ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Life Sciences (General)  (14)
  • Molecular Sequence Data  (12)
  • 2000-2004  (26)
  • 1
    Publication Date: 2000-10-20
    Description: Ectodysplasin, a member of the tumor necrosis factor family, is encoded by the anhidrotic ectodermal dysplasia (EDA) gene. Mutations in EDA give rise to a clinical syndrome characterized by loss of hair, sweat glands, and teeth. EDA-A1 and EDA-A2 are two isoforms of ectodysplasin that differ only by an insertion of two amino acids. This insertion functions to determine receptor binding specificity, such that EDA-A1 binds only the receptor EDAR, whereas EDA-A2 binds only the related, but distinct, X-linked ectodysplasin-A2 receptor (XEDAR). In situ binding and organ culture studies indicate that EDA-A1 and EDA-A2 are differentially expressed and play a role in epidermal morphogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yan, M -- Wang, L C -- Hymowitz, S G -- Schilbach, S -- Lee, J -- Goddard, A -- de Vos, A M -- Gao, W Q -- Dixit, V M -- New York, N.Y. -- Science. 2000 Oct 20;290(5491):523-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Oncology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11039935" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Binding Sites ; Cell Line ; DNA-Binding Proteins/metabolism ; Ectodermal Dysplasia/genetics ; Ectodysplasins ; Epidermis/embryology/*metabolism ; Humans ; *I-kappa B Proteins ; In Situ Hybridization ; Ligands ; Membrane Proteins/*chemistry/*metabolism ; Mice ; Models, Molecular ; Molecular Sequence Data ; Morphogenesis ; NF-kappa B/metabolism ; Phosphorylation ; Point Mutation ; Protein Conformation ; Proteins/metabolism ; Receptors, Cell Surface/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; TNF Receptor-Associated Factor 6 ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-01-29
    Description: Evidence of simian immunodeficiency virus (SIV) infection has been reported for 26 different species of African nonhuman primates. Two of these viruses, SIVcpz from chimpanzees and SIVsm from sooty mangabeys, are the cause of acquired immunodeficiency syndrome (AIDS) in humans. Together, they have been transmitted to humans on at least seven occasions. The implications of human infection by a diverse set of SIVs and of exposure to a plethora of additional human immunodeficiency virus-related viruses are discussed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hahn, B H -- Shaw, G M -- De Cock, K M -- Sharp, P M -- N01 AI 35338/AI/NIAID NIH HHS/ -- R01 AI 40951/AI/NIAID NIH HHS/ -- R01 AI 44596/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2000 Jan 28;287(5453):607-14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Howard Hughes Medical Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA. bhahn@uab.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10649986" target="_blank"〉PubMed〈/a〉
    Keywords: Acquired Immunodeficiency Syndrome/epidemiology/*transmission/virology ; Africa, Western/epidemiology ; Amino Acid Sequence ; Animals ; Disease Outbreaks ; Disease Reservoirs ; *HIV-1/genetics ; *HIV-2/genetics ; Haplorhini/*virology ; Humans ; Molecular Sequence Data ; Phylogeny ; Public Health ; Simian Acquired Immunodeficiency Syndrome/virology ; Simian Immunodeficiency Virus/classification/genetics/*physiology ; Species Specificity ; Zoonoses/*transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2002-12-14
    Description: The first chordates appear in the fossil record at the time of the Cambrian explosion, nearly 550 million years ago. The modern ascidian tadpole represents a plausible approximation to these ancestral chordates. To illuminate the origins of chordate and vertebrates, we generated a draft of the protein-coding portion of the genome of the most studied ascidian, Ciona intestinalis. The Ciona genome contains approximately 16,000 protein-coding genes, similar to the number in other invertebrates, but only half that found in vertebrates. Vertebrate gene families are typically found in simplified form in Ciona, suggesting that ascidians contain the basic ancestral complement of genes involved in cell signaling and development. The ascidian genome has also acquired a number of lineage-specific innovations, including a group of genes engaged in cellulose metabolism that are related to those in bacteria and fungi.