ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1999-06-12
    Description: In many organisms, master control genes coordinately regulate sex-specific aspects of development. SDC-2 was shown to induce hermaphrodite sexual differentiation and activate X chromosome dosage compensation in Caenorhabditis elegans. To control these distinct processes, SDC-2 acts as a strong gene-specific repressor and a weaker chromosome-wide repressor. To initiate hermaphrodite development, SDC-2 associates with the promoter of the male sex-determining gene her-1 to repress its transcription. To activate dosage compensation, SDC-2 triggers assembly of a specialized protein complex exclusively on hermaphrodite X chromosomes to reduce gene expression by half. SDC-2 can localize to X chromosomes without other components of the dosage compensation complex, suggesting that SDC-2 targets dosage compensation machinery to X chromosomes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dawes, H E -- Berlin, D S -- Lapidus, D M -- Nusbaum, C -- Davis, T L -- Meyer, B J -- GM30702/GM/NIGMS NIH HHS/ -- T32 GM07127/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Jun 11;284(5421):1800-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3204, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10364546" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/embryology/*genetics/physiology ; *Caenorhabditis elegans Proteins ; *DNA-Binding Proteins ; Disorders of Sex Development ; *Dosage Compensation, Genetic ; Female ; Gene Expression Regulation, Developmental ; Genes, Helminth ; Helminth Proteins/genetics/*physiology ; Male ; Molecular Sequence Data ; Mutation ; Promoter Regions, Genetic ; Repressor Proteins/genetics/*physiology ; *Sex Determination Processes ; Transgenes ; X Chromosome/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1995-09-01
    Description: A mutated cyclin-dependent kinase 4 (CDK4) was identified as a tumor-specific antigen recognized by HLA-A2. 1-restricted autologous cytolytic T lymphocytes (CTLs) in a human melanoma. The mutated CDK4 allele was present in autologous cultured melanoma cells and metastasis tissue, but not in the patient's lymphocytes. The mutation, an arginine-to-cysteine exchange at residue 24, was part of the CDK4 peptide recognized by CTLs and prevented binding of the CDK4 inhibitor p16INK4a, but not of p21 or of p27KIP1. The same mutation was found in one additional melanoma among 28 melanomas analyzed. These results suggest that mutation of CDK4 can create a tumor-specific antigen and can disrupt the cell-cycle regulation exerted by the tumor suppressor p16INK4a.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wolfel, T -- Hauer, M -- Schneider, J -- Serrano, M -- Wolfel, C -- Klehmann-Hieb, E -- De Plaen, E -- Hankeln, T -- Meyer zum Buschenfelde, K H -- Beach, D -- New York, N.Y. -- Science. 1995 Sep 1;269(5228):1281-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medizinische Klinik und Poliklinik, Johannes Gutenberg-Universitat, Mainz, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7652577" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Carrier Proteins/metabolism/*pharmacology ; *Cell Cycle Proteins ; Cell Line ; Cloning, Molecular ; Cyclin-Dependent Kinase 4 ; Cyclin-Dependent Kinase Inhibitor p15 ; Cyclin-Dependent Kinase Inhibitor p16 ; Cyclin-Dependent Kinase Inhibitor p21 ; Cyclin-Dependent Kinase Inhibitor p27 ; *Cyclin-Dependent Kinases ; Cyclins/metabolism/pharmacology ; HLA-A2 Antigen/immunology ; Humans ; Melanoma/enzymology/*immunology ; Microtubule-Associated Proteins/metabolism/pharmacology ; Molecular Sequence Data ; Point Mutation ; Polymerase Chain Reaction ; Protein-Serine-Threonine Kinases/antagonists & ; inhibitors/genetics/*immunology/metabolism ; *Proto-Oncogene Proteins ; T-Lymphocytes, Cytotoxic/*immunology ; Transfection ; Tumor Cells, Cultured ; *Tumor Suppressor Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1995-07-07
    Description: Cytokines and growth factors induce tyrosine phosphorylation of signal transducers and activators of transcription (STATs) that directly activate gene expression. Cells stably transformed by the Src oncogene tyrosine kinase were examined for STAT protein activation. Assays of electrophoretic mobility, DNA-binding specificity, and antigenicity indicated that Stat3 or a closely related STAT family member was constitutively activated by the Src oncoprotein. Induction of this DNA-binding activity was accompanied by tyrosine phosphorylation of Stat3 and correlated with Src transformation. These findings demonstrate that Src can activate STAT signaling pathways and raise the possibility that Stat3 contributes to oncogenesis by Src.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yu, C L -- Meyer, D J -- Campbell, G S -- Larner, A C -- Carter-Su, C -- Schwartz, J -- Jove, R -- CA55652/CA/NCI NIH HHS/ -- DK34171/DK/NIDDK NIH HHS/ -- R01 DK034171/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1995 Jul 7;269(5220):81-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7541555" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cell Line, Transformed ; *Cell Transformation, Neoplastic ; DNA/*metabolism ; DNA-Binding Proteins/*metabolism ; Growth Inhibitors/pharmacology ; Interferon-gamma/pharmacology ; *Interleukin-6 ; Leukemia Inhibitory Factor ; Lymphokines/pharmacology ; Mice ; Molecular Sequence Data ; Oncogene Protein pp60(v-src)/*physiology ; Phosphorylation ; Phosphotyrosine ; STAT3 Transcription Factor ; *Signal Transduction ; Trans-Activators/*metabolism ; Tyrosine/analogs & derivatives/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-12-06
