ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1991-11-08
    Description: Human growth hormone (hGH) forms a 1:2 complex with the extracellular domain of its receptor-binding protein (hGHbp) as studied by crystallization, size exclusion chromatography, calorimetry, and a previously undescribed fluorescence quenching assay. These and other experiments with protein engineered variants of hGH have led to the identification of the binding determinants for two distinct but adjacent sites on hGH for the hGHbp, and the data indicated that there are two overlapping binding sites on the hGHbp for hGH. Furthermore, the binding of hGH to the hGHbp occurred sequentially; a first hGHbp molecule bound to site 1 on hGH and then a second hGHbp bound to site 2. Hormone-induced receptor dimerization is proposed to be relevant to the signal transduction mechanism for the hGH receptor and other related cytokine receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cunningham, B C -- Ultsch, M -- De Vos, A M -- Mulkerrin, M G -- Clauser, K R -- Wells, J A -- New York, N.Y. -- Science. 1991 Nov 8;254(5033):821-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Protein Engineering, Genentech, Inc., South San Francisco, CA 94080.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1948064" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antibodies, Monoclonal ; Binding Sites ; Chromatography, Gel ; Growth Hormone/*metabolism ; Humans ; Kinetics ; Macromolecular Substances ; Models, Structural ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Protein Conformation ; Receptors, Somatotropin/genetics/isolation & purification/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1992-03-16
    Description: Synthetic oligonucleotides containing GC-rich triplet sequences were used in a scanning strategy to identify unstable genetic sequences at the myotonic dystrophy (DM) locus. A highly polymorphic GCT repeat was identified and found to be unstable, with an increased number of repeats occurring in DM patients. In the case of severe congenital DM, the paternal triplet allele was inherited unaltered while the maternal, DM-associated allele was unstable. These studies suggest that the mutational mechanism leading to DM is triplet amplification, similar to that occurring in the fragile X syndrome. The triplet repeat sequence is within a gene (to be referred to as myotonin-protein kinase), which has a sequence similar to protein kinases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fu, Y H -- Pizzuti, A -- Fenwick, R G Jr -- King, J -- Rajnarayan, S -- Dunne, P W -- Dubel, J -- Nasser, G A -- Ashizawa, T -- de Jong, P -- 5-M01-RR00350/RR/NCRR NIH HHS/ -- P30-HG00210/HG/NHGRI NIH HHS/ -- P50HL42267-01/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1992 Mar 6;255(5049):1256-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Molecular Genetics, Baylor College of Medicine, Houston, TX 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1546326" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Chromosomes, Human, Pair 19 ; Cloning, Molecular ; DNA/chemistry ; Humans ; Molecular Sequence Data ; Mutation ; Myotonic Dystrophy/*genetics ; Nucleic Acid Hybridization ; Polymerase Chain Reaction ; Polymorphism, Genetic ; *Repetitive Sequences, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...