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dehal, Paramvir -- Satou, Yutaka -- Campbell, Robert K -- Chapman, Jarrod -- Degnan, Bernard -- De Tomaso, Anthony -- Davidson, Brad -- Di Gregorio, Anna -- Gelpke, Maarten -- Goodstein, David M -- Harafuji, Naoe -- Hastings, Kenneth E M -- Ho, Isaac -- Hotta, Kohji -- Huang, Wayne -- Kawashima, Takeshi -- Lemaire, Patrick -- Martinez, Diego -- Meinertzhagen, Ian A -- Necula, Simona -- Nonaka, Masaru -- Putnam, Nik -- Rash, Sam -- Saiga, Hidetoshi -- Satake, Masanobu -- Terry, Astrid -- Yamada, Lixy -- Wang, Hong-Gang -- Awazu, Satoko -- Azumi, Kaoru -- Boore, Jeffrey -- Branno, Margherita -- Chin-Bow, Stephen -- DeSantis, Rosaria -- Doyle, Sharon -- Francino, Pilar -- Keys, David N -- Haga, Shinobu -- Hayashi, Hiroko -- Hino, Kyosuke -- Imai, Kaoru S -- Inaba, Kazuo -- Kano, Shungo -- Kobayashi, Kenji -- Kobayashi, Mari -- Lee, Byung-In -- Makabe, Kazuhiro W -- Manohar, Chitra -- Matassi, Giorgio -- Medina, Monica -- Mochizuki, Yasuaki -- Mount, Steve -- Morishita, Tomomi -- Miura, Sachiko -- Nakayama, Akie -- Nishizaka, Satoko -- Nomoto, Hisayo -- Ohta, Fumiko -- Oishi, Kazuko -- Rigoutsos, Isidore -- Sano, Masako -- Sasaki, Akane -- Sasakura, Yasunori -- Shoguchi, Eiichi -- Shin-i, Tadasu -- Spagnuolo, Antoinetta -- Stainier, Didier -- Suzuki, Miho M -- Tassy, Olivier -- Takatori, Naohito -- Tokuoka, Miki -- Yagi, Kasumi -- Yoshizaki, Fumiko -- Wada, Shuichi -- Zhang, Cindy -- Hyatt, P Douglas -- Larimer, Frank -- Detter, Chris -- Doggett, Norman -- Glavina, Tijana -- Hawkins, Trevor -- Richardson, Paul -- Lucas, Susan -- Kohara, Yuji -- Levine, Michael -- Satoh, Nori -- Rokhsar, Daniel S -- HD-37105/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2002 Dec 13;298(5601):2157-67.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉U.S. Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12481130" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Apoptosis ; Base Sequence ; Cellulose/metabolism ; Central Nervous System/physiology ; Ciona intestinalis/anatomy & histology/classification/*genetics/physiology ; Computational Biology ; Endocrine System/physiology ; Gene Dosage ; Gene Duplication ; Genes ; Genes, Homeobox ; *Genome ; Heart/embryology/physiology ; Immunity/genetics ; Molecular Sequence Data ; Multigene Family ; Muscle Proteins/genetics ; Organizers, Embryonic/physiology ; Phylogeny ; Polymorphism, Genetic ; Proteins/genetics/physiology ; *Sequence Analysis, DNA ; Sequence Homology, Nucleic Acid ; Species Specificity ; Thyroid Gland/physiology ; Urochordata/genetics ; Vertebrates/anatomy & histology/classification/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2000-10-13
    Description: A nuclear isoform of myosin I beta that contains a unique 16-amino acid amino-terminal extension has been identified. An affinity-purified antibody to the 16-amino acid peptide demonstrated nuclear staining. Confocal and electron microscopy revealed that nuclear myosin I beta colocalized with RNA polymerase II in an alpha-amanitin- and actinomycin D-sensitive manner. The antibody coimmunoprecipitated RNA polymerase II and blocked in vitro RNA synthesis. This isoform of myosin I beta appears to be in a complex with RNA polymerase II and may affect transcription.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pestic-Dragovich, L -- Stojiljkovic, L -- Philimonenko, A A -- Nowak, G -- Ke, Y -- Settlage, R E -- Shabanowitz, J -- Hunt, D F -- Hozak, P -- de Lanerolle, P -- GM 37537/GM/NIGMS NIH HHS/ -- GM 56489/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Oct 13;290(5490):337-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11030652" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Actins/metabolism ; Amanitins/pharmacology ; Amino Acid Sequence ; Animals ; Base Sequence ; Cell Nucleus/*metabolism ; Cloning, Molecular ; Dactinomycin/pharmacology ; Exons ; HeLa Cells ; Humans ; Mice ; Microscopy, Confocal ; Microscopy, Electron ; *Molecular Motor Proteins ; Molecular Sequence Data ; Myosins/chemistry/genetics/immunology/*metabolism ; Nucleic Acid Synthesis Inhibitors/pharmacology ; Precipitin Tests ; Protein Isoforms/chemistry/genetics/immunology/metabolism ; RNA/*biosynthesis ; RNA Polymerase II/*metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-02-26