    Description: In nematodes, flies, and mammals, dosage compensation equalizes X-chromosome gene expression between the sexes through chromosome-wide regulatory mechanisms that function in one sex to adjust the levels of X-linked transcripts. Here, a dosage compensation complex was identified in the nematode Caenorhabditis elegans that reduces transcript levels from the two X chromosomes in hermaphrodites. This complex contains at least four proteins, including products of the dosage compensation genes dpy-26 and dpy-27. Specific localization of the complex to the hermaphrodite X chromosomes is conferred by XX-specific regulatory genes that coordinately control both sex determination and dosage compensation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chuang, P T -- Lieb, J D -- Meyer, B J -- GM30702/GM/NIGMS NIH HHS/ -- T32 GM07127/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Dec 6;274(5293):1736-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8939870" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/*genetics/metabolism ; *Caenorhabditis elegans Proteins ; Carrier Proteins/analysis/chemistry/*metabolism ; Disorders of Sex Development ; *Dosage Compensation, Genetic ; Electrophoresis, Polyacrylamide Gel ; Female ; Genes, Helminth ; Genes, Regulator ; Helminth Proteins/analysis/chemistry/*metabolism ; Male ; Nuclear Proteins/analysis/chemistry/*metabolism ; Precipitin Tests ; RNA, Helminth/metabolism ; RNA, Messenger/metabolism ; Sex Determination Analysis ; X Chromosome/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1996-12-06
    Description: The DPY-26 protein is required in the nematode Caenorhabditis elegans for X-chromosome dosage compensation as well as for proper meiotic chromosome segregation. DPY-26 was shown to mediate both processes through its association with chromosomes. In somatic cells, DPY-26 associates specifically with hermaphrodite X chromosomes to reduce their transcript levels. In germ cells, DPY-26 associates with all meiotic chromosomes to mediate its role in chromosome segregation. The X-specific localization of DPY-26 requires two dosage compensation proteins (DPY-27 and DPY-30) and two proteins that coordinately control both sex determination and dosage compensation (SDC-2 and SDC-3).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lieb, J D -- Capowski, E E -- Meneely, P -- Meyer, B J -- GM30702/GM/NIGMS NIH HHS/ -- HD24324/HD/NICHD NIH HHS/ -- T32 GM07127/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Dec 6;274(5293):1732-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8939869" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/embryology/genetics/*physiology ; *Caenorhabditis elegans Proteins ; Carrier Proteins/physiology ; Cell Nucleus/chemistry ; Chromosomes/*physiology ; Disorders of Sex Development ; *Dosage Compensation, Genetic ; Embryonic Development ; Female ; Gene Expression ; Genes, Helminth ; Germ Cells/physiology ; Helminth Proteins/analysis/genetics/*physiology ; Male ; *Meiosis ; Molecular Sequence Data ; Mutation ; Nuclear Proteins/physiology ; X Chromosome/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1996-06-14
    Description: Yeast galactokinase (Gal1p) is an enzyme and a regulator of transcription. In addition to phosphorylating galactose, Gal1p activates Gal4p, the activator of GAL genes, but the mechanism of this regulation has been unclear. Here, biochemical and genetic evidence is presented to show that Gal1p activates Gal4p by direct interaction with the Gal4p inhibitor Gal80p. Interaction requires galactose, adenosine triphosphate, and the regulatory function of Gal1p. These data indicate that Gal1p-Gal80p complex formation results in the inactivation of Gal80p, thereby transmitting the galactose signal to Gal4p.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zenke, F T -- Engles, R -- Vollenbroich, V -- Meyer, J -- Hollenberg, C P -- Breunig, K D -- New York, N.Y. -- Science. 1996 Jun 14;272(5268):1662-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Mikrobiologie, Heinrich-Heine-Universitat Dusseldorf, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8658143" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Coenzymes/metabolism ; DNA-Binding Proteins ; Fungal Proteins/*metabolism ; Galactokinase/genetics/*metabolism ; Galactose/*metabolism ; Kluyveromyces/genetics/metabolism ; Molecular Sequence Data ; Mutation ; Repressor Proteins/*metabolism ; Saccharomyces cerevisiae/genetics/*metabolism ; *Saccharomyces cerevisiae Proteins ; Signal Transduction ; Transcription Factors/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...