    Description: The hinge region on the Fc fragment of human immunoglobulin G interacts with at least four different natural protein scaffolds that bind at a common site between the C(H2) and C(H3) domains. This "consensus" site was also dominant for binding of random peptides selected in vitro for high affinity (dissociation constant, about 25 nanomolar) by bacteriophage display. Thus, this site appears to be preferred owing to its intrinsic physiochemical properties, and not for biological function alone. A 2.7 angstrom crystal structure of a selected 13-amino acid peptide in complex with Fc demonstrated that the peptide adopts a compact structure radically different from that of the other Fc binding proteins. Nevertheless, the specific Fc binding interactions of the peptide strongly mimic those of the other proteins. Juxtaposition of the available Fc-complex crystal structures showed that the convergent binding surface is highly accessible, adaptive, and hydrophobic and contains relatively few sites for polar interactions. These are all properties that may promote cross-reactive binding, which is common to protein-protein interactions and especially hormone-receptor complexes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉DeLano, W L -- Ultsch, M H -- de Vos, A M -- Wells, J A -- New York, N.Y. -- Science. 2000 Feb 18;287(5456):1279-83.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate Group in Biophysics, University of California, San Francisco, CA 94143, USA and Sunesis Pharmaceuticals, 3696 Haven Avenue, Suite C, Redwood City, CA 94063, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10678837" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Binding Sites, Antibody ; Crystallography, X-Ray ; Dimerization ; Evolution, Molecular ; Humans ; Hydrogen Bonding ; Immunoglobulin Fc Fragments/chemistry/*metabolism ; Immunoglobulin G/chemistry/*metabolism ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Peptide Library ; Peptides/chemistry/*metabolism ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Fc/chemistry/metabolism ; Rheumatoid Factor/chemistry/metabolism ; Staphylococcal Protein A/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2001-04-21
    Description: Aminoacyl transfer RNA (tRNA) synthetases establish the rules of the genetic code by catalyzing the aminoacylation of tRNAs. For some synthetases, accuracy depends critically on an editing function at a site distinct from the aminoacylation site. Mutants of Escherichia coli that incorrectly charge tRNA(Val) with cysteine were selected after random mutagenesis of the whole chromosome. All mutations obtained were located in the editing site of valyl-tRNA synthetase. More than 20% of the valine in cellular proteins from such an editing mutant organism could be replaced with the noncanonical aminobutyrate, sterically similar to cysteine. Thus, the editing function may have played a central role in restricting the genetic code to 20 amino acids. Disabling this editing function offers a powerful approach for diversifying the chemical composition of proteins and for emulating evolutionary stages of ambiguous translation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Doring, V -- Mootz, H D -- Nangle, L A -- Hendrickson, T L -- de Crecy-Lagard, V -- Schimmel, P -- Marliere, P -- GM23562/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Apr 20;292(5516):501-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Evologic SA, 4 rue Pierre Fontaine, 91000 Evry, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11313495" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Amino Acid Substitution ; Aminobutyrates/*metabolism ; Binding Sites ; Codon ; Cysteine/metabolism ; Escherichia coli/*genetics/growth & development/metabolism ; *Genetic Code ; Molecular Sequence Data ; Mutagenesis ; Phenotype ; *Protein Biosynthesis ; RNA, Bacterial/genetics/metabolism ; RNA, Transfer, Val/*metabolism ; Suppression, Genetic ; Threonine/metabolism ; Transfer RNA Aminoacylation ; Valine/metabolism ; Valine-tRNA Ligase/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2002-03-16
    Description: An outbreak of paralytic poliomyelitis occurred in the Dominican Republic (13 confirmed cases) and Haiti (8 confirmed cases, including 2 fatal cases) during 2000-2001. All but one of the patients were either unvaccinated or incompletely vaccinated children, and cases occurred in communities with very low (7 to 40%) rates of coverage with oral poliovirus vaccine (OPV). The outbreak was associated with the circulation of a derivative of the type 1 OPV strain, probably originating from a single OPV dose given in 1998-1999. The vaccine-derived poliovirus associated with the outbreak had biological properties indistinguishable from those of wild poliovirus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kew, Olen -- Morris-Glasgow, Victoria -- Landaverde, Mauricio -- Burns, Cara -- Shaw, Jing -- Garib, Zacarias -- Andre, Jean -- Blackman, Elizabeth -- Freeman, C Jason -- Jorba, Jaume -- Sutter, Roland -- Tambini, Gina -- Venczel, Linda -- Pedreira, Cristina -- Laender, Fernando -- Shimizu, Hiroyuki -- Yoneyama, Tetsuo -- Miyamura, Tatsuo -- van Der Avoort, Harrie -- Oberste, M Steven -- Kilpatrick, David -- Cochi, Stephen -- Pallansch, Mark -- de Quadros, Ciro -- New York, N.Y. -- Science. 2002 Apr 12;296(5566):356-9. Epub 2002 Mar 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention (CDC), 1600 Clifton Road, Atlanta, GA 30333, USA. okew@cdc.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11896235" target="_blank"〉PubMed〈/a〉
    Keywords: 5' Untranslated Regions ; Adolescent ; Animals ; Capsid/genetics ; Capsid Proteins ; Child ; Child, Preschool ; *Disease Outbreaks ; Dominican Republic/epidemiology ; Female ; Genes, Viral ; Haiti/epidemiology ; Humans ; Immunization Programs ; Infant ; Male ; Mice ; Molecular Sequence Data ; Point Mutation ; Poliomyelitis/*epidemiology/prevention & control/transmission/*virology ; Poliovirus/classification/*genetics/isolation & purification/*pathogenicity ; Poliovirus Vaccine, Oral/*adverse effects ; Population Surveillance ; Recombination, Genetic ; Vaccination ; Virulence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2003-10-04
    Description: Control of integrin affinity for ligands (integrin activation) is essential for normal cell adhesion, migration, and assembly of an extracellular matrix. Integrin activation is usually mediated through the integrin beta subunit cytoplasmic tail and can be regulated by many different biochemical signaling pathways. We report that specific binding of the cytoskeletal protein talin to integrin beta subunit cytoplasmic tails leads to the conformational rearrangements of integrin extracellular domains that increase their affinity. Thus, regulated binding of talin to integrin beta tails is a final common element of cellular signaling cascades that control integrin activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tadokoro, Seiji -- Shattil, Sanford J -- Eto, Koji -- Tai, Vera -- Liddington, Robert C -- de Pereda, Jose M -- Ginsberg, Mark H -- Calderwood, David A -- New York, N.Y. -- Science. 2003 Oct 3;302(5642):103-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, The Scripps Research Institute, The Burnham Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14526080" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Antibodies, Monoclonal/immunology ; Antigens, CD29/chemistry/metabolism ; Cell Line ; Fibronectins/metabolism ; Humans ; Integrin beta Chains/chemistry/*metabolism ; Integrin beta3/chemistry/metabolism ; Molecular Sequence Data ; Mutation ; Platelet Glycoprotein GPIIb-IIIa Complex/chemistry/immunology/metabolism ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; RNA, Small Interfering ; Recombinant Proteins/metabolism ; *Signal Transduction ; Talin/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2004-06-26
    Description: The antigenic evolution of influenza A (H3N2) virus was quantified and visualized from its introduction into humans in 1968 to 2003. Although there was remarkable correspondence between antigenic and genetic evolution, significant differences were observed: Antigenic evolution was more punctuated than genetic evolution, and genetic change sometimes had a disproportionately large antigenic effect. The method readily allows monitoring of antigenic differences among vaccine and circulating strains and thus estimation of the effects of vaccination. Further, this approach offers a route to predicting the relative success of emerging strains, which could be achieved by quantifying the combined effects of population level immune escape and viral fitness on strain evolution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, Derek J -- Lapedes, Alan S -- de Jong, Jan C -- Bestebroer, Theo M -- Rimmelzwaan, Guus F -- Osterhaus, Albert D M E -- Fouchier, Ron A M -- New York, N.Y. -- Science. 2004 Jul 16;305(5682):371-6. Epub 2004 Jun 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK. dsmith@zoo.cam.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15218094" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Antigenic Variation ; *Evolution, Molecular ; *Genes, Viral ; Genetic Drift ; Genetic Variation ; Hemagglutination Inhibition Tests ; *Hemagglutinins, Viral/chemistry/genetics/immunology ; Humans ; Influenza A virus/*genetics/*immunology ; Influenza, Human/epidemiology/virology ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Mutation ; Seasons ; Virology/methods
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2004-12-14
    Description: The incidence of tuberculosis has been increasing substantially on a worldwide basis over the past decade, but no tuberculosis-specific drugs have been discovered in 40 years. We identified a diarylquinoline, R207910, that potently inhibits both drug-sensitive and drug-resistant Mycobacterium tuberculosis in vitro (minimum inhibitory concentration 0.06 mug/ml). In mice, R207910 exceeded the bactericidal activities of isoniazid and rifampin by at least 1 log unit. Substitution of drugs included in the World Health Organization's first-line tuberculosis treatment regimen (rifampin, isoniazid, and pyrazinamide) with R207910 accelerated bactericidal activity, leading to complete culture conversion after 2 months of treatment in some combinations. A single dose of R207910 inhibited mycobacterial growth for 1 week. Plasma levels associated with efficacy in mice were well tolerated in healthy human volunteers. Mutants selected in vitro suggest that the drug targets the proton pump of adenosine triphosphate (ATP) synthase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Andries, Koen -- Verhasselt, Peter -- Guillemont, Jerome -- Gohlmann, Hinrich W H -- Neefs, Jean-Marc -- Winkler, Hans -- Van Gestel, Jef -- Timmerman, Philip -- Zhu, Min -- Lee, Ennis -- Williams, Peter -- de Chaffoy, Didier -- Huitric, Emma -- Hoffner, Sven -- Cambau, Emmanuelle -- Truffot-Pernot, Chantal -- Lounis, Nacer -- Jarlier, Vincent -- New York, N.Y. -- Science. 2005 Jan 14;307(5707):223-7. Epub 2004 Dec 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Johnson & Johnson Pharmaceutical Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium. kandries@prdbe.jnj.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15591164" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antitubercular Agents/chemistry/pharmacokinetics/*pharmacology/therapeutic use ; Bacterial Proton-Translocating ATPases/*antagonists & ; inhibitors/chemistry/metabolism ; Diarylquinolines ; Dose-Response Relationship, Drug ; Drug Evaluation, Preclinical ; Drug Resistance, Bacterial ; Drug Therapy, Combination ; Enzyme Inhibitors/chemistry/pharmacology/therapeutic use ; Humans ; Male ; Mice ; Microbial Sensitivity Tests ; Molecular Sequence Data ; Mycobacterium smegmatis/drug effects/enzymology/growth & development ; Mycobacterium tuberculosis/*drug effects/enzymology/growth & development ; Point Mutation ; Protein Subunits/antagonists & inhibitors/chemistry ; Quinolines/chemistry/pharmacokinetics/*pharmacology/*therapeutic use ; Tuberculosis/*drug therapy/microbiology ; Tuberculosis, Multidrug-Resistant/drug therapy/microